

Modeling and simulating spatio-temporal multivariate and non-stationary Gaussian Processes: a Gaussian mixtures perspective

Denis Allard, Lionel Benoit (BioSP/INRAE) and Said Obakrim (UNIL)

Biostatistique et processus Spatiaux (BioSP), MathNum, INRAE

Avignon, France

Funded by the Geolearning Chair

7–9 of July, 2025

Outline

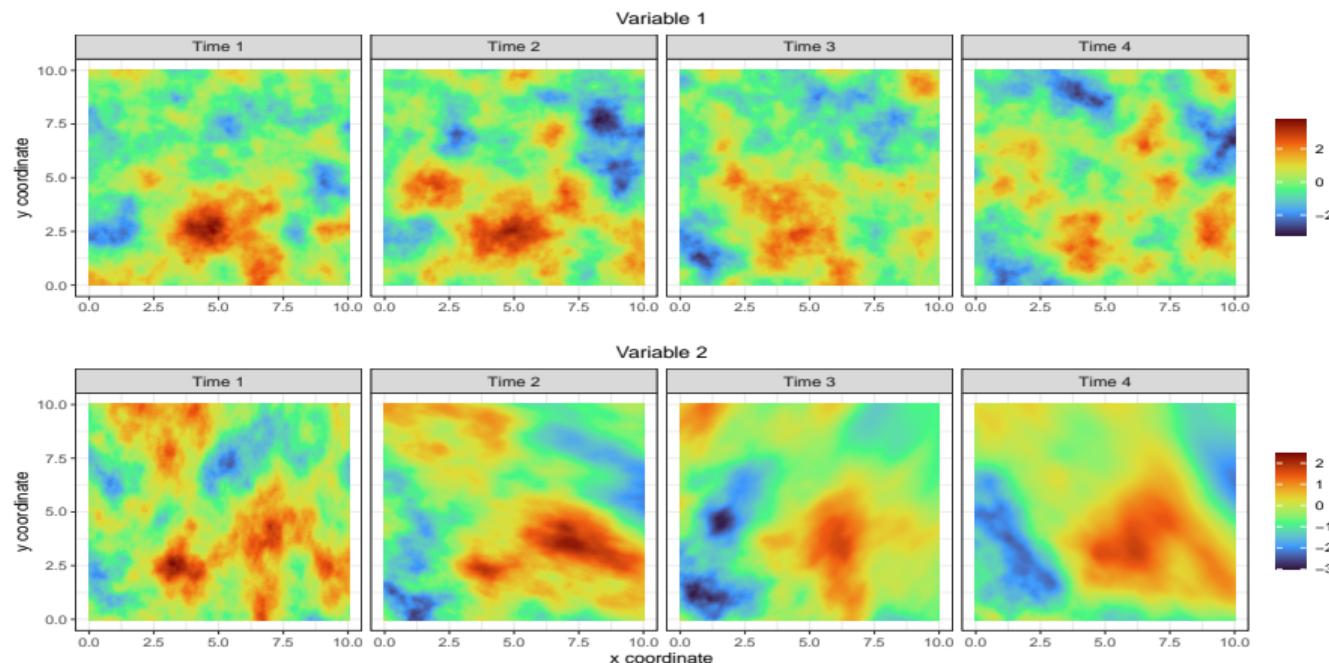
Introduction

Building bricks

Non-stationarity

Full combo

Motivation



Realization of a bivariate, spatio-temporal, non-stationary GP

Motivation

- ▶ **Building covariance functions** in complex settings: spatio-temporal, multivariate, nonstationary; **sometimes all at once**
- ▶ **Generating GPs on \mathbb{R}^p** characterized on by those
- ▶ Simulation algorithms are constructive arguments for defining **new classes of covariance functions** in these settings
- ▶ Particular focus on Gaussian mixtures
- ▶ <https://hal.inrae.fr/hal-05034982>

Motivation

- ▶ **Building covariance functions** in complex settings: spatio-temporal, multivariate, nonstationary; **sometimes all at once**
- ▶ **Generating GPs on \mathbb{R}^p** characterized on by those
- ▶ Simulation algorithms are constructive arguments for defining **new classes of covariance functions** in these settings
- ▶ Particular focus on Gaussian mixtures
- ▶ <https://hal.inrae.fr/hal-05034982>

Motivation

- ▶ **Building covariance functions** in complex settings: spatio-temporal, multivariate, nonstationary; **sometimes all at once**
- ▶ **Generating GPs on \mathbb{R}^p** characterized on by those
- ▶ Simulation algorithms are constructive arguments for defining **new classes of covariance functions** in these settings
- ▶ Particular focus on Gaussian mixtures
- ▶ <https://hal.inrae.fr/hal-05034982>

Motivation

- ▶ **Building covariance functions** in complex settings: spatio-temporal, multivariate, nonstationary; **sometimes all at once**
- ▶ **Generating GPs on \mathbb{R}^p** characterized on by those
- ▶ Simulation algorithms are constructive arguments for defining **new classes of covariance functions** in these settings
- ▶ Particular focus on Gaussian mixtures
- ▶ <https://hal.inrae.fr/hal-05034982>

Motivation

- ▶ **Building covariance functions** in complex settings: spatio-temporal, multivariate, nonstationary; **sometimes all at once**
- ▶ **Generating GPs on \mathbb{R}^p** characterized on by those
- ▶ Simulation algorithms are constructive arguments for defining **new classes of covariance functions** in these settings
- ▶ Particular focus on Gaussian mixtures
- ▶ <https://hal.inrae.fr/hal-05034982>

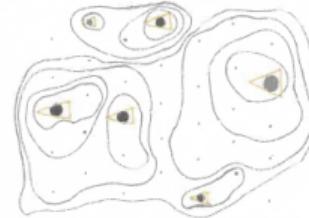
Outline

1. **Introduction:** reminders on the spectral method
2. **Building bricks:** Gaussian mixtures, geometric anisotropy, popular covariance functions; recent extensions
3. **Nonstationarity:** a general result relating to the Paciorek-Shervish construction
4. **The full combo:** new nonstationary, multivariate, spatio-temporal class

Artistic point of view

Waves into Patterns

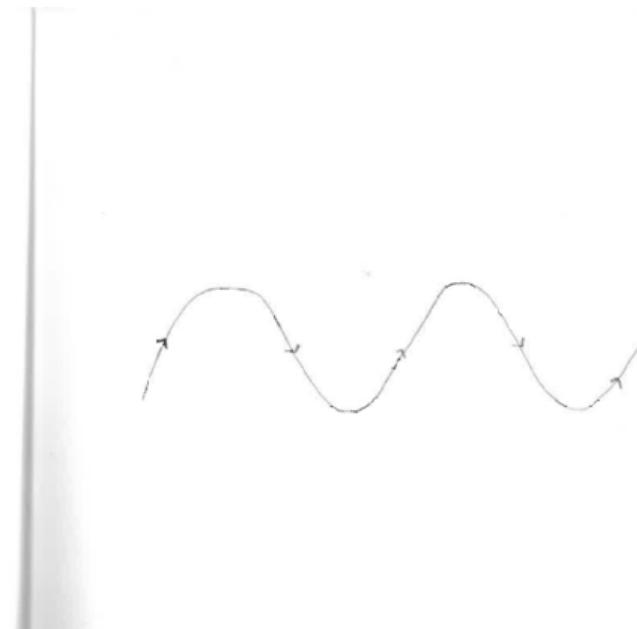
A book on changing scale, multiple perspectives, diversity, and ecological variability.



