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Realization of a bivariate, spatio-temporal, non-stationary GP
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nonstationary; sometimes all at once
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4/41



Introduction
000@00000000000000

Outline

1. Introduction: reminders on the spectral method

2. Building bricks: Gaussian mixtures, geometric anisotropy, popular covariance functions;
recent extensions

3. Nonstationarity: a general result relating to the Paciorek-Shervish construction

4. The full combo: new nonstationary, multivariate, spatio-temporal class
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Artistic point of view

Waves in

A book on changing scale, multiple perspectives,
diversity, and ecological variability.

Dmitry Paranyushkin

6/41



Introduction
0O0000@000000000000

Artistic point of view

At the beginning, there was a wave.
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Artistic point of view

Then, there was another wave. 2 T

* perception
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Artistic point of view

The waves made patterns.

* interpretation
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The classic "classic spectral method”
Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,
C(h) = / exp(ih'w)du(w), Vh e R
R
Then,
L
5 2 .
Z,(s) = \/:lz;cos (Q}s + ¢,) . Qe~p, & ~U0,27), alliid

is approximately a GP with expectation 0 and covariance function C
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The classic "classic spectral method”

Proof
> E[cos (Qs+ )] =0
>
E [2 cos (Qfs + ¢/) cos (Q;(S +h) + ¢/>] = E [cos (Qf(ZS +h)+ 2¢,)] +E [cos (th)]

O+/ cos(w'h)du(w)
Rd
» Then use CLT

» Similar to the "Random Fourier Features” (Rahimi and Recht, 2007), based on
(cos(2]s), sin(2]s))
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Extensions of the spectral method

» Multivariate (MV) (Emery et al., 2016) and non-stationary (NS) (Emery and Arroyo, 2018).
Includes also NS — MV

» Saptio-temporal (ST) Allard et al. (2020)

» Spatio-temporal multivariate (ST — MV), Allard et al. (2022)

— Propose an algorithm and models for “the full combo” NS — ST -MV
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Sonly -
Shinozuka,
Matheron (1973)
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Shinozuka, ST
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Extensions of the spectral method

NS - ST-MV
Allard, Benoit &
Obakrim, 2025+

MV — Emery et al.
(2016)

Multivariate

Sonly -

Shinozuka, [ Time 3

Matheron (1973)
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Extensions of the spectral method

NS - ST-MV
Allard, Benoit &
Obakrim, 2025+

MV — Emery et al.
(2016)

Multivariate

(2022)

ST- MV — Allard etial.

Multivariate

Matheron (1973)

Sonly— =
Shinozuka, =TT

2

-
ST—Allard et al.
(2020)

19/41



Building bricks
®000000000

Outline

Building bricks

20/41



Building bricks Non-stationarity

O®@00000000

Gaussian mixtures

Schoenberg (1938)

Define Co. the class of continuous isotropic covariance functions valid on R?, Vd > 1. Then, ¢ € Coo
if and only if

o) = [ ex(-IInFOf)de

f(¢) is the Gaussian scale mixture
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O®@00000000

Gaussian mixtures

Schoenberg (1938)

Define Co. the class of continuous isotropic covariance functions valid on R?, Vd > 1. Then, ¢ € Coo
if and only if

o(h) = [ ew(-IInPe)f(e)ae
R+
f(&) is the Gaussian scale mixture

Proposition

+o00

pw) = (2\/?)7"/0 exp(—|lw|[*/46)€™*£(¢) dé

In purple, spectral density of a Gaussian covariance with scale parameter ¢~'/2.
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Geometric anisotropy

Geometric anisotropy in R? (Chilés and Delfiner, 2012)
12 _(n O cosf sinf
z _( 0 n >( —sinf cosf |’ (1)
For the Gaussian covariance, one gets:

Co(h) = exp (—h'):‘1h)  pe(w) = (2vm) T E[ 2 exp (—w’zw/4)
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Simulation algorithms for stationary univariate spatial GPs

Spectral simulation
Require: C € Co and p
Require: A set of points, S € R?
Require: A large number L

: for/=1to Ldo

Simulate Q, ~

Simulate @, ~ ¢/(0, 27)

: end for

: Foreach s € S return

L
Z(s) = \/%Z cos(X72Qfs + @)
=

T
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Simulation algorithms for stationary univariate spatial GPs

Spectral simulation Gaussian mixture simulation
Require: C € Co and p Require: C € Cs and f

Require: A set of points, S € R? Require: A set of points, S € R?
Require: A large number L Require: A large number L

:for/=1toLdo
Simulate Q, ~
Simulate ®; ~ U(0, 27)
. end for

: Foreach s € S return

L
Z(s) = \/%Z cos(X72Qfs + @)
=1

:for/=1toLdo

Simulate & ~ f

Simulate Q; ~ /2§N4(0, 1g)
Simulate &, ~ (0, 27)

