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Outline of the course

1 Overview of the role of Gaussian processes

2 Definition and existence of a Gaussian process

3 The covariance function

4 Conditional distribution given observations

5 Covariance function estimation
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Gaussian processes in different fields

Gaussian processes are studied in different fields :

geostatistics computer experiments machine learning

Stein, 99 Santner et al, 03 Rasmussen and Williams, 06

Common ground but also

Different type of data

Different algorithms

Different theoretical focus

Different vocabulary
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Canonical goal : learning an unknown function

We are interested in learning a fixed unknown function

f : X → R
x 7→ f (x)

X : input space (no assumption so far)

x : input parameter

f (x) : quantity of interest

The function f is a black box

=⇒ Only available through observations

=⇒ No or few a priori information available

Examples :
Geostatistics : x is a two-dimensional position and f (x) is a pollutant concentration

Computer experiments : x is a simulation parameter and f (x) is a simulation result

Machine learning : x is a set of flight features and f (x) is a delay time
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Various types of observations of f

Regression
Exact observations : We observe f (x1), . . . , f (xn)

Noisy observations : We observe f (x1) + ϵ1, . . . , f (xn) + ϵn
f can be interpreted as a conditional expectation

Binary classification
• We observe Y1, . . . ,Yn where, for i = 1, . . . , n, Yi ∈ {0, 1} and

P(Yi = 1) = ϕ(f (xi )),

with ϕ strictly increasing from (−∞,∞) to (0, 1)
E.g. logistic function ϕ(t) = et/(1 + et )

And more : multiclass classification, f gives the intensity of a point process,...
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The role of Gaussian processes

The previous types of observations can be tackled by several statistics or machine
learning algorithms

Kernel smoothing

Random forests

Neural networks

and many more

Gaussian processes also tackle these types of observations and are based on a
Bayesian prior on the function f
=⇒ Hence they provide an important benefit for uncertainty quantification
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Gaussian processes as Bayesian prior

Bayesian prior

Modeling the black box function f as a single realization of a Gaussian process
x → ξ(x) on the domain X
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Usefulness
Using the conditional distribution of ξ, given the observations, to learn f
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A quick summary

Gaussian processes provide a Bayesian prior over unknown functions, that enables to
address various machine learning problems, with the benefit of uncertainty

quantification
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1 Overview of the role of Gaussian processes

2 Definition and existence of a Gaussian process

3 The covariance function

4 Conditional distribution given observations

5 Covariance function estimation
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Stochastic processes

A stochastic process on X is a function
ξ : X → R such that ξ(x) is a random
variable for all x ∈ X.
Alternatively a stochastic process is a
function on X that is random

Probability space

We explicit the randomness of ξ(x) by writing it ξ(ω, x) with ω in a probability space Ω.
For a given ω0, we call the function x → ξ(ω0, x) a realization of the stochastic process
ξ.
=⇒ The probability space Ω is the same for all ξ(ω, x) with x ∈ X
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Gaussian variables and vectors

A random variable X on R is a Gaussian
variable with mean µ ∈ R and variance
σ2 > 0 when its probability density
function is

fµ,σ2 (x) =
1

√
2πσ

exp

(
−

1
2σ2

(x − µ)2
)

A n-dimensional random vector V is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density
function is

fm,R(v) =

1

(2π)
n
2
√

det(R)
exp

(
−

1
2
(v − m)⊤R−1(v − m)

)

Characterization by mean and variance

E.g. for Gaussian variables : µ and σ2 are both parameters of the probability density
function and the mean and variances of it. That is

∫ +∞
−∞ xfµ,σ2 (x)dx = µ and∫ +∞

−∞ (x − µ)2fµ,σ2 (x)dx = σ2
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Gaussian variables and vectors : degenerate cases

A random variable X that is constant equal to µ is said to be a Gaussian variable with
mean µ and variance σ2 = 0

