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Gaussian Process Regression



Gaussian process regression

Model: Assume that we observe the pairs (xℓ, yℓ), ℓ = 1, ..., n,

yℓ = f0(xℓ) + σεℓ, εℓ
iid∼ N(0, 1),

where f0 is the unknown function of interest.

Bayesian approach: Endow f0 with Π = GP(0, k).

Posterior: GP, analytic form Williams and Rasmussen (2006).

x 7→ Kxf (σ
2I + K� )

−1y ,

(x , z) 7→ k(x , z)− Kxf (σ
2I + K� )

−1Kf z ,

Here we denote y = (y1, . . . , yn)
T , f = (f (x1), . . . , f (xn))

T ,
Kxf = covΠ(f (x), f ) = (k(x , x1), . . . , k(x , xn)), K� = covΠ(f , f ) = [k(xi , xj)]1≤i ,j≤n.



Gaussian process regression

Model: Assume that we observe the pairs (xℓ, yℓ), ℓ = 1, ..., n,

yℓ = f0(xℓ) + σεℓ, εℓ
iid∼ N(0, 1),

where f0 is the unknown function of interest.

Bayesian approach: Endow f0 with Π = GP(0, k).

Posterior: GP, analytic form Williams and Rasmussen (2006).

x 7→ Kxf (σ
2I + K� )

−1y ,

(x , z) 7→ k(x , z)− Kxf (σ
2I + K� )

−1Kf z ,

Here we denote y = (y1, . . . , yn)
T , f = (f (x1), . . . , f (xn))

T ,
Kxf = covΠ(f (x), f ) = (k(x , x1), . . . , k(x , xn)), K� = covΠ(f , f ) = [k(xi , xj)]1≤i ,j≤n.



Matérn covariance kernel
De�nition (Matérn) Centered stationary GP W α,τ

t = W α
τ t with spectral density

λ 7→ 2dπd/2Γ(α+ d/2)(2α)α

Γ(α)τ2α

(2α
τ2

+ 4π2∥λ∥2
)−(α+d/2)

.

Properties:

• Regularity parameter α: sample paths are ⌊α⌋-times di�erentiable (α → ∞ SE).

• Scale parameter τ : shrinking or stretching the paths.



Bayes vs. Frequentist

Statistical model: Data Y is generated by P = {Pf : f ∈ Θ}.

Schools: Frequentist Bayes

Model: Y ∼ Pf0 , f0 ∈ Θ f ∼ Π (prior), Y |f ∼ Pf

Goal: Recover f0: Update our belief about f :

Estimator f̂ (Y ) Posterior: f |Y

Frequentist Bayes

Investigate Bayesian techniques from frequentist perspective, i.e. assume that there
exists a true f0 and investigate the behaviour of the posterior Π(·|Y ).
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Nonparametric regression
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Posterior
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Posterior
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Prior: over-smoothing
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Posterior: over-smoothing
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Posterior: over-smoothing
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Prior: under-smoothing
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Posterior: under-smoothing
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Posterior: under-smoothing
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Posterior: misspeci�ed
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Which one is correct?
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Gaussian process regression: theory
Theorem For f0 ∈ Cβ , β > 1/2 and Matérn process with regularity α ≥ β and scale
parameter either set to τn = n(α−β)/(α(d+2β)) or endowed with a hyper-prior under mild
tail condition, the corresponding posterior achieves the minimax contraction rate, i.e.

sup
f0∈Cβ(M)

Ef0Πn(f : ∥f − f0∥n ≥ Mnn
−β/(d+2β)|Y ) → 0,

for arbitrary Mn → ∞.

Remarks:

• One can endow α with hyper-prior, but τ is computationally better.

• General result for GP priors in van der Vaart & van Zanten (2008).

• Similar results for other GPs, e.g. SE, fractional BM, Riemann-Liouville.

• Similar results for other models, e.g. classi�cation, density estimation.



Problem: GP Computation

Conjugacy: the GP posterior has an explicit form.

Problem: Computation time of the posterior for training O(n3) and prediction O(n2).
Memory requirement O(n2). Becomes impractical for large data set.