: end for

: Foreach s € S return

L
Z(s) = \/%Z cos(Zq/fos + @)
1=1

[N NI CRN
Qg Rk wh 2
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Some covariance functions

Matérn covariance

2

Cm(h) Z’J%I'(V)

(x[[h[[)"K. (I [h[])

1
pm(w) o (1 + [|w][2/r2)"+9/2

_ K/Z U£,1,l, 75;2/4.5
(&) = (T) e

Hence

2: Simulate & ~ IG(v, k2 /4)
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Some covariance functions

Matérn covariance Cauchy covariance
Canlh) = g (sl I} Kol ] Ce(h) = (1+alhl?) "
oA 2711 (v) w|[h[))” Ko (x[[hl]) c = [ )
1
pa(w) o (1 + [|w|[2/r2)+er2 ue = Unknown
f _ 2 g 1—v 75;2/4.5
M(f) = ?) r(y) e 0 fC(f) _ a—y[—(y)f‘lgl/*“e*ﬁ/a
Hence Hence

2: Simulate & ~ IG(v, K?/4) 2: Simulate ¢ ~ G(v,a).
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Main take aways

Use Gaussian mixtures

> Almost identical simulation algorithm
> Restricted to kernels in C
> Paves the way to many extensions
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ST extension
Allard et al. (2020)

Gneiting covariance

_ 1 5 [h]
(v(u) + )27 (y(u) + 1)
with b € [0,1] and 6 > 0 is a S-T separability parameter.

C(h, u)

» Define W(t) ~ GP(0,~) with W(0) =0
> Define Z7(t) ~ GP(0, Cr) with

=Gy
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Simulation for univariate stationary Gneiting ST GRFs

Require: C € C.. and associated f ; spatial anisotropy X ~'/2

Require: Variogram ~
Require: Parameters b € [0,1]and ¢ > 0
Require: A set of points, S € RY x R; a large number L
1: for/=1to Ldo
2:  Simulate a RF Z7; with covariance function Cr(u) = (1 +~(u)) ™~
Simulate a RF W, with Gaussian increments and variogram ~, = (1 + ) — 1
Simulate & ~ f
Simulate V; ~ Ny(0, 14)
set Q, = /26X 1/2V,
Simulate ®; ~ U(0, 27)
8: end for
9: For each (s, t) € Sreturn

L
Z/(s,t) = \EZ Zr/(t) cos (Qfs + % Wi(t) + cb,)
I=1

)

N g ho
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ST — MV extension

Allard et al. (2022)

Multivariate Gneiting

ajj ¢ < 2_1/2h >
(i) + 1) () + 1)
with ¢;(h) = [ e=<IM (f;(&)de and f; = \/FiF;

For example, for a Matérn covariance: 2v; = v; + v and 2k5 = K5 + K5

Cj(h,u) =

> ~ is a pseudo-variogram with ~;(u) = 0.5Var [W;(t) — W;(t + u)]
> Define (W4,..., Wy) a p-variate 1d-GP (0, ~) with W/;(0) =0
» Define (Z71,...,2Z7,) a p-variate 1d-GP (0, [Cr j]j=1,0) With

Crj(u) = oy (vj(u) +1)7°
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Simulation for p-variate stationary Gneiting ST GRFs

Require: C Matérn or Cauchy and associated f;; spatial anisotropy X~
Require: Pseudo variogram ~; parameters b € [0,1] and 6 > 0
Require: A covariance matrix o = LL'
Require: A pdf f, with support equal to (0, o)
Require: A set of points, S € RY x R; a large number L
1: for /=1to Ldo
2. Simulate a p-variate GRF Z, with matrix-valued covariance function Cr(u) = (1 +~(u))~°
3. Simulate a p-variate RF W, = [W,;]%_, with Gaussian direct and cross-increments, with 0
mean and pseudo-variogram ~, = (1 +~)° — 1
Simulate & ~ f
Simulate V; ~ Ny(0,1y); set Q, = /26X~ "/2V}; simulate ®; ~ 14(0, 27)
Simulate A; ~ N,(0,0)
7: end for
8: For each (s, t) € Sreturn

L
Z(s,t) = 2 > Zru(t) f,-;(£,) Qjs + VAl Wiit)+ &), i=1,....p
L= f(fl) V2

1/2

@ a n
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State of the art

Non-stationary spatial models

Let ¢ € Co, and X~ '/?(s) ansiotropy matrices, s € RY. Then,

ons(s. ) = [Zs|' /4 Zo |41 Zew |20 (1 /(s — 8, L(s - 8)).
is a nonstationary covariance on RY, with s o = (Zs + Zs/)/2, (Paciorek and Schervish, 2006).