A n-dimensional random vector V is a Gaussian vector with mean vector m and
covariance matrix R when, for any fixed n × 1 vector λ, λ⊤V is a Gaussian variable
with mean λ⊤m and variance λ⊤Rλ

This definition holds whether or not R is invertible

=⇒ All linear combinations of Gaussian vectors are Gaussian variables

When R is not invertible, V is supported on a lower dimensional linear subspace
of Rn
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Gaussian processes

Definition
A stochastic process ξ on X is a Gaussian process when for all x1, ..., xn ∈ X, the
random vector (ξ(x1), ..., ξ(xn)) is a Gaussian vector

Mean and covariance functions

The mean function of a Gaussian process ξ is the function

m : X → R
x 7→ E(ξ(x))

The covariance function of a Gaussian process ξ is the function

k : X× X → R
(x1, x2) 7→ Cov(ξ(x1), ξ(x2))

=⇒ A Gaussian process is characterized by its mean and covariance functions
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Constraints on the covariance function

First, remark that k is symmetric :

k(x1, x2) = Cov(ξ(x1), ξ(x2)) = Cov(ξ(x2), ξ(x1)) = k(x2, x1)

Second, let ξ be a Gaussian process on a set X, with covariance function k
Consider x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R to be fixed
We have

0 ≤ Var

( n∑
i=1

λiξ(xi )

)

=
n∑

i,j=1

λiλj Cov(ξ(xi ), ξ(xj ))

=
n∑

i,j=1

λiλj k(xi , xj )

=⇒Hence a second constraint on k
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Constraints on the covariance function

Symmetric non-negative definite functions

A function h : X× X → R is symmetric non-negative definite (SNND) if

For any x1, x2 ∈ X :
h(x1, x2) = h(x2, x1)

For any x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R :

n∑
i,j=1

λiλj h(xi , xj ) ≥ 0

=⇒Covariance functions are SNND

Alternatively, for any x1, . . . , xn ∈ X, the n × n covariance matrix R = [k(xi , xj )]i,j=1,...,n
of the Gaussian vector (ξ(x1), . . . , ξ(xn)) is symmetric non-negative definite

Hence, covariance functions can also be called

kernels

radial basis functions

non-negative definite functions
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Existence of Gaussian processes

Theorem

Let X be any set

Let m be any function from X to R
Let k be any SNND function from X× X to R

Then there exists a Gaussian process ξ on X with mean function m and covariance
function k

Proof : Kolmogorov extension theorem

Hence
To create a Gaussian process it is sufficient to create a mean and covariance
function
Any function can be a mean function
The crux is thus to create SNND functions

Next :
1 Creation of covariance (SNND) functions and interplay with behavior of the

Gaussian process
2 Given a mean and covariance function −→ conditional distribution of the

Gaussian process given observations
3 Estimating the mean and covariance functions
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1 Overview of the role of Gaussian processes

2 Definition and existence of a Gaussian process

3 The covariance function

4 Conditional distribution given observations

5 Covariance function estimation
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Two extreme covariance functions

Let X be any set

Constant covariance function
Let the function k1 : X× X → R be defined by, for any x1, x2 ∈ X,

k1(x1, x2) = 1

Then k1 is SNND
A Gaussian process ξ with mean zero and covariance function k1 is constant :

for all x ∈ X, ξ(x) = X ,

where X ∼ N (0, 1)

White noise covariance function
Let the function k2 : X× X → R be defined by, for any x1, x2 ∈ X,

k2(x1, x2) = 1{x1=x2}

Then k2 is SNND
A Gaussian process ξ with mean zero and covariance function k2 is composed of
independent Gaussian values
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Covariance functions on Rd

Let X = Rd

Stationarity

A covariance function k is stationary when for any x1, x2 ∈ Rd :

k(x1, x2) = k(x1 − x2)

(slight abuse of notation)

=⇒ The behavior of the corresponding Gaussian process is invariant by translation

Bochner’s theorem
Consider a continuous function k : Rd → R with Fourier transform k̂ , such that the
inverse Fourