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Motivation
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Variable 2

Realization of a bivariate, spatio-temporal, non-stationary GP
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Motivation

▶ Building covariance functions in complex settings: spatio-temporal, multivariate,
nonstationary; sometimes all at once

▶ Generating GPs on Rp characterized on by those

▶ Simulation algorithms are constructive arguments for defining new classes of covariance
functions in these settings

▶ Particular focus on Gaussian mixtures

▶ https://hal.inrae.fr/hal-05034982
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Outline

1. Introduction: reminders on the spectral method

2. Building bricks: Gaussian mixtures, geometric anisotropy, popular covariance functions;
recent extensions

3. Nonstationarity: a general result relating to the Paciorek-Shervish construction

4. The full combo: new nonstationary, multivariate, spatio-temporal class
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Artistic point of view
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The classic ”classic spectral method”
Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,

C(h) =
∫
Rd

exp(ihtω)dµ(ω), ∀h ∈ Rd .

Then,

Z̃L(s) =

√
2
L

L∑
l=1

cos
(
Ωt

l s +Φl

)
, Ωl ∼ µ, Φl ∼ U(0, 2π), all i.i.d

is approximately a GP with expectation 0 and covariance function C
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The classic ”classic spectral method”

Proof

▶ E
[
cos
(
Ωt

l s +Φl
)]

= 0
▶

E
[
2 cos

(
Ωt

l s +Φl

)
cos
(
Ωt

l (s + h) + Φl

)]
= E

[
cos
(
Ωt

l (2s + h) + 2Φl

)]
+ E

[
cos
(
Ωt

l h
)]

= 0 +

∫
Rd

cos(ωth)dµ(ω)

▶ Then use CLT

▶ Similar to the ”Random Fourier Features” (Rahimi and Recht, 2007), based on(
cos(Ωt

l s), sin(Ω
t
l s)
)
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Extensions of the spectral method

▶ Multivariate (MV) (Emery et al., 2016) and non-stationary (NS) (Emery and Arroyo, 2018).
Includes also NS – MV

▶ Saptio-temporal (ST) Allard et al. (2020)

▶ Spatio-temporal multivariate (ST – MV), Allard et al. (2022)

↪→ Propose an algorithm and models for ”the full combo” NS – ST –MV
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Gaussian mixtures

Schoenberg (1938)

Define C∞ the class of continuous isotropic covariance functions valid on Rd , ∀d ≥ 1. Then, ϕ ∈ C∞
if and only if

ϕ(h) =
∫
R+

exp(−||h||2ξ)f (ξ)dξ

f (ξ) is the Gaussian scale mixture

Proposition

µ(ω) =
(
2
√
π
)−d

∫ +∞

0
exp
(
−||ω||2/4ξ

)
ξ−d/2f (ξ) dξ

In purple, spectral density of a Gaussian covariance with scale parameter ξ−1/2.
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Geometric anisotropy

Geometric anisotropy in R2 (Chilès and Delfiner, 2012)

Σ−1/2 =

(
r1 0
0 r2

)(
cos θ sin θ

− sin θ cos θ

)
, (1)

For the Gaussian covariance, one gets:

CG(h) = exp
(
−htΣ−1h

)
; µG(ω) =

(
2
√
π
)−d |Σ|1/2 exp

(
−ωtΣω/4

)

22 / 41



Introduction Building bricks Non-stationarity Full combo References

Simulation algorithms for stationary univariate spatial GPs

Spectral simulation

Require: C ∈ C∞ and µ
Require: A set of points, S ∈ Rd

Require: A large number L
1: for l = 1 to L do
2: Simulate Ωl ∼ µ
3: Simulate Φl ∼ U(0, 2π)
4: end for
5: For each s ∈ S return

Z̃ (s) =

√
2
L

L∑
l=1

cos
(
Σ−1/2Ωt

l s +Φl
)

Gaussian mixture simulation

Require: C ∈ C∞ and f
Require: A set of points, S ∈ Rd

Require: A large number L
1: for l = 1 to L do
2: Simulate ξl ∼ f
3: Simulate Ωl ∼

√
2ξlNd(0, Id)

4: Simulate Φl ∼ U(0, 2π)
5: end for
6: For each s ∈ S return

Z̃ (s) =

√
2
L

L∑
l=1

cos
(
Σ−1/2Ωt

l s +Φl
)
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Some covariance functions

Matérn covariance

CM(h) =
σ2

2ν−1Γ(ν)
(κ||h||)νKν(κ||h||)

µM(ω) ∝ 1
(1 + ||ω||2/κ2)ν+d/2

fM(ξ) =

(
κ2

4

)ν
ξ−1−ν

Γ(ν)
e−κ2/4ξ.

Hence

2 : Simulate ξl ∼ IG(ν, κ2/4)

Cauchy covariance

CC(h) =
(

1 + a||h||2
)−ν

µC = Unknown

fC(ξ) = a−νΓ(ν)−1ξν−1e−ξ/a

Hence

2 : Simulate ξl ∼ G(ν, a).
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Main take aways

Use Gaussian mixtures

▶ Almost identical simulation algorithm
▶ Restricted to kernels in C∞

▶ Paves the way to many extensions
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ST extension
Allard et al. (2020)

Gneiting covariance

C(h, u) =
1

(γ(u) + 1)δ+bd/2 ϕ

(
||h||

(γ(u) + 1)b/2

)
with b ∈ [0, 1] and δ > 0 is a S-T separability parameter.

▶ Define W (t) ∼ GP(0, γ) with W (0) = 0
▶ Define ZT (t) ∼ GP(0,CT ) with

CT (u) =
1

(γ(u) + 1)δ

26 / 41



Introduction Building bricks Non-stationarity Full combo References

Simulation for univariate stationary Gneiting ST GRFs

Require: C ∈ C∞ and associated f ; spatial anisotropy Σ−1/2

Require: Variogram γ
Require: Parameters b ∈ [0, 1] and δ > 0
Require: A set of points, S ∈ Rd × R; a large number L

1: for l = 1 to L do
2: Simulate a RF ZT ,l with covariance function CT (u) = (1 + γ(u))−δ

3: Simulate a RF Wl with Gaussian increments and variogram γb = (1 + γ)b − 1
4: Simulate ξl ∼ f
5: Simulate Vl ∼ Nd(0, Id)
6: set Ωl =

√
2ξlΣ

−1/2Vl

7: Simulate Φl ∼ U(0, 2π)
8: end for
9: For each (s, t) ∈ S return

Z̃L(s, t) =

√
2
L

L∑
l=1

ZT ,l(t) cos
(
Ωt

l s +
∥Vl∥√

2
Wl(t) + Φl

)
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ST – MV extension
Allard et al. (2022)

Multivariate Gneiting

Cij(h, u) =
σij

(γ ij(u) + 1)δ+bd/2 ϕij

(
Σ−1/2h

(γ ij(u) + 1)b/2

)

with ϕij(h) =
∫∞

0 e−ξ||h||2(fij(ξ)dξ and fij =
√

fii fjj

For example, for a Matérn covariance: 2νij = νii + νii and 2κ2
ij = κ2

ii + κ2
ii

▶ γ is a pseudo-variogram with γ ij(u) = 0.5Var [W i(t)− W j(t + u)]
▶ Define (W 1, . . . ,W p) a p-variate 1d-GP (0,γ) with W i(0) = 0
▶ Define (Z T ,1, . . . ,Z T ,p) a p-variate 1d-GP (0, [CT ,ij ]ij=1,p) with

CT ,ij(u) = σij (γ ij(u) + 1)−δ
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Simulation for p-variate stationary Gneiting ST GRFs
Require: C Matérn or Cauchy and associated fii ; spatial anisotropy Σ−1/2

Require: Pseudo variogram γ; parameters b ∈ [0, 1] and δ > 0
Require: A covariance matrix σ = LLt

Require: A pdf f , with support equal to (0,∞)
Require: A set of points, S ∈ Rd × R; a large number L

1: for l = 1 to L do
2: Simulate a p-variate GRF Z T ,l with matrix-valued covariance function CT (u) = (1 + γ(u))−δ

3: Simulate a p-variate RF W l = [W l,i ]
p
i=1 with Gaussian direct and cross-increments, with 0

mean and pseudo-variogram γb = (1 + γ)b − 1
4: Simulate ξl ∼ f
5: Simulate V l ∼ Nd(0, Id); set Ωl =

√
2ξlΣ

−1/2Vl ; simulate Φl ∼ U(0, 2π)
6: Simulate Al ∼ Np(0,σ)
7: end for
8: For each (s, t) ∈ S return

Z̃L,i(s, t) =

√
2
L

L∑
l=1

Z T ,l,i(t)

√
fii(ξl)

f (ξl)
Al,i cos

(
Ωt

l s +
∥Vl∥√

2
W l,i(t) + Φl

)
, i = 1, . . . , p
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State of the art

Non-stationary spatial models

Let ϕ ∈ C∞ and Σ−1/2(s) ansiotropy matrices, s ∈ Rd . Then,

ϕNS(s, s′) = |Σs|1/4|Σs′ |1/4|Σs,s′ |−1/2ϕ
(√

(s − s′)tΣ−1
s,s′(s − s′)

)
,

is a nonstationary covariance on Rd , with Σs,s′ =
(
Σs +Σs′

)
/2, (Paciorek and Schervish, 2006).

▶ It is the covariance function of

Z (s) =

√
2µs(Ω)

µ0(Ω)
cos(Ωts +Φ), Ω ∼ µ0

▶ Univariate and multivariate simulation algorithms in Emery and Arroyo (2018)
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A more general result

▶ Consider f belongs to the exponential family

f (ξ;θ) = h(θ) exp
(
−ℓ(θ)tT (ξ)

)
▶ Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse

Gaussian, etc.