» |t is the covariance function of

Z(s) = 2/25(229)) cos(Q's + d), Q~ po

» Univariate and multivariate simulation algorithms in Emery and Arroyo (2018)
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A more general result

» Consider f belongs to the exponential family
f(¢:0) = h(8) exp (—£(0)'T(¢))

» Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse
Gaussian, etc.

32/41
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A more general result

» Consider f belongs to the exponential family
f(¢:0) = h(8) exp (—£(0)'T(¢))

» Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse
Gaussian, etc.

Theorem (Allard et al., 2025+)

Let C(+, 0) be an isotropic stationary covariance function in C-, characterized by f(-; ). Then,
C'(s;8') = |Zs|1/4\):s/|1/4\):s‘s/|71/ZC(ZS,5171/2(S —8)10s5),

is a nonstationary covariance on RY , where 0.« is such that

£(0s) + £(6s)

£(0ss) = 5

32/41
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Construction and example

» |t is the covariance function of

Z(s) = V/2f(& 05) /(€)1 / €, (R) /uf’ (R) cos(Q's + @),
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Construction and example

» |t is the covariance function of

Z(s) = V/2f(& 05) /(€)1 / €, (R) /uf’ (R) cos(Q's + @),

> Matérn — the covariance in Emery and Arroyo (2018)
> Cauchy — since fz(¢; (v,a)) = a "T(v) " '¢"'e /2 we get £(8) = (1 — v,1/a)’,
T() = (In¢ &) and h(0) = a “T(v)".
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Construction and example

» |t is the covariance function of

Z(s) = V/2f(& 05) /(€)1 / €, (R) /uf’ (R) cos(Q's + @),

> Matérn — the covariance in Emery and Arroyo (2018)
> Cauchy — since fz(¢; (v,a)) = a "T(v) " '¢"'e /2 we get £(8) = (1 — v,1/a)’,
T(&) = (In¢, &) and h(9) = a “T(v)~'. Hence,

— _ ’ —1 ;=1 t B 1 2853/5 —(vs+vf)/2
Use) = (1-Cotrm/2 @7 +a2) h(es‘s/)—r((usw;)/z)(as+a;)

and
vss = (Vs +vs)/2, éls’s/_1 = (as_1 + as/‘1)/2

33/41



Full combo
©000000

Outline

Full combo

34/41



Full combo
0®00000

A simulation algorithm for NS MV S-T GRFs

Require: A family of scale mixtures, f(-; @), belonging to the exponential family
Require: A set of points, X = (s,1) € S € RY x R
Require: Parameters 0 x and anisotropy matrices Z”jl/z;
Require: Pseudo variogram ~; 6 >0

1. Set f; := (@) for 0 =1

2: for/=1to Ldo

3 Simulate a p-variate RF Z 1, with matrix-valued covariance function Cr(t) = (1 + ~(t))°

covariance matrices ox = LyxL}

4. Simulate a p-variate RF W, = [W,]%_, with pseudo-variogram ~
5. Simulate & ~ £

6:  Simulate V, ~ Ny(0,14); set Q, = V2§V,

7:  Simulate &, ~ (0, 27); Simulate A, ~ N,(0, I,,)

8: end for

9: Foreachx = (s,t) € S,andfori=1,...,preturn

ffi,x(é'/) /JJ}C:;”YX(\/EV/) . . M |
&)\ nf(vav) (LA cos (Q/s+ N W,(t)+¢/>

L

. 2

Z.i(s,t) = \E§ Z1.1,i(t)
=1
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Nonstationary multivariate space-time model

Theorem (Allard et al., 2025+)

Let us denote x = (s, ). Then,

1/4 1/4  Oijxix —-1/2
Ci(s1,82: b, bo) = [Zii, ' *|Zj 0, W‘ﬁi/ (’\i/,x{,xz(‘“"1 — 82); Ox, v"z)
IR1,R2
where Ajx, x, = (Zix, + Ejx,)/2 4+ 7t — &) la.

» Proof: it is the covariance resulting from the Algorithm above
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Temporal trace

Theorem (Allard et al., 2025+)

Tij,xq X4

1/4 1/4
Cri(s1,s1; t, &) = | Ziix, | / |2 %, | / S5 5t — &)o' 2
sRq

where X x, = (Xiix, + Xjix,)/2

> The temporal correlation trace is thus
Zj, + vi(U)la] 772

> It is non stationary in space !

The spatial trace is identical to the construction in Paciorek and Schervish (2006).
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Illustration
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Illustration
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Final words

» We propose a change of perspective: from spectral representation to Gaussian mixture
representation

> It paves the way to general theorem allowing for the construction of a new and wide class of
nonstationary covariance functions

» Two well separated steps: i) stochastic generation; ii) projection onto S

v

The second step is massively parallelizable
> Possible extensions to non Euclidean spaces

https://hal.inrae.fr/hal-05034982
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