Dmitry Paranyushkin

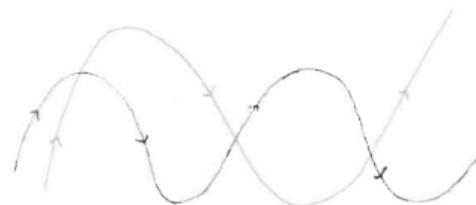
Artistic point of view

At the beginning, there was a wave.



Artistic point of view

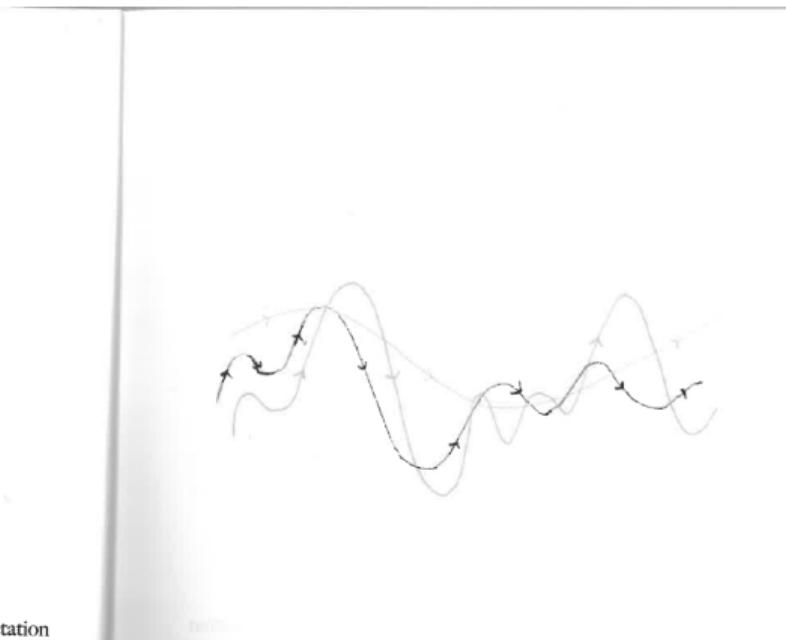
Then, there was another wave.



* perception

Artistic point of view

The waves made patterns.



* interpretation

The classic "classic spectral method"

Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,

$$C(\mathbf{h}) = \int_{\mathbb{R}^d} \exp(i\mathbf{h}^t \boldsymbol{\omega}) d\mu(\boldsymbol{\omega}), \quad \forall \mathbf{h} \in \mathbb{R}^d.$$

Then,

$$\tilde{Z}_L(\mathbf{s}) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \cos \left(\boldsymbol{\Omega}_l^t \mathbf{s} + \Phi_l \right), \quad \boldsymbol{\Omega}_l \sim \mu, \quad \Phi_l \sim \mathcal{U}(0, 2\pi), \quad \text{all i.i.d}$$

is approximately a GP with expectation 0 and covariance function C

The classic "classic spectral method"

Proof

- ▶ $E [\cos (\Omega_i^t \mathbf{s} + \Phi_i)] = 0$
- ▶

$$\begin{aligned} E \left[2 \cos (\Omega_i^t \mathbf{s} + \Phi_i) \cos (\Omega_i^t (\mathbf{s} + \mathbf{h}) + \Phi_i) \right] &= E \left[\cos (\Omega_i^t (2\mathbf{s} + \mathbf{h}) + 2\Phi_i) \right] + E \left[\cos (\Omega_i^t \mathbf{h}) \right] \\ &= 0 + \int_{\mathbb{R}^d} \cos(\omega^t \mathbf{h}) d\mu(\omega) \end{aligned}$$

- ▶ Then use CLT
- ▶ Similar to the "Random Fourier Features" (Rahimi and Recht, 2007), based on $(\cos(\Omega_i^t \mathbf{s}), \sin(\Omega_i^t \mathbf{s}))$

Extensions of the spectral method

- ▶ Multivariate (MV) (Emery et al., 2016) and non-stationary (NS) (Emery and Arroyo, 2018). Includes also NS – MV
- ▶ Saptio-temporal (ST) Allard et al. (2020)
- ▶ Spatio-temporal multivariate (ST – MV), Allard et al. (2022)

→ Propose an algorithm and models for "the full combo" NS – ST – MV

Extensions of the spectral method

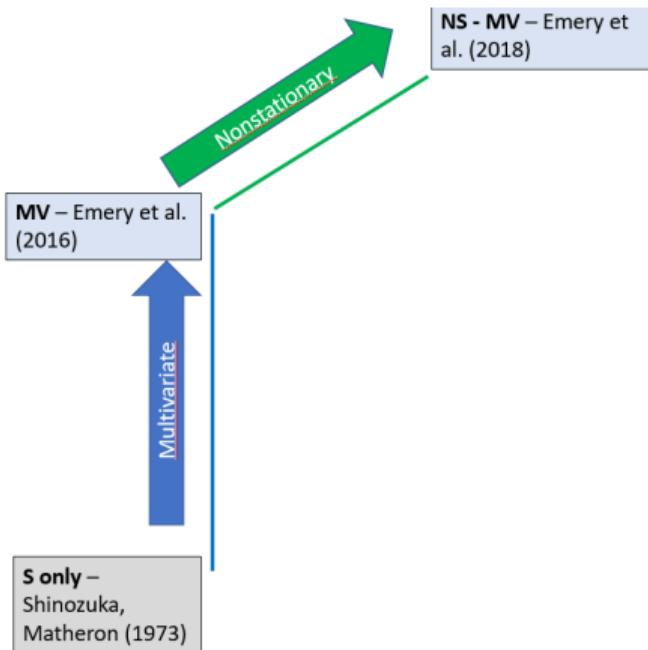
S only –
Shinozuka,
Matheron (1973)

