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Gaussian Processes regression
Scaling up GPs

Vecchia approximation for GPs

® Connection with polynomial interpolation

e Construction of DAG based on norming sets
® Probabilistic properties

® Statistical properties (estimation)

Deep Gaussian Processes (DGP)
Vecchia approximation for DGPs

Summary
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Gaussian Process Regression



Gaussian process regression
Model: Assume that we observe the pairs (xz, y¢), £ =1,...,n,
iid
ye = fo(x) + oee, €0 ~ N(0,1),
where fy is the unknown function of interest.

Bayesian approach: Endow fy with 1 = GP(0, k).



Gaussian process regression

Model: Assume that we observe the pairs (xz,y;), £ =1,...,n

ye = fo(xe) + oey, €4 i N(0,1),
where fy is the unknown function of interest.
Bayesian approach: Endow fy with 1 = GP(0, k).
Posterior: GP, analytic form Williams and Rasmussen (2006).

X — Kxf(O'zl + Kfr)_ly,
(x,2) = k(x,2) — Kee (0?1 + Kg) " Ks,

Here we denote y = (y1,...,yn) . f = (f(x1),...,f(x2))7,

Ky = covn(f(x), f) = (k(x,x1), ..., k(x,xn)), Keg = covn(F,f) =

[k(xi, x))|1<ij<n-



Matérn covariance kernel
Definition (Matérn) Centered stationary GP W;"™ = W2 with spectral density
2979/2T (o + d /2)(200)" (2a PREIPNE ) Of+d/2)
o)

Properties:

® Regularity parameter «:: sample paths are |«|-times differentiable (o« — oo SE).

® Scale parameter 7: shrinking or stretching the paths.
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Bayes vs. Frequentist

Statistical model: Data Y is generated by P = {Pr: f € ©}.
Schools: Frequentist Bayes

Model: Y ~ Pg,foc®©  f ~ M (prior), Y|f ~ Ps

Goal: Recover fj: Update our belief about f:
Estimator 7(Y) Posterior: f|Y



Bayes vs. Frequentist

Statistical model: Data Y is generated by P = {Pr: f € ©}.
Schools: Frequentist Bayes

Model: Y ~ Pg,foc®©  f ~ M (prior), Y|f ~ Ps
Goal: Recover fj: Update our belief about f:

Estimator 7(Y) Posterior: f|Y
Frequentist Bayes

Investigate Bayesian techniques from frequentist perspective, i.e. assume that there
exists a true fy and investigate the behaviour of the posterior 1(-|Y).
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f(x)

Prior: over-smoothing
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Posterior: over-smoothing
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Posterior: over-smoothing
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Gaussian process regression: theory

Theorem For fy € C?, 3 > 1/2 and Matérn process with regularity o > (3 and scale
parameter either set to 7, = n(@~)/(2(d+25)) or endowed with a hyper-prior under mild
tail condition, the corresponding posterior achieves the minimax contraction rate, i.e.

sup  EgMa(f : ||f = folln > Mn= /@420 vy 0,
fo€CB(M)

for arbitrary M,, — oc.
Remarks:
® One can endow a with hyper-prior, but 7 is computationally better.
® General result for GP priors in van der Vaart & van Zanten (2008).
e Similar results for other GPs, e.g. SE, fractional BM, Riemann-Liouville.

e Similar results for other models, e.g. classification, density estimation.



Problem: GP Computation

Conjugacy: the GP posterior has an explicit form.

Problem: Computation time of the posterior for training O(n®) and prediction O(n?).
Memory requirement O(n?). Becomes impractical for large data set.

Problem: Standard MCMC methods are also slow, computationally too costly for large
data sets.



Problem: GP Computation

Conjugacy: the GP posterior has an explicit form.

Problem: Computation time of the posterior for training O(n®) and prediction O(n?).
Memory requirement O(n?). Becomes impractical for large data set.

Problem: Standard MCMC methods are also slow, computationally too costly for large
data sets.

Scalable approaches: variational Bayes, probabilistic numerics methods, Vecchia
approximation, distributed GP, other sparse/low rank approximation of the
covariance/precision matrix (e.g. banding),...