Theorem (Allard et al., 2025+)

Let C(·,θ) be an isotropic stationary covariance function in C∞ characterized by f (·;θ). Then,

C∗(s, s′) = |Σs|1/4|Σs′ |1/4|Σs,s′ |−1/2C(Σs,s′
−1/2(s − s′);θs,s′),

is a nonstationary covariance on Rd , where θs,s′ is such that

ℓ(θs,s′) =
ℓ(θs) + ℓ(θs′)

2
.
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Construction and example

▶ It is the covariance function of

Z (s) =
√

2f (ξ;θs)/f1(ξ)
√

µG
Σs
(Ω)/µG

Id
(Ω) cos

(
Ωts +Φ

)
,

▶ Matérn → the covariance in Emery and Arroyo (2018)
▶ Cauchy → since fC(ξ; (ν, a)) = a−νΓ(ν)−1ξν−1e−ξ/a, we get ℓ(θ) = (1 − ν, 1/a)t ,

T (ξ) = (ln ξ, ξ)t and h(θ) = a−νΓ(ν)−1. Hence,

ℓ(θs,s′) =
(

1 − (νs + ν′
s)/2, (as

−1 + a′
s
−1

)/2
)t

, h(θs,s′) =
1

Γ ((νs + ν′
s)/2)

(
2asa′

s

as + a′
s

)−(νs+ν′
s)/2

and
νs,s′ = (νs + νs′)/2, as,s′

−1 = (as
−1 + as′

−1)/2
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A simulation algorithm for NS MV S-T GRFs
Require: A family of scale mixtures, f (·;θ), belonging to the exponential family
Require: A set of points, x = (s, t) ∈ S ∈ Rd × R
Require: Parameters θii,x and anisotropy matrices Σ−1/2

ii,x ; covariance matrices σx = LxLt
x

Require: Pseudo variogram γ; δ > 0
1: Set f1 := f (θ) for θ = 1
2: for l = 1 to L do
3: Simulate a p-variate RF Z T ,l with matrix-valued covariance function CT (t) = (1 + γ(t))−δ

4: Simulate a p-variate RF W l = [W l,i ]
p
i=1 with pseudo-variogram γ

5: Simulate ξl ∼ f1
6: Simulate V l ∼ Nd(0, Id); set Ωl =

√
2ξlVl

7: Simulate Φl ∼ U(0, 2π); Simulate Al ∼ Np(0, Ip)
8: end for
9: For each x = (s, t) ∈ S, and for i = 1, . . . , p return

Z̃L,i(s, t) =

√
2
L

L∑
l=1

Z T ,l,i(t)

√
fii,x(ξl)

f1(ξl)

√√√√µG
Σii,x

(
√

2Vl)

µG
Id
(
√

2Vl)
(LxAl)i cos

(
Ωt

l s +
∥Vl∥√

2
W i(t) + Φl

)
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Nonstationary multivariate space-time model

Theorem (Allard et al., 2025+)

Let us denote x = (s, t). Then,

Cij(s1, s2; t1, t2) = |Σii,x1 |
1/4|Σjj,x2 |

1/4 σij,x1x2

|Λij,x1,x2 |1/2 ϕij

(
Λ−1/2

ij,x1,x2
(s1 − s2);θx1,x2

)
where Λij,x1,x2 = (Σii,x1 +Σjj,x2)/2 + γ ij(t1 − t2)Id .

▶ Proof: it is the covariance resulting from the Algorithm above
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Temporal trace

Theorem (Allard et al., 2025+)

CT ij(s1, s1; t1, t2) = |Σii,x1 |
1/4|Σjj,x2 |

1/4 σij,x1x1

|Σij,x1 + γ ij(t1 − t2)Id |1/2

where Σij,x1 = (Σii,x1 +Σjj,x1)/2

▶ The temporal correlation trace is thus

|Σij,x1 + γ ij(u)Id |−1/2

▶ It is non stationary in space !

The spatial trace is identical to the construction in Paciorek and Schervish (2006).
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Illustration
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Illustration
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Final words

▶ We propose a change of perspective: from spectral representation to Gaussian mixture
representation

▶ It paves the way to general theorem allowing for the construction of a new and wide class of
nonstationary covariance functions

▶ Two well separated steps: i) stochastic generation; ii) projection onto S
▶ The second step is massively parallelizable
▶ Possible extensions to non Euclidean spaces

https://hal.inrae.fr/hal-05034982
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Allard, D., Emery, X., Lacaux, C., and Lantuéjoul, C. (2020). Simulating space-time random fields with nonseparable
gneiting-type covariance functions. Statistics and Computing, 30(5):1479–1495.

Chilès, J.-P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, Second Edition. John Wiley & Sons.

Emery, X. and Arroyo, D. (2018). On a continuous spectral algorithm for simulating non-stationary gaussian random fields.
Stochastic Environmental Research and Risk Assessment, 32:905–919.

Emery, X., Arroyo, D., and Porcu, E. (2016). An improved spectral turning-bands algorithm for simulating stationary vector
Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 30(7):1863–1873.

Matheron, G. (1973). The intrinsic random functions and their applications. Advances in applied probability, 5(3):439–468.

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions.
Environmetrics, 17.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. Advances in neural information processing
systems, 20.

Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. Annals of Mathematics, 39(4):811–841.

Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. The Journal of the Acoustical Society
of America, 49(1B):357–368.

41 / 41


	Introduction
	Building bricks
	Non-stationarity
	Full combo
	References