Extensions of the spectral method

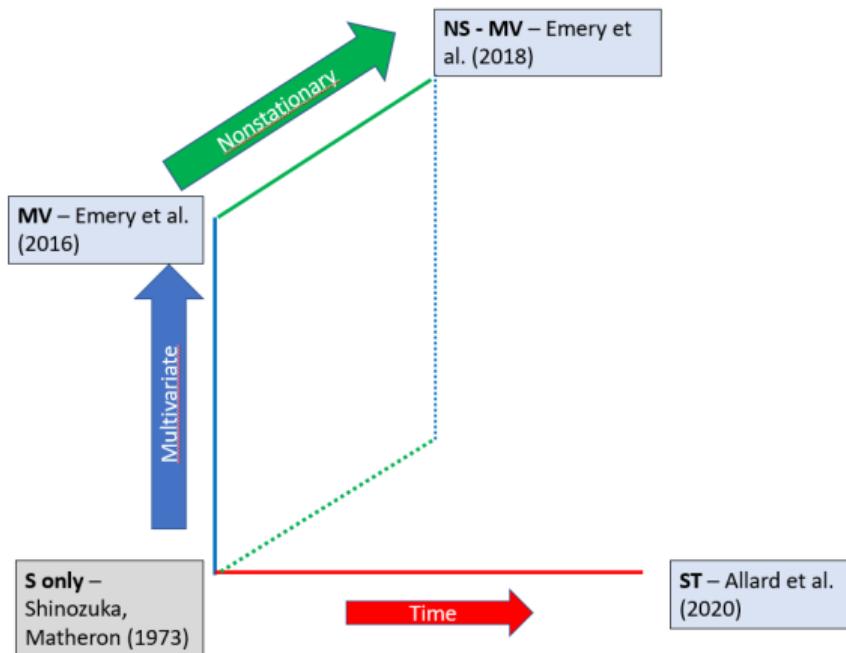
MV – Emery et al.
(2016)

S only –
Shinozuka,
Matheron (1973)