Problem: Standard MCMC methods are also slow, computationally too costly for large
data sets.

Scalable approaches: variational Bayes, probabilistic numerics methods, Vecchia
approximation, distributed GP, other sparse/low rank approximation of the
covariance/precision matrix (e.g. banding),...
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Scaling up Gaussian Processes



Distributed methods
Distributed Bayes:

Product of Experts Mixture of Experts

Data segregation: randomly local blocks
Posterior aggregation: �averaging� �sticking together�



Distributed GP

Sz. & van Zanten (2019), Sz., Hadji, vd Vaart (2025)



Variational Bayes

• In VB propose a family of tractable
distributions Q for θ.

• Trade-o�: simple vs complex class ⇐⇒
speed vs accuracy.

• Solve the following optimization problem:

Q∗ = arg min
Q∈Q

KL(Q||Π(·|Y ))

= arg max
Q∈Q

EQ log(p(θ,X ))− EQ log(q(θ))

e.g. using gradient descent, coordinate
ascent.



Probabilistic numerics methods

• Computation aware GPs: methods from probabilistic numerics, see Wenger et al
(2023).

• Idea: represent uncertainty resulting from limited computational resources

• Goal: learning representer weights W ∗ = K−1
σ y .

• Examples of methods: Lanczos iteration, conjugate gradient descent.

• Software: GPyTorch Gardner et al (2018).

• Theory: Stankewitz & Sz (2024).



Vecchia approximation of Gaussian Processes



Vecchia Approximations
Consider a mother Gaussian process Z on Xn = (X1, ..,Xn) with joint density
decomposed as

p(ZXn) = p(ZX1
)

n∏
i=2

p(ZXi
|ZXj ,j<i ).

The Vecchia approximations of Gaussian Processes (Vecchia GPs) replace each
conditional set {Xj , j < i} with a much smaller parent set pa(Xi )

p(ẐXn) = p(ẐX1
)

n∏
i=2

p(ẐXi
|Ẑpa(Xi )),

such that

[ẐXi
| Ẑpa(Xi ) = z ]

d
= [ZXi

| Zpa(Xi ) = z ]

Outside of design: for x /∈ Xn, [Ẑx | Ẑpa(x) = z ]
d
= [Zx | Zpa(x) = z ]. pa(x) ∈ Xn,

and [Ẑx | Ẑpa(x) = z ] ⊥⊥ [Ẑy | Ẑpa(y) = z ′].
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Methodology: Choose Parent Sets
In view of the joint density of Vecchia Gaussian Processes

p(ẐXn) = p(ẐX1
)

n∏
i=2

p(ẐXi
|Ẑpa(Xi )),

and |pa(Xi )| ≤ m the evaluation of this density is O(nm3).

The principles to choose parent sets are

• The parent sets have bounded cardinality.

• Good approximation property.



Methodology: Choose Parent Sets
There lacks clear guidance on choosing the parent sets:

• Geometric properties:

• It is intuitive to choose close neighbors for parent sets, featured by NNGP
Datta et al. (2016).

• But remote locations are also used, particularly in maximin ordering Katzfuss
(2021).

• It is even proposed to randomly permute dataset before choosing parent sets
Guinness (2018).

• Cardinality m:

• Based on theories regarding approximation error, choose m ≍ (log n)b for
some constant b > 0 Schafer et al. (2021), Zhu et al (2024);

• In practice, m is chosen in adhoc way.



Our Contributions

• Methodology:

• Problem: Unclear guidance for choosing parent sets.
• Contribution: Propose Norming Sets as parents, with m = O(1) ⇒ O(n)

computational complexity.

• Probabilistic Properties:

• Contribution: Systematically study the Vecchia GPs as standalone
stochastic processes, uncover local polynomial-like behaviors of Vecchia GPs.
Derive small deviation bounds.

• Statistical Theory:

• Problem: No statistical guarantees for Vecchia GPs.
• Contribution: Prove minimax optimality and adaptation for Vecchia GPs

using Norming Sets as parents.



Comparison: a Stationary GP versus a Vecchia GP
Matern GP:

• Stationary GP, marginal distributions have closed form.