Scaling up Gaussian Processes



Distributed Bayes:

Data segregation:

Posterior aggregation:

Distributed methods

Distributed Bayes:

Big Data Machine

D1

D1oo

Product of Experts

randomly
“averaging”

Local Posteriors Global
Posterior
P 1Dy
P 1 D)
. Q¢ ID)
P(f | Dino)

Mixture of Experts

local blocks
“sticking together”
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Variational Bayes
® In VB propose a family of tractable
distributions Q for 6.

® Trade-off: simple vs complex class <—
speed vs accuracy.

e Solve the following optimization problem:
*=a in KL(Q||N(-|Y
Q" = arg min KL(QIIN(|Y))

= arg max Eq log(p(0, X)) — Eq log(q(9))

e.g. using gradient descent, coordinate
ascent.



Probabilistic numerics methods

Computation aware GPs: methods from probabilistic numerics, see Wenger et al
(2023).

Idea: represent uncertainty resulting from limited computational resources

Goal: learning representer weights W* = K 1y.

Examples of methods: Lanczos iteration, conjugate gradient descent.

Software: GPyTorch Gardner et al (2018).
Theory: Stankewitz & Sz (2024).



Vecchia approximation of Gaussian Processes



Vecchia Approximations

Consider a mother Gaussian process Z on X, = (X1, .., X;) with joint density

decomposed as
n

p(Zx,) = p(Zx,) H P(Zx:|Zx; j<i)-
i—2



Vecchia Approximations

Consider a mother Gaussian process Z on X, = (X1, .., X;) with joint density
decomposed as

n
P(Zx,) = p(Zx) [ [ P(Zx1 2. j<i)-
i=2
The Vecchia approximations of Gaussian Processes (Vecchia GPs) replace each
conditional set {X;,j < i} with a much smaller parent set pa(X;)

p(zxn) = P(2X1) H p(2Xi|2pa(X )
i=2

such that
5 5 d
[Zx; | Zoax)) = 2] = [Zx | Zpa(x) = 2]
Outside of design: for x ¢ X, [Zc | Zoatx) = 2] £ [Zx | Zpa(x) = 2] Pa(x) € Ao,

and [Z | ZDa(x) - Z] ain [Z | ZDa(v) — Z]



Methodology: Choose Parent Sets

In view of the joint density of Vecchia Gaussian Processes
n
i=2
and |pa(X;)| < m the evaluation of this density is O(nm?).
The principles to choose parent sets are
® The parent sets have bounded cardinality.

® Good approximation property.



Methodology: Choose Parent Sets

There lacks clear guidance on choosing the parent sets:

e Geometric properties:

® |t is intuitive to choose close neighbors for parent sets, featured by NNGP
Datta et al. (2016).

® But remote locations are also used, particularly in maximin ordering Katzfuss
(2021).

® |t is even proposed to randomly permute dataset before choosing parent sets
Guinness (2018).

e Cardinality m:

® Based on theories regarding approximation error, choose m = (log n)” for
some constant b > 0 Schafer et al. (2021), Zhu et al (2024);
® |n practice, m is chosen in adhoc way.



Our Contributions

® Methodology:

® Problem: Unclear guidance for choosing parent sets.
® Contribution: Propose Norming Sets as parents, with m = O(1) = O(n)
computational complexity.

® Probabilistic Properties:

® Contribution: Systematically study the Vecchia GPs as standalone
stochastic processes, uncover local polynomial-like behaviors of Vecchia GPs.
Derive small deviation bounds.

e Statistical Theory:

® Problem: No statistical guarantees for Vecchia GPs.
¢ Contribution: Prove minimax optimality and adaptation for Vecchia GPs
using Norming Sets as parents.



Comparison: a Stationary GP versus a Vecchia GP
Matern GP:

e Stationary GP, marginal distributions have closed form.

® The small ball probability, and subsequently posterior contraction rates, are
obtained from studying the RKHS.



Comparison: a Stationary GP versus a Vecchia GP
Matern GP:

e Stationary GP, marginal distributions have closed form.

® The small ball probability, and subsequently posterior contraction rates, are
obtained from studying the RKHS.

Vecchia GP:

® The joint density is defined through the product of conditionals:
p(Zx,) = p(2x) | | P(Zx| Zoa(x,)):
i=2

® No existing results regarding RKHS, small ball probability, etc.

Key Problem: study the conditional distributions
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Polynomial fit in d =1

Goal: given nodes A= {w1,..., w41} C R and values z = (z1, ..., z11) € R fit an /
order polynomial P € P, i.e. P(w;) =z, foralli=1,...,/1+1.

Solution: There exists a unique solution, called the Lagrange polynomial

I+1 X —w
L(x) =) zli(x),  with 4(x)=]] L.

; tLwp —w

Jj=1 i#]

Connection to linear algebra:

1 w W12 Wll ag z

1 w W22 Wzl al | =z

1w w? w a z

+1 Wi I+1 I I+1



Polynomial fit in d > 2

Notations:
® Finite set A= {wy,.., wn} C RY.
o P)(RY) the collection of polynomials on RY with orders no greater than /.

® Vi € R™™: multidimensional version of the Vandermonde matrix consisting
monomials up to order | evaluated at A.

® v, € R™ vector of monomials up to order | evaluated at x.

Lemma (unisolvency): Let m = (%) and z = (z1, .., Zm) T € R™. Then there exists
a unique polynomial P € P;(RY) satisfying P(w;) = z;, i = 1, ..., m iff the
Vandermonde matrix Vj is invertible. Moreover, this polynomial takes the form

P(x) = vV, 'z

See e.g. Wenland (2024).



Norming Sets: definition

Question: When is the Vandermonde matrix V4 invertible?

Definition (Norming set) by Jetter et al (1999):
® For Q a compact subset of RY,

® We say a finite set A= {wy,ws, -+, wpn} C Qis a norming set for &/(Q2) with
norming constant ¢y > 0 if

sup |P(x)| < cy sup |[P(X)|, VP € 2/(9). (1)
xeN x'€A

Lemma: the Vandermonde matrix Vj, is invertable iff A is a norming set.



Conditional expectation

The expectation of conditional distribution is

5 15 T -1
IE[ZX,- ’ Zpa(X,-) = z] =z Kpa(X,-),pa(X,-)KXiaPa(Xi)'

Let r := diam(pa(X;)) and | = a.

Lemma Under the condition that parent set is a norming set,

1Kt pa(x) Kpatxnx = V(g vl < en (2072 7).

Flat Limit: Gaussian interpolation approximately polynomial interpolation.

Posterior spread: controlled by the approximation error of Gaussian interpolation with
polynomial interpolations.



Norming Sets
Consider the first order polynomial space on [0,1]? as 7 ([0, 1]?) = span {1, x1,x} .
dim(21([0,1]%) = 3 = norming set has at least three elements.

1.00 e 1.00 ® 1.00
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0.50 0.50 0.50 e L] L]
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(]
0.00 e e 0.00 0.00
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ey =3 cy=5.768419 =

Figure: Norming constants w.r.t. Z;([0,1]?), for three different sets. "Corner set"
Neidinger (2019), random points, non-norming set.



Layered Norming DAGs

Step 1: partition the vertex set X, into disjoint layers Ny, N1, Na, - -+ (coarse-to-fine).

® X X X X X ] L] X X ® X X ® L] ® X e X @ ®
X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X ® X @ X @ X e X e
X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X ¢ X X X ®# X X X @ ® X & X o X e X @
X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X XX X X X X X X X e X ® X e X e X @
X X X X X X X X X X X X X X X X X X X X X X X X X X X
¢ X X X X X X X @ ® X X X @ X X X @ e X @ X @ X @ X e

Layer NVp Layer Ny, Vi Layer Ny, N1, N>

Figure: lllustration of Layers on a 9 x 9 Grid: Red dots: current layer; Blue dots: all previous
layers; Black crosses: all latter layers.