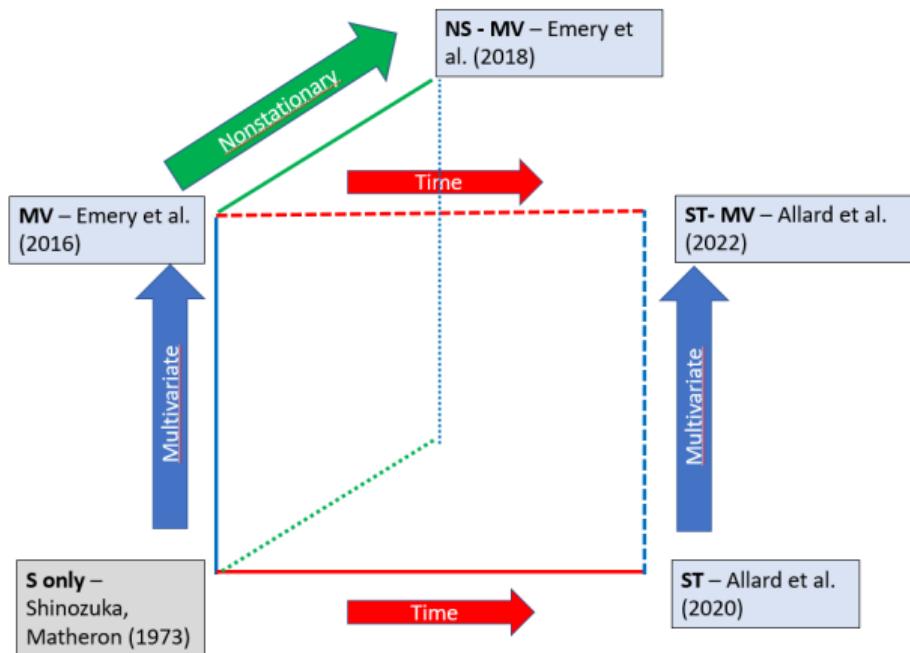
Extensions of the spectral method



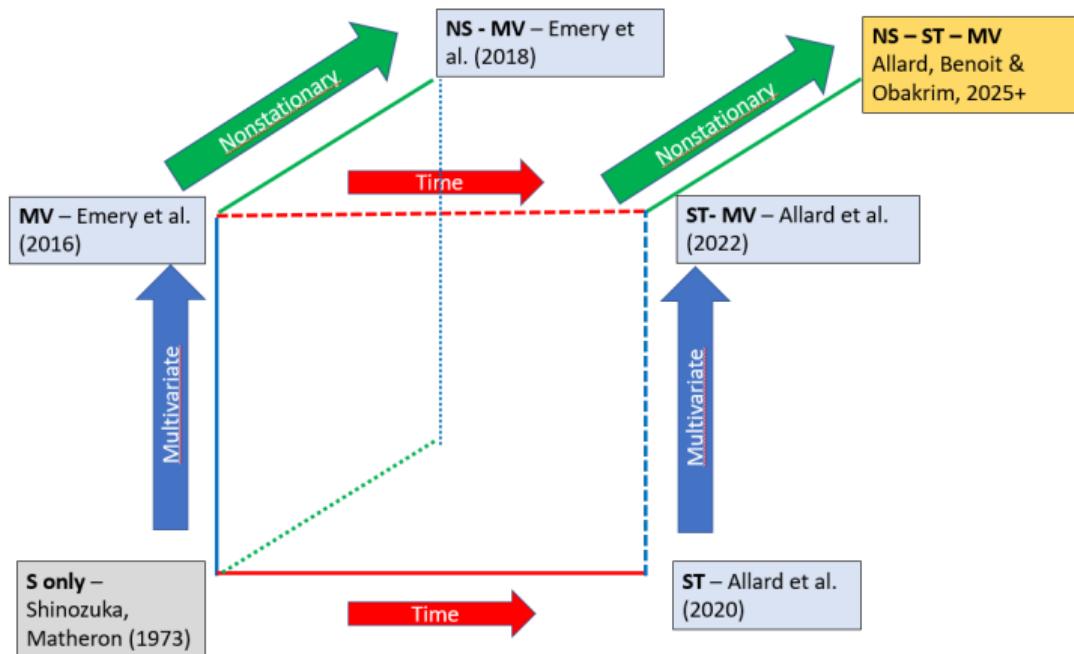
Extensions of the spectral method



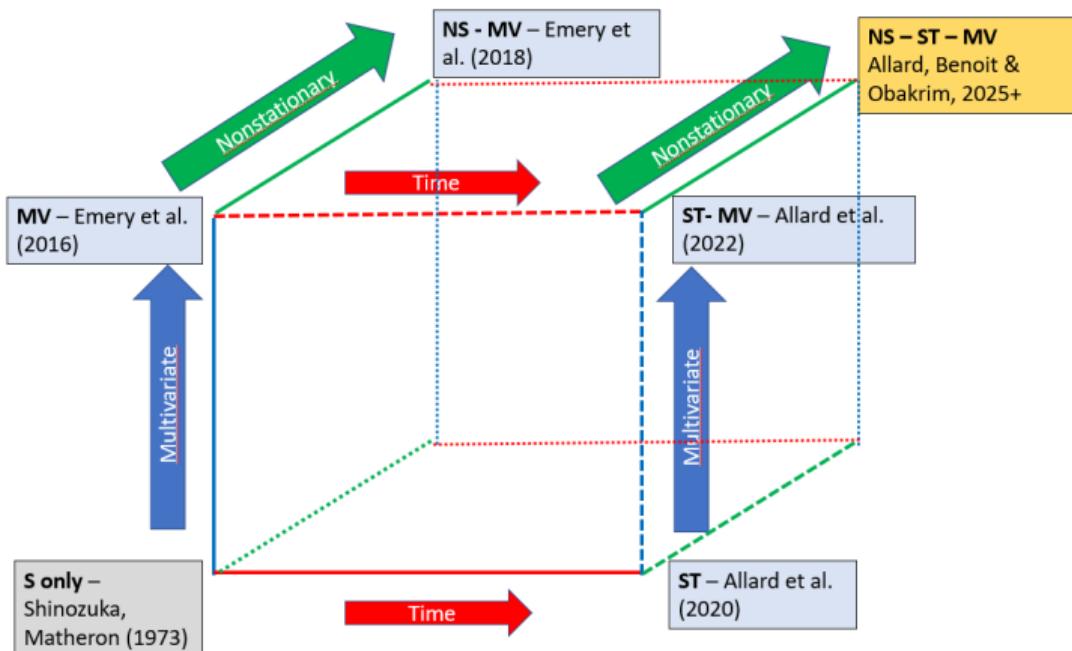
Extensions of the spectral method



Extensions of the spectral method



Extensions of the spectral method



Outline

Introduction

Building bricks

Non-stationarity

Full combo

Gaussian mixtures

Schoenberg (1938)

Define \mathcal{C}_∞ the class of continuous isotropic covariance functions valid on \mathbb{R}^d , $\forall d \geq 1$. Then, $\phi \in \mathcal{C}_\infty$ if and only if

$$\phi(\mathbf{h}) = \int_{\mathbb{R}^+} \exp(-\|\mathbf{h}\|^2 \xi) f(\xi) d\xi$$

$f(\xi)$ is the **Gaussian scale mixture**

Proposition

$$\mu(\omega) = (2\sqrt{\pi})^{-d} \int_0^{+\infty} \exp(-\|\omega\|^2/4\xi) \xi^{-d/2} f(\xi) d\xi$$

In **purple**, spectral density of a Gaussian covariance with scale parameter $\xi^{-1/2}$.

Gaussian mixtures

Schoenberg (1938)

Define \mathcal{C}_∞ the class of continuous isotropic covariance functions valid on \mathbb{R}^d , $\forall d \geq 1$. Then, $\phi \in \mathcal{C}_\infty$ if and only if

$$\phi(\mathbf{h}) = \int_{\mathbb{R}^+} \exp(-\|\mathbf{h}\|^2 \xi) f(\xi) d\xi$$

$f(\xi)$ is the **Gaussian scale mixture**

Proposition

$$\mu(\omega) = (2\sqrt{\pi})^{-d} \int_0^{+\infty} \exp(-\|\omega\|^2/4\xi) \xi^{-d/2} f(\xi) d\xi$$

In **purple**, spectral density of a Gaussian covariance with scale parameter $\xi^{-1/2}$.

Geometric anisotropy

Geometric anisotropy in \mathbb{R}^2 (Chilès and Delfiner, 2012)

$$\boldsymbol{\Sigma}^{-1/2} = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad (1)$$

For the Gaussian covariance, one gets:

$$C_G(\mathbf{h}) = \exp\left(-\mathbf{h}^t \boldsymbol{\Sigma}^{-1} \mathbf{h}\right); \quad \mu_G(\boldsymbol{\omega}) = (2\sqrt{\pi})^{-d} |\boldsymbol{\Sigma}|^{1/2} \exp\left(-\boldsymbol{\omega}^t \boldsymbol{\Sigma} \boldsymbol{\omega} / 4\right)$$

Simulation algorithms for stationary univariate spatial GPs

Spectral simulation

Require: $C \in \mathcal{C}_\infty$ and μ

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d$

Require: A large number L

1: **for** $l = 1$ to L **do**

2: **Simulate** $\Omega_l \sim \mu$

3: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$

4: **end for**

5: For each $\mathbf{s} \in \mathcal{S}$ return

$$\tilde{Z}(\mathbf{s}) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \cos(\Sigma^{-1/2} \Omega_l^t \mathbf{s} + \Phi_l)$$

Gaussian mixture simulation

Require: $C \in \mathcal{C}_\infty$ and f

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d$

Require: A large number L

1: **for** $l = 1$ to L **do**

2: **Simulate** $\xi_l \sim f$

3: **Simulate** $\Omega_l \sim \sqrt{2\xi_l} \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d)$

4: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$

5: **end for**

6: For each $\mathbf{s} \in \mathcal{S}$ return

$$\tilde{Z}(\mathbf{s}) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \cos(\Sigma^{-1/2} \Omega_l^t \mathbf{s} + \Phi_l)$$

Simulation algorithms for stationary univariate spatial GPs

Spectral simulation

Require: $C \in \mathcal{C}_\infty$ and μ

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d$

Require: A large number L

- 1: **for** $l = 1$ to L **do**
- 2: **Simulate** $\Omega_l \sim \mu$
- 3: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$
- 4: **end for**
- 5: For each $\mathbf{s} \in \mathcal{S}$ return

$$\tilde{Z}(\mathbf{s}) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \cos(\Sigma^{-1/2} \Omega_l^t \mathbf{s} + \Phi_l)$$

Gaussian mixture simulation

Require: $C \in \mathcal{C}_\infty$ and f

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d$

Require: A large number L

- 1: **for** $l = 1$ to L **do**
- 2: **Simulate** $\xi_l \sim f$
- 3: **Simulate** $\Omega_l \sim \sqrt{2\xi_l} \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d)$
- 4: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$
- 5: **end for**
- 6: For each $\mathbf{s} \in \mathcal{S}$ return

$$\tilde{Z}(\mathbf{s}) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \cos(\Sigma^{-1/2} \Omega_l^t \mathbf{s} + \Phi_l)$$

Some covariance functions

Matérn covariance

$$C_M(\mathbf{h}) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)}(\kappa||\mathbf{h}||)^\nu K_\nu(\kappa||\mathbf{h}||)$$

$$\mu_M(\omega) \propto \frac{1}{(1 + ||\omega||^2/\kappa^2)^{\nu+d/2}}$$

$$f_M(\xi) = \left(\frac{\kappa^2}{4}\right)^\nu \frac{\xi^{-1-\nu}}{\Gamma(\nu)} e^{-\kappa^2/4\xi}.$$

Hence

2 : Simulate $\xi_I \sim IG(\nu, \kappa^2/4)$

Cauchy covariance

$$C_C(\mathbf{h}) = (1 + a||\mathbf{h}||^2)^{-\nu}$$

μ_C = Unknown

$$f_C(\xi) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$$

Hence

2 : Simulate $\xi_I \sim G(\nu, a)$.

Some covariance functions

Matérn covariance

$$C_M(\mathbf{h}) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)}(\kappa||\mathbf{h}||)^\nu K_\nu(\kappa||\mathbf{h}||)$$

$$\mu_M(\omega) \propto \frac{1}{(1 + ||\omega||^2/\kappa^2)^{\nu+d/2}}$$

$$f_M(\xi) = \left(\frac{\kappa^2}{4}\right)^\nu \frac{\xi^{-1-\nu}}{\Gamma(\nu)} e^{-\kappa^2/4\xi}.$$

Hence

2 : Simulate $\xi_I \sim IG(\nu, \kappa^2/4)$

Cauchy covariance

$$C_C(\mathbf{h}) = (1 + a||\mathbf{h}||^2)^{-\nu}$$

μ_C = Unknown

$$f_C(\xi) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$$

Hence

2 : Simulate $\xi_I \sim G(\nu, a)$.

Main take aways

Use Gaussian mixtures

- ▶ Almost identical simulation algorithm
- ▶ Restricted to kernels in \mathcal{C}_∞
- ▶ Paves the way to many extensions

ST extension

Allard et al. (2020)

Gneiting covariance

$$C(\mathbf{h}, u) = \frac{1}{(\gamma(u) + 1)^{\delta + bd/2}} \phi \left(\frac{||\mathbf{h}||}{(\gamma(u) + 1)^{b/2}} \right)$$

with $b \in [0, 1]$ and $\delta > 0$ is a **S-T separability parameter**.

- ▶ Define $W(t) \sim \text{GP}(0, \gamma)$ with $W(0) = 0$
- ▶ Define $Z_T(t) \sim \text{GP}(0, C_T)$ with

$$C_T(u) = \frac{1}{(\gamma(u) + 1)^\delta}$$

Simulation for univariate stationary Gneiting ST GRFs

Require: $C \in \mathcal{C}_\infty$ and associated f ; spatial anisotropy $\Sigma^{-1/2}$

Require: Variogram γ

Require: Parameters $b \in [0, 1]$ and $\delta > 0$

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d \times \mathbb{R}$; a large number L

- 1: **for** $l = 1$ to L **do**
- 2: Simulate a RF $Z_{T,l}$ with covariance function $C_T(u) = (1 + \gamma(u))^{-\delta}$
- 3: Simulate a RF W_l with Gaussian increments and variogram $\gamma_b = (1 + \gamma)^b - 1$
- 4: Simulate $\xi_l \sim f$
- 5: Simulate $\mathbf{V}_l \sim \mathcal{N}_d(0, \mathbf{I}_d)$
- 6: set $\Omega_l = \sqrt{2\xi_l} \Sigma^{-1/2} \mathbf{V}_l$
- 7: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$
- 8: **end for**
- 9: For each $(\mathbf{s}, t) \in \mathcal{S}$ return

$$\tilde{Z}_L(\mathbf{s}, t) = \sqrt{\frac{2}{L}} \sum_{l=1}^L Z_{T,l}(t) \cos \left(\Omega_l^t \mathbf{s} + \frac{\|\mathbf{V}_l\|}{\sqrt{2}} W_l(t) + \Phi_l \right)$$

ST – MV extension

Allard et al. (2022)

Multivariate Gneiting

$$C_{ij}(\mathbf{h}, u) = \frac{\sigma_{ij}}{(\gamma_{ij}(u) + 1)^{\delta+bd/2}} \phi_{ij} \left(\frac{\Sigma^{-1/2} \mathbf{h}}{(\gamma_{ij}(u) + 1)^{b/2}} \right)$$

with $\phi_{ij}(\mathbf{h}) = \int_0^\infty e^{-\xi \|\mathbf{h}\|^2} (f_{ij}(\xi) d\xi)$ and $f_{ij} = \sqrt{f_{ii} f_{jj}}$

For example, for a Matérn covariance: $2\nu_{ij} = \nu_{ii} + \nu_{jj}$ and $2\kappa_{ij}^2 = \kappa_{ii}^2 + \kappa_{jj}^2$

- ▶ γ is a **pseudo-variogram** with $\gamma_{ij}(u) = 0.5 \text{Var} [\mathbf{W}_i(t) - \mathbf{W}_j(t + u)]$
- ▶ Define $(\mathbf{W}_1, \dots, \mathbf{W}_p)$ a p -variate 1d-GP $(0, \gamma)$ with $\mathbf{W}_i(0) = 0$
- ▶ Define $(\mathbf{Z}_{T,1}, \dots, \mathbf{Z}_{T,p})$ a p -variate 1d-GP $(0, [C_{T,ij}]_{ij=1,p})$ with

$$C_{T,ij}(u) = \sigma_{ij} (\gamma_{ij}(u) + 1)^{-\delta}$$

Simulation for p -variate stationary Gneiting ST GRFs

Require: C Matérn or Cauchy and associated f_{ii} ; spatial anisotropy $\Sigma^{-1/2}$

Require: Pseudo variogram γ ; parameters $b \in [0, 1]$ and $\delta > 0$

Require: A covariance matrix $\sigma = LL^t$

Require: A pdf f , with support equal to $(0, \infty)$

Require: A set of points, $\mathcal{S} \in \mathbb{R}^d \times \mathbb{R}$; a large number L

- 1: **for** $l = 1$ to L **do**
- 2: Simulate a p -variate GRF $\mathbf{Z}_{T,l}$ with matrix-valued covariance function $\mathbf{C}_T(u) = (1 + \gamma(u))^{-\delta}$
- 3: Simulate a p -variate RF $\mathbf{W}_l = [\mathbf{W}_{l,i}]_{i=1}^p$ with Gaussian direct and cross-increments, with 0 mean and pseudo-variogram $\gamma_b = (1 + \gamma)^b - 1$
- 4: Simulate $\xi_l \sim f$
- 5: Simulate $\mathbf{V}_l \sim \mathcal{N}_d(0, \mathbf{I}_d)$; set $\Omega_l = \sqrt{2\xi_l} \Sigma^{-1/2} \mathbf{V}_l$; simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$
- 6: Simulate $\mathbf{A}_l \sim \mathcal{N}_p(0, \sigma)$
- 7: **end for**
- 8: For each $(\mathbf{s}, t) \in \mathcal{S}$ return

$$\tilde{Z}_{L,i}(\mathbf{s}, t) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \mathbf{Z}_{T,l,i}(t) \sqrt{\frac{f_{ii}(\xi_l)}{f(\xi_l)}} \mathbf{A}_{l,i} \cos \left(\Omega_l^t \mathbf{s} + \frac{\|\mathbf{V}_l\|}{\sqrt{2}} \mathbf{W}_{l,i}(t) + \Phi_l \right), \quad i = 1, \dots, p$$

Outline

Introduction

Building bricks

Non-stationarity

Full combo

State of the art

Non-stationary spatial models

Let $\phi \in \mathcal{C}_\infty$ and $\Sigma^{-1/2}(\mathbf{s})$ anisotropy matrices, $\mathbf{s} \in \mathbb{R}^d$. Then,

$$\phi_{NS}(\mathbf{s}, \mathbf{s}') = |\Sigma_{\mathbf{s}}|^{1/4} |\Sigma_{\mathbf{s}'}|^{1/4} |\Sigma_{\mathbf{s}, \mathbf{s}'}|^{-1/2} \phi\left(\sqrt{(\mathbf{s} - \mathbf{s}')^t \Sigma_{\mathbf{s}, \mathbf{s}'}^{-1} (\mathbf{s} - \mathbf{s}')}\right),$$

is a nonstationary covariance on \mathbb{R}^d , with $\Sigma_{\mathbf{s}, \mathbf{s}'} = (\Sigma_{\mathbf{s}} + \Sigma_{\mathbf{s}'})/2$, (Paciorek and Schervish, 2006).

- ▶ It is the covariance function of

$$Z(\mathbf{s}) = \sqrt{\frac{2\mu_{\mathbf{s}}(\Omega)}{\mu_0(\Omega)}} \cos(\Omega^t \mathbf{s} + \Phi), \quad \Omega \sim \mu_0$$

- ▶ Univariate and multivariate simulation algorithms in Emery and Arroyo (2018)

A more general result

- ▶ Consider f belongs to the exponential family

$$f(\xi; \theta) = h(\theta) \exp \left(-\ell(\theta)^t \mathbf{T}(\xi) \right)$$

- ▶ Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse Gaussian, etc.

Theorem (Allard et al., 2025+)

Let $C(\cdot, \theta)$ be an isotropic stationary covariance function in \mathcal{C}_∞ characterized by $f(\cdot; \theta)$. Then,

$$C^*(\mathbf{s}, \mathbf{s}') = |\boldsymbol{\Sigma}_{\mathbf{s}}|^{1/4} |\boldsymbol{\Sigma}_{\mathbf{s}'}|^{1/4} |\boldsymbol{\Sigma}_{\mathbf{s}, \mathbf{s}'}|^{-1/2} C(\boldsymbol{\Sigma}_{\mathbf{s}, \mathbf{s}'}^{-1/2}(\mathbf{s} - \mathbf{s}'); \boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}),$$

is a nonstationary covariance on \mathbb{R}^d , where $\boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}$ is such that

$$\ell(\boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}) = \frac{\ell(\boldsymbol{\theta}_{\mathbf{s}}) + \ell(\boldsymbol{\theta}_{\mathbf{s}'})}{2}.$$

A more general result

- ▶ Consider f belongs to the exponential family

$$f(\xi; \theta) = h(\theta) \exp \left(-\ell(\theta)^t \mathbf{T}(\xi) \right)$$

- ▶ Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse Gaussian, etc.

Theorem (Allard et al., 2025+)

Let $C(\cdot, \theta)$ be an isotropic stationary covariance function in \mathcal{C}_∞ characterized by $f(\cdot; \theta)$. Then,

$$C^*(\mathbf{s}, \mathbf{s}') = |\boldsymbol{\Sigma}_{\mathbf{s}}|^{1/4} |\boldsymbol{\Sigma}_{\mathbf{s}'}|^{1/4} |\boldsymbol{\Sigma}_{\mathbf{s}, \mathbf{s}'}|^{-1/2} C(\boldsymbol{\Sigma}_{\mathbf{s}, \mathbf{s}'}^{-1/2}(\mathbf{s} - \mathbf{s}'); \boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}),$$

is a nonstationary covariance on \mathbb{R}^d , where $\boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}$ is such that

$$\ell(\boldsymbol{\theta}_{\mathbf{s}, \mathbf{s}'}) = \frac{\ell(\boldsymbol{\theta}_{\mathbf{s}}) + \ell(\boldsymbol{\theta}_{\mathbf{s}'})}{2}.$$

Construction and example

- ▶ It is the covariance function of

$$Z(\mathbf{s}) = \sqrt{2f(\xi; \theta_s)/f_1(\xi)} \sqrt{\mu_{\Sigma_s}^G(\Omega)/\mu_{I_d}^G(\Omega)} \cos(\Omega^t \mathbf{s} + \Phi),$$

- ▶ Matérn → the covariance in Emery and Arroyo (2018)
- ▶ Cauchy → since $f_c(\xi; (\nu, a)) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$, we get $\ell(\theta) = (1 - \nu, 1/a)^t$, $T(\xi) = (\ln \xi, \xi)^t$ and $h(\theta) = a^{-\nu} \Gamma(\nu)^{-1}$. Hence,

$$\ell(\theta_{s,s'}) = \left(1 - (\nu_s + \nu'_{s'})/2, (a_s^{-1} + a'_{s'}^{-1})/2\right)^t, \quad h(\theta_{s,s'}) = \frac{1}{\Gamma((\nu_s + \nu'_{s'})/2)} \left(\frac{2a_s a'_{s'}}{a_s + a'_{s'}}\right)^{-(\nu_s + \nu'_{s'})/2}$$

and

$$\nu_{s,s'} = (\nu_s + \nu'_{s'})/2, \quad a_{s,s'}^{-1} = (a_s^{-1} + a'_{s'}^{-1})/2$$

Construction and example

- ▶ It is the covariance function of

$$Z(\mathbf{s}) = \sqrt{2f(\xi; \theta_s)/f_1(\xi)} \sqrt{\mu_{\Sigma_s}^G(\Omega)/\mu_{I_d}^G(\Omega)} \cos(\Omega^t \mathbf{s} + \Phi),$$

- ▶ Matérn → the covariance in Emery and Arroyo (2018)
- ▶ Cauchy → since $f_C(\xi; (\nu, a)) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$, we get $\ell(\theta) = (1 - \nu, 1/a)^t$, $T(\xi) = (\ln \xi, \xi)^t$ and $h(\theta) = a^{-\nu} \Gamma(\nu)^{-1}$. Hence,

$$\ell(\theta_{s,s'}) = \left(1 - (\nu_s + \nu'_s)/2, (a_s^{-1} + a'^{-1})/2\right)^t, \quad h(\theta_{s,s'}) = \frac{1}{\Gamma((\nu_s + \nu'_s)/2)} \left(\frac{2a_s a'_s}{a_s + a'_s}\right)^{-(\nu_s + \nu'_s)/2}$$

and

$$\nu_{s,s'} = (\nu_s + \nu_{s'})/2, \quad a_{s,s'}^{-1} = (a_s^{-1} + a'^{-1})/2$$

Construction and example

- ▶ It is the covariance function of

$$Z(\mathbf{s}) = \sqrt{2f(\xi; \theta_s)/f_1(\xi)} \sqrt{\mu_{\Sigma_s}^G(\Omega)/\mu_{I_d}^G(\Omega)} \cos(\Omega^t \mathbf{s} + \Phi),$$

- ▶ Matérn → the covariance in Emery and Arroyo (2018)
- ▶ Cauchy → since $f_C(\xi; (\nu, a)) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$, we get $\ell(\theta) = (1 - \nu, 1/a)^t$, $\mathbf{T}(\xi) = (\ln \xi, \xi)^t$ and $h(\theta) = a^{-\nu} \Gamma(\nu)^{-1}$. Hence,

$$\ell(\theta_{s,s'}) = \left(1 - (\nu_s + \nu'_s)/2, (\mathbf{a}_s^{-1} + \mathbf{a}'_s^{-1})/2\right)^t, \quad h(\theta_{s,s'}) = \frac{1}{\Gamma((\nu_s + \nu'_s)/2)} \left(\frac{2\mathbf{a}_s \mathbf{a}'_s}{\mathbf{a}_s + \mathbf{a}'_s}\right)^{-(\nu_s + \nu'_s)/2}$$

and

$$\nu_{s,s'} = (\nu_s + \nu_{s'})/2, \quad \mathbf{a}_{s,s'}^{-1} = (\mathbf{a}_s^{-1} + \mathbf{a}'_{s'})/2$$