• The small ball probability, and subsequently posterior contraction rates, are
obtained from studying the RKHS.

Vecchia GP:

• The joint density is de�ned through the product of conditionals:

p(ẐXn) = p(ẐX1
)

n∏
i=2

p(ẐXi
|Ẑpa(Xi )),

• No existing results regarding RKHS, small ball probability, etc.

Key Problem: study the conditional distributions
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Connection with polynomial interpolation

Figure: The �at limit of GP Conditionals, in comparison with polynomial
Interpolation. The black circles consist the parent set pa(Xi ), while the shaded region
denotes point-wise 95% con�dence bands.



Polynomial �t in d = 1
Goal: given nodes A = {w1, ...,wl+1} ⊂ R and values z = (z1, ..., zl+1) ∈ R �t an l
order polynomial P ∈ Pl , i.e. P(wi ) = zi , for all i = 1, ..., l + 1.

Solution: There exists a unique solution, called the Lagrange polynomial

L(x) =
l+1∑
j=1

z jℓj(x), with ℓj(x) =
∏
i ̸=j

x − wi

wj − wi
.

Connection to linear algebra:


1 w1 w2

1 ... w l
1

1 w2 w2
2 ... w l

2

....
1 wl+1 w2

l+1 ... w l
l+1



a0
a2
...
al

 =


z1
z2
...
zl+1





Polynomial �t in d ≥ 2
Notations:

• Finite set A = {w1, ..,wm} ⊂ Rd .

• Pl(Rd) the collection of polynomials on Rd with orders no greater than l .

• VA ∈ Rm×m: multidimensional version of the Vandermonde matrix consisting
monomials up to order l evaluated at A.

• vx ∈ Rm vector of monomials up to order l evaluated at x .

Lemma (unisolvency): Let m =
(l+d

l

)
and z = (z1, .., zm)

T ∈ Rm. Then there exists
a unique polynomial P ∈ Pl(Rd) satisfying P(wi ) = zi , i = 1, ...,m i� the
Vandermonde matrix VA is invertible. Moreover, this polynomial takes the form

P(x) = vxV
−1
A z .

See e.g. Wenland (2024).



Norming Sets: de�nition

Question: When is the Vandermonde matrix VA invertible?

De�nition (Norming set) by Jetter et al (1999):

• For Ω a compact subset of Rd ,

• We say a �nite set A = {w1,w2, · · · ,wm} ⊂ Ω is a norming set for Pl(Ω) with
norming constant cN > 0 if

sup
x∈Ω

|P(x)| ≤ cN sup
x ′∈A

|P(x ′)|, ∀P ∈ Pl(Ω). (1)

Lemma: the Vandermonde matrix VA is invertable i� A is a norming set.



Conditional expectation

The expectation of conditional distribution is

E[ẐXi
| Ẑpa(Xi ) = z ] = zTK−1

pa(Xi ),pa(Xi )
KXi ,pa(Xi ).

Let r := diam(pa(Xi )) and l = α.

Lemma Under the condition that parent set is a norming set,∥∥K−1
pa(Xi ),pa(Xi )

Kpa(Xi ),Xi
− V−1

pa(Xi )
vXi

∥∥ ≲ cN
(
r2(α−α) + r

)
.

Flat Limit: Gaussian interpolation approximately polynomial interpolation.

Posterior spread: controlled by the approximation error of Gaussian interpolation with
polynomial interpolations.



Norming Sets
Consider the �rst order polynomial space on [0, 1]2 as P1([0, 1]

2) = span {1, x1, x2} .
dim(P1([0, 1]

2) = 3 ⇒ norming set has at least three elements.

Figure: Norming constants w.r.t. P1([0, 1]
2), for three di�erent sets. "Corner set"

Neidinger (2019), random points, non-norming set.



Layered Norming DAGs

Step 1: partition the vertex set Xn into disjoint layers N0,N1,N2, · · · (coarse-to-�ne).

Layer N0 Layer N0, N1 Layer N0, N1, N2

Figure: Illustration of Layers on a 9× 9 Grid: Red dots: current layer; Blue dots: all previous
layers; Black crosses: all latter layers.



Layered Norming DAGs (cont)
Step 2: for each Xi ∈ Nj , j ≥ 1, pa(Xi ) is a Norming Set in ∪j−1

ℓ=1
Nℓ. Order of

polynomial space is chosen l = α.

Figure: Illustration of parent sets for Xi ∈ N2, with α = 1. Red dots: current layer N2;
Blue dots: previous layers N0, N1; Black crosses: all latter layers. Blue arrows: directed
edges from parent sets to children for some Xi ∈ N2.



Vecchia GP: small deviation bounds
Concentration function: Let Hτ

n denote the RKHS corresponding to the Vecchia GP,
then

ϕτ
f0,n(ϵ) = inf

f ∈Hτ
n :∥f−f0∥∞≤ϵ

∥f ∥2Hτ
n
− log(∥Ẑ τ∥∞ < ϵ).

Theorem: For the Layered Norming Set DAG and Matern GP with regularity α and
scale parameter τ the Vecchia GP Ẑ τ satis�es

− logPr
(
∥Ẑ τ∥∞ < ϵ

)
≲ τdϵ−d/α.

Lemma: For the Layered Norming Set DAG and Matern GP with regularity α and scale
parameter τ ,

inf
f ∈Hτ

n :∥f−f0∥∞≤ϵ
∥f ∥2Hτ

n
≲τdϵ−d/α + τ−2αϵ

− 2(α−β)+d
β + ϵ

− d
β

n .



Vecchia GP: small deviation bounds
Concentration function: Let Hτ

n denote the RKHS corresponding to the Vecchia GP,
then

ϕτ
f0,n(ϵ) = inf

f ∈Hτ
n :∥f−f0∥∞≤ϵ

∥f ∥2Hτ
n
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Vecchia GP: posterior contraction

Theorem: Consider the rescaled Matérn GP as based prior. Then for f0 ∈ Cβ , with

β ≤ α, and setting either τ = n
α−β

α(2β+d) or endowing τ with a hyperprior (satisfying mild
tail conditions), the posterior corresponding to the (hierarchical) Vecchia GP
approximation achieves minimax contraction rate, i.e.

sup
f0∈Cβ(M)

Ef0Π
V
n (f : ∥f − f0∥n ≥ Mnn

− β
d+2β |Y ) → 0,

for arbitrary Mn → ∞.

Proof sketch: Solve
ϕτ
f0,n(ϵn) ≤ nϵ2n.

This ϵn = n−
β

d+2β is the posterior contraction rate by general GP theorem vd Vaart, van
Zanten (2018).



Vecchia NNGP vs Layered Norming DAG

Figure: Comparison for Vecchia GP with Layered Norming DAGs and NNGP with
maximin ordering:
Left: posterior estimation error measured by ℓ2 norm between the truth and the
posterior mean;
Middle: prior approximation error measured by squared Wasserstein distance between
marginals of Vecchia GPs and their mother GPs;
Right: Run time of MCMC inference measured by seconds.



Deep Gaussian Processes



Limitations of GPs
Problem: Not appropriate to learn compositional structures, adapt to local regularities
and structures.

Def (Generalized additive models):

G(M) = {f (x1, ..., xd) = h(
d∑

j=1

gi (xi )) : gi , h ∈ Lip(M) ∩ L∞(M)}.

Minimax rate Schmidt-Hieber (2020): inf f̂ supf ∈G(M) ∥f̂ − f ∥2 ≍∗ n−1/3.
∗ : up to a poly-log term.

Theorem (Giardano et al. (2022)) For any sequence Πn of Gaussian process priors, if

sup
f0∈G(M)

Ef0Πn(f : ∥f − f0∥2 ≥ εn|Y ) → 0

holds, then εn ≳ n−
1
4
− 1

4+4d (suboptimal for d > 2).



Compositional structure: picture



Compositional structure: de�nition

Compositional class:

F = {f = hq ◦ hq−1 ◦ ... ◦ h0 : hi = (hij)j : [−1, 1]di → [−1, 1]di+1 , h̄ij ∈ Cβi
ti (M)},

where hij is allowed to depend on ti ≤ di variables Sij ⊆ {1, .., di}, with |Sij | = ti and
h̄ij : [−1, 1]ti → [−1, 1],

xSij
7→ hij(xSij

, xSc
ij
).

Minimax rate (Schmidt-Hieber (2020)):

inf
f̂
sup
f ∈F

Ef ∥f̂ − f ∥2 ≍∗ max
i=0,..,q

n
− β∗i

2β∗
i
+ti , withβ∗

i = βi

q∏
ℓ=i+1

(βℓ ∧ 1).

∗ up to a logarithmic term.



Deep GP: Illustration

Titsias & Lawrence (2010), Damianou & Lawrence (2013).



Deep GP: application

Figure: Modeling a hurricane �eld with GP vs Deep GP. Svendsen et al (2020): Deep
Gaussian processes for biogeophysical parameter retrieval and model inversion



Deep GP: model selection prior

Hierarchical Deep GP construction Finocchio, Schmidt-Hieber (2022):

1 Put a prior on composition graph

• prior on the number of layers, i.e. depth
• prior on the width of the layers
• prior on compositional sparsity (model selection prior)

2 GP priors on the edges

3 Regularization of sample paths: : bounded sup norm, close to Holder function



Deep GP: theory

Theorem (Finocchio & Schmidt-Hieber (2022)): Under weak regularity assumptions
and suitable GP priors on the edges, the hierarchical construction of the deep GP prior
results in nearly minimax posterior contraction in the compositional class, i.e. for some
poly-log sequence Mn

sup
f0∈F(M)

Ef0Πn(f : ∥f − f0∥2 ≥ Mn max
i=0,..,q

n
− β∗i

2β∗
i
+ti |Y ) → 0.

Other approach Castillo & Randrianarisoa (2025): endow the scale parameters of SE
GP with another layer of prior. Does automatic edge selection. Similar theoretical
results for fractional posteriors (works in high-dimensional models as well).



Vecchia approximation of Deep Gaussian

Processes



Deep Vecchia GP: method

Previous method (Sauer et al. (2022): deepgp) Two-layer deep Vecchia f2 ◦ f1

• Layer 1: NNGP approx. of f1 based on design points x1, ..., xn.

• Layer 2: NNGP approx. of f2 based on image of design f1(x1), ..., f1(xn).

Problem: f1(x1), ..., f1(xn) can be close to each other resulting in bad �t.

Proposed method: q-layer Vecchia GP fq ◦ fq−1 ◦ ... ◦ f1

• Layer j : Vecchia (Layered Norming DAG) approximation of fj based on grid points
(i/m, j/m)i ,j=1,..,m

• Gibbs sampler (under construction): complexity O(q log n) per iteration (due to
localized basis structure of Vecchia GP).



Deep Vecchia GP: Theory

Conjecture: Using Layered Norming DAG Vecchia approximation at each layer of the
hierarchical deep GP construction of Finocchio & Schmidt-Hieber (2022) with Matérn
covariance kernel, the corresponding posterior achieves the near minimax contraction
rate for compositional functions, i.e.

sup
f0∈F(M)

Ef0Πn(f : ∥f − f0∥2 ≥ Mn max
i=0,..,q

n
− β∗i

2β∗
i
+ti |Y ) → 0,

for Mn a poly-log factor.



Deep Vecchia GP: extension/ongoing work

• Extend our results to Deep Horseshoe GPs. This allows to get rid of the
regularization of the sample paths.

• Consider also the square exponential covariance kernel.

• Prove local adaptation of (Vecchia) Deep GPs.

• Prove pointwise/supremum convergence rates for (Vecchia) Deep GPs



Summary

• Gaussian Processes are popular in applications.

• Good theoretical performance, but computational problems.

• Scalable approximation: Vecchia.

• Vecchia GP based on layered norming DAG: parents set m = O(1) and minimax
contraction rate.

• Deep GPs: compositional (deep) structure for GPs (with prior on graph structure).

• Extension of Vecchia approximation to deep GPs: minimax rates, algorithmic
aspects in development.
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