Layered Norming DAGs (cont)

Step 2: for each X; € Nj,j > 1, pa(X;) is a Norming Set in UJ/ 1M Order of
polynomial space is chosen / = a.

® X ® X ® X ® X @ @ X @& X @ X ® X @ e X ® X @ X @ X @
X X X X X X X X X X X X X X X X X X X X X X $ X X X X
e X @ X @ X e X e e X @ X @ X @ X @ ® X @ X_@ X @ X @
X X X X X X X X X X X X X X X X X X X % ? XX X X
® X @ X @ X e X @ e X & X e X e X e ® X @ X @ X @ X e
$ XKooX X X X X X X X\X D D P S S XX X X X X X X X
e_xX @ X @ X @& X @ ® X o X X @ X @ e X @ X @ X e X @
/TPNX x X X X X / X X X X X X X X X X X X X X X
e X o X ® X e X @ e X ® X @ X @ X @ e X @ X @ X e X @

Figure: Illustration of parent sets for X; € N>, with a = 1. Red dots: current layer N5;
Blue dots: previous layers Ny, Ni; Black crosses: all latter layers. Blue arrows: directed
edges from parent sets to children for some X; € A\>.



Vecchia GP: small deviation bounds
Concentration function: Let H] denote the RKHS corresponding to the Vecchia GP,
then

T FlIZ —log(||Z7|loo < €).
fon(€) = — fonm 115 — log([|Z7 [0 <€)



Vecchia GP: small deviation bounds

Concentration function: Let H] denote the RKHS corresponding to the Vecchia GP,
then

T FlIZ —log(||Z7|loo < €).
fon(€) = — fonm 115 — log([|Z7 [0 <€)

Theorem: For the Layered Norming Set DAG and Matern GP with regularity « and
scale parameter 7 the Vecchia GP Z7 satisfies

—log Pr(||ZTHOo <€)< rded/,



Vecchia GP: small deviation bounds
Concentration function: Let H] denote the RKHS corresponding to the Vecchia GP,
then

7 2, —log(||Z7 < €).
o) = i~ 10g(127 ] <

Theorem: For the Layered Norming Set DAG and Matern GP with regularity « and
scale parameter 7 the Vecchia GP Z7 satisfies

—log Pr([|Z7||oe < €) S 79/,

Lemma: For the Layered Norming Set DAG and Matern GP with regularity o and scale
parameter T,
2(a—pB)+d —

inf IF11Z: <rde9/* 7722 5 4e,
FEHT:||f—follco<e n

™la



Vecchia GP: posterior contraction

Theorem: Consider the rescaled I\/Iatern GP as based prior. Then for fy € Ch, with

B < «, and setting either 7 = n”(z”d) or endowing 7 with a hyperprior (satisfying mild
tail conditions), the posterior corresponding to the (hierarchical) Vecchia GP
approximation achieves minimax contraction rate, i.e.

sup  EgNY(F: [If —folln > Mo 757 Y) =
foc CA(M)

for arbitrary M,, — oc.

Proof sketch: Solve

__B . . .
This ¢, = n~ d+28 is the posterior contraction rate by general GP theorem vd Vaart, van
Zanten (2018).



Vecchia NNGP vs Layered Norming DAG
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Figure: Comparison for Vecchia GP with Layered Norming DAGs and NNGP with
maximin ordering:

Left: posterior estimation error measured by £2 norm between the truth and the

posterior mean;

Middle: prior approximation error measured by squared Wasserstein distance between
marginals of Vecchia GPs and their mother GPs;

Right: Run time of MCMC inference measured by seconds.



Deep Gaussian Processes



Limitations of GPs

Problem: Not appropriate to learn compositional structures, adapt to local regularities
and structures.

Def (Generalized additive models):

d
G(M) ={f(x1,....xq) = h(Zg,-(x,-)) . gi,h € Lip(M)nL>®(M)}.