Construction and example

- ▶ It is the covariance function of

$$Z(\mathbf{s}) = \sqrt{2f(\xi; \theta_s)/f_1(\xi)} \sqrt{\mu_{\Sigma_s}^G(\Omega)/\mu_{I_d}^G(\Omega)} \cos(\Omega^t \mathbf{s} + \Phi),$$

- ▶ Matérn → the covariance in Emery and Arroyo (2018)
- ▶ Cauchy → since $f_C(\xi; (\nu, a)) = a^{-\nu} \Gamma(\nu)^{-1} \xi^{\nu-1} e^{-\xi/a}$, we get $\ell(\theta) = (1 - \nu, 1/a)^t$, $\mathbf{T}(\xi) = (\ln \xi, \xi)^t$ and $h(\theta) = a^{-\nu} \Gamma(\nu)^{-1}$. Hence,

$$\ell(\theta_{s,s'}) = \left(1 - (\nu_s + \nu'_{s'})/2, (\mathbf{a}_s^{-1} + \mathbf{a}'_{s'}^{-1})/2\right)^t, \quad h(\theta_{s,s'}) = \frac{1}{\Gamma((\nu_s + \nu'_{s'})/2)} \left(\frac{2\mathbf{a}_s \mathbf{a}'_{s'}}{\mathbf{a}_s + \mathbf{a}'_{s'}}\right)^{-(\nu_s + \nu'_{s'})/2}$$

and

$$\nu_{s,s'} = (\nu_s + \nu'_{s'})/2, \quad \mathbf{a}_{s,s'}^{-1} = (\mathbf{a}_s^{-1} + \mathbf{a}'_{s'}^{-1})/2$$

Outline

Introduction

Building bricks

Non-stationarity

Full combo

A simulation algorithm for NS MV S-T GRFs

Require: A family of scale mixtures, $f(\cdot; \theta)$, belonging to the exponential family

Require: A set of points, $\mathbf{x} = (\mathbf{s}, t) \in \mathcal{S} \in \mathbb{R}^d \times \mathbb{R}$

Require: Parameters $\theta_{ii, \mathbf{x}}$ and anisotropy matrices $\Sigma_{ii, \mathbf{x}}^{-1/2}$; covariance matrices $\sigma_{\mathbf{x}} = \mathbf{L}_{\mathbf{x}} \mathbf{L}_{\mathbf{x}}^t$

Require: Pseudo variogram γ ; $\delta > 0$

- 1: Set $f_1 := f(\theta)$ for $\theta = 1$
- 2: **for** $l = 1$ to L **do**
- 3: Simulate a p -variate RF $\mathbf{Z}_{T,l}$ with matrix-valued covariance function $\mathbf{C}_T(t) = (1 + \gamma(t))^{-\delta}$
- 4: Simulate a p -variate RF $\mathbf{W}_l = [\mathbf{W}_{l,i}]_{i=1}^p$ with pseudo-variogram γ
- 5: Simulate $\xi_l \sim f_1$
- 6: Simulate $\mathbf{V}_l \sim \mathcal{N}_d(0, \mathbf{I}_d)$; set $\Omega_l = \sqrt{2\xi_l} \mathbf{V}_l$
- 7: Simulate $\Phi_l \sim \mathcal{U}(0, 2\pi)$; Simulate $\mathbf{A}_l \sim \mathcal{N}_p(0, \mathbf{I}_p)$
- 8: **end for**
- 9: For each $\mathbf{x} = (\mathbf{s}, t) \in \mathcal{S}$, and for $i = 1, \dots, p$ return

$$\tilde{Z}_{L,i}(\mathbf{s}, t) = \sqrt{\frac{2}{L}} \sum_{l=1}^L \mathbf{Z}_{T,l,i}(t) \sqrt{\frac{f_{ii, \mathbf{x}}(\xi_l)}{f_1(\xi_l)}} \sqrt{\frac{\mu_{\Sigma_{ii, \mathbf{x}}}^G(\sqrt{2}\mathbf{V}_l)}{\mu_{I_d}^G(\sqrt{2}\mathbf{V}_l)}} (\mathbf{L}_{\mathbf{x}} \mathbf{A}_l)_i \cos \left(\Omega_l^t \mathbf{s} + \frac{\|\mathbf{V}_l\|}{\sqrt{2}} \mathbf{W}_l(t) + \Phi_l \right)$$

Nonstationary multivariate space-time model

Theorem (Allard et al., 2025+)

Let us denote $\mathbf{x} = (\mathbf{s}, t)$. Then,

$$C_{ij}(\mathbf{s}_1, \mathbf{s}_2; t_1, t_2) = |\boldsymbol{\Sigma}_{ii, \mathbf{x}_1}|^{1/4} |\boldsymbol{\Sigma}_{jj, \mathbf{x}_2}|^{1/4} \frac{\sigma_{ij, \mathbf{x}_1 \mathbf{x}_2}}{|\boldsymbol{\Lambda}_{ij, \mathbf{x}_1, \mathbf{x}_2}|^{1/2}} \phi_{ij} \left(\boldsymbol{\Lambda}_{ij, \mathbf{x}_1, \mathbf{x}_2}^{-1/2} (\mathbf{s}_1 - \mathbf{s}_2); \boldsymbol{\theta}_{\mathbf{x}_1, \mathbf{x}_2} \right)$$

where $\boldsymbol{\Lambda}_{ij, \mathbf{x}_1, \mathbf{x}_2} = (\boldsymbol{\Sigma}_{ii, \mathbf{x}_1} + \boldsymbol{\Sigma}_{jj, \mathbf{x}_2})/2 + \boldsymbol{\gamma}_{ij}(t_1 - t_2) \mathbf{I}_d$.

- ▶ Proof: it is the covariance resulting from the Algorithm above

Temporal trace

Theorem (Allard et al., 2025+)

$$C_{Tij}(\mathbf{s}_1, \mathbf{s}_1; t_1, t_2) = |\boldsymbol{\Sigma}_{ii, \mathbf{x}_1}|^{1/4} |\boldsymbol{\Sigma}_{jj, \mathbf{x}_2}|^{1/4} \frac{\sigma_{ij, \mathbf{x}_1 \mathbf{x}_1}}{|\boldsymbol{\Sigma}_{ij, \mathbf{x}_1} + \gamma_{ij}(t_1 - t_2) \mathbf{I}_d|^{1/2}}$$

where $\boldsymbol{\Sigma}_{ij, \mathbf{x}_1} = (\boldsymbol{\Sigma}_{ii, \mathbf{x}_1} + \boldsymbol{\Sigma}_{jj, \mathbf{x}_1})/2$

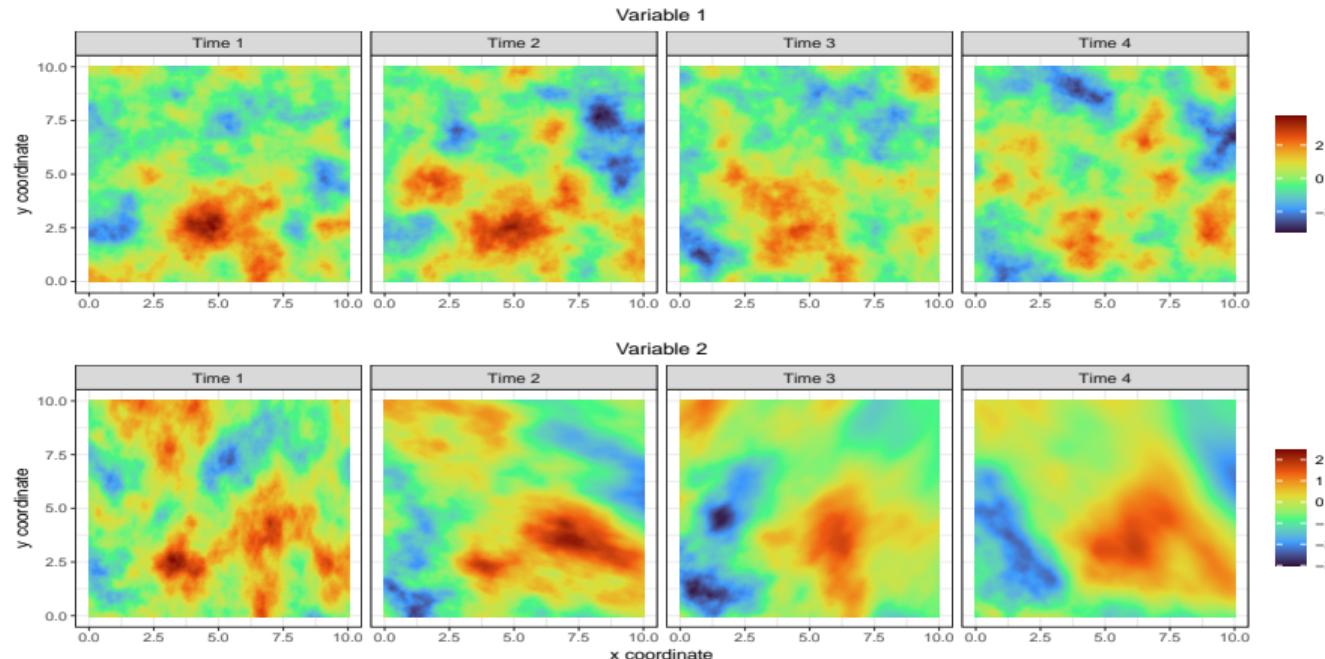
- ▶ The temporal correlation trace is thus

$$|\boldsymbol{\Sigma}_{ij, \mathbf{x}_1} + \gamma_{ij}(u) \mathbf{I}_d|^{-1/2}$$

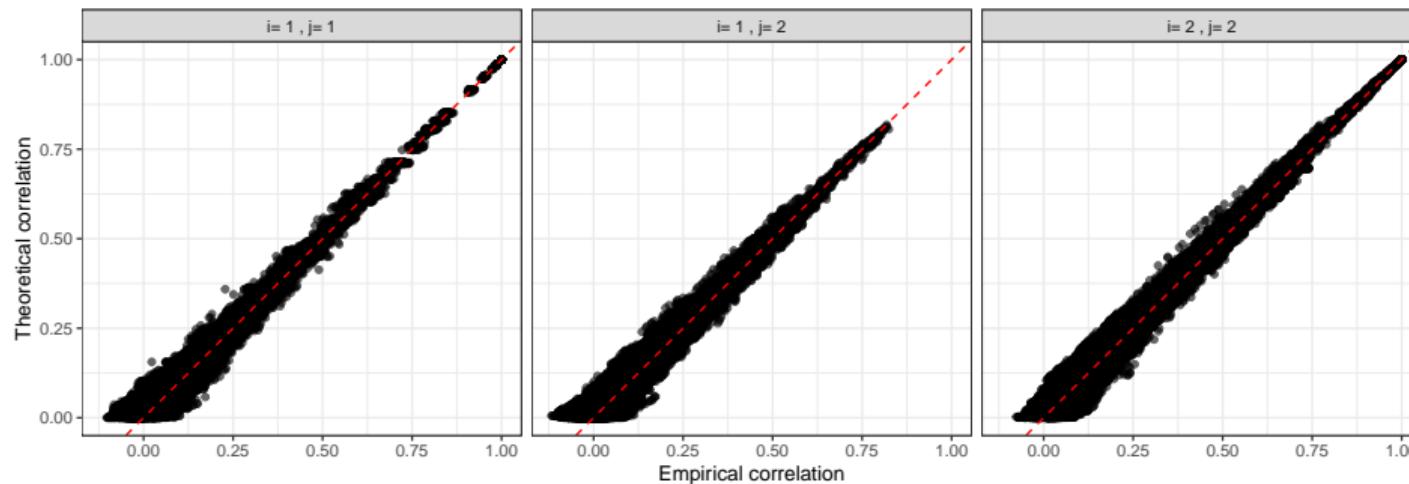
- ▶ It is non stationary in space !

The **spatial trace** is identical to the construction in Paciorek and Schervish (2006).

Illustration



Illustration



Final words

- ▶ We propose a change of perspective: from spectral representation to Gaussian mixture representation
- ▶ It paves the way to general theorem allowing for the construction of a new and wide class of nonstationary covariance functions
- ▶ Two well separated steps: i) stochastic generation; ii) projection onto \mathcal{S}
- ▶ The second step is massively parallelizable
- ▶ Possible extensions to non Euclidean spaces

<https://hal.inrae.fr/hal-05034982>

References

- Allard, D., Clarotto, L., and Emery, X. (2022). Fully nonseparable gneiting covariance functions for multivariate space–time data. *Spatial Statistics*, 52:100706.
- Allard, D., Emery, X., Lacaux, C., and Lantuéjoul, C. (2020). Simulating space-time random fields with nonseparable gneiting-type covariance functions. *Statistics and Computing*, 30(5):1479–1495.
- Chilès, J.-P. and Delfiner, P. (2012). *Geostatistics: Modeling Spatial Uncertainty, Second Edition*. John Wiley & Sons.
- Emery, X. and Arroyo, D. (2018). On a continuous spectral algorithm for simulating non-stationary gaussian random fields. *Stochastic Environmental Research and Risk Assessment*, 32:905–919.
- Emery, X., Arroyo, D., and Porcu, E. (2016). An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. *Stochastic Environmental Research and Risk Assessment*, 30(7):1863–1873.
- Matheron, G. (1973). The intrinsic random functions and their applications. *Advances in applied probability*, 5(3):439–468.
- Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. *Environmetrics*, 17.
- Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. *Advances in neural information processing systems*, 20.
- Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. *Annals of Mathematics*, 39(4):811–841.
- Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. *The Journal of the Acoustical Society of America*, 49(1B):357–368.