Minimax rate Schmidt-Hieber (2020): infzsupseg(u Hf — |l =x* 013,
* ! up to a poly-log term.
Theorem (Giardano et al. (2022)) For any sequence I, of Gaussian process priors, if

sup EgMy(f: [|f —foll2 = en|Y) —
focG(M)

holds, then ¢, > n 14 (suboptimal for d > 2).
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Compositional structure: definition
Compositional class:
F={f=hgohg10..0hy: h=(hy):[-1,1]% = [-1,1]% h; € CJ(M)},
where hj; is allowed to depend on t; < d; variables S;; C {1, .., d;}, with |S;;| = t; and

i [-1,1]% — [-1,1],
Xs; = hij(xs;, Xsg)-

Minimax rate (Schmidt-Hieber (2020)):

_ B q
inf sup E[|f — fll <* max n #77 with 57 = 5; T (8en1).

* up to a logarithmic term.



Deep GP: Illustration

X O f(x)

Titsias & Lawrence (2010), Damianou & Lawrence (2013).



Deep GP: application

GP prediction Original data

DGP prediction
. —

lat

lon / \ lon
fi(lat, lon) f(lat,lon)

lat

lat

lon lon

Figure: Modeling a hurricane field with GP vs Deep GP. Svendsen et al (2020): Deep

GCanceinan nroceccee for hinoceanhveical narameter retrieval and model invercioan



Deep GP: model selection prior

Hierarchical Deep GP construction Finocchio, Schmidt-Hieber (2022):

@ Put a prior on composition graph

® prior on the number of layers, i.e. depth
® prior on the width of the layers
® prior on compositional sparsity (model selection prior)

® GP priors on the edges

© Regularization of sample paths: : bounded sup norm, close to Holder function



Deep GP: theory

Theorem (Finocchio & Schmidt-Hieber (2022)): Under weak regularity assumptions
and suitable GP priors on the edges, the hierarchical construction of the deep GP prior
results in nearly minimax posterior contraction in the compositional class, i.e. for some
poly-log sequence M,

o
sup  EgMa(f : ||f — foll2 > M, max n 287+ lY)— 0.
fOE.F(M) ’:Oﬁ"!q

Other approach Castillo & Randrianarisoa (2025): endow the scale parameters of SE
GP with another layer of prior. Does automatic edge selection. Similar theoretical
results for fractional posteriors (works in high-dimensional models as well).



Vecchia approximation of Deep Gaussian
Processes



Deep Vecchia GP: method

Previous method (Sauer et al. (2022): deepgp) Two-layer deep Vecchia f, o f;
e Layer 1: NNGP approx. of f; based on design points xi, ..., X,.
e Layer 2: NNGP approx. of f, based on image of design fi(x1), ..., fi(xn)-
Problem: fi(x1), ..., fi(xn) can be close to each other resulting in bad fit.
Proposed method: g-layer Vecchia GP f,of,_10..0f

® Layer j: Vecchia (Layered Norming DAG) approximation of f; based on grid points
(i/m,j/m)ij=1..m

® Gibbs sampler (under construction): complexity O(qlog n) per iteration (due to
localized basis structure of Vecchia GP).



Deep Vecchia GP: Theory

Conjecture: Using Layered Norming DAG Vecchia approximation at each layer of the
hierarchical deep GP construction of Finocchio & Schmidt-Hieber (2022) with Matérn
covariance kernel, the corresponding posterior achieves the near minimax contraction
rate for compositional functions, i.e.

8
sup  EgM(f: ||If — folla > M, max n 2775 |Y) — 0,
RHeF(M) i=0,..,q

for M,, a poly-log factor.



Deep Vecchia GP: extension/ongoing work

Extend our results to Deep Horseshoe GPs. This allows to get rid of the
regularization of the sample paths.

Consider also the square exponential covariance kernel.
Prove local adaptation of (Vecchia) Deep GPs.

Prove pointwise/supremum convergence rates for (Vecchia) Deep GPs



Summary

Gaussian Processes are popular in applications.
Good theoretical performance, but computational problems.
Scalable approximation: Vecchia.

Vecchia GP based on layered norming DAG: parents set m = O(1) and minimax
contraction rate.

Deep GPs: compositional (deep) structure for GPs (with prior on graph structure).

Extension of Vecchia approximation to deep GPs: minimax rates, algorithmic
aspects in development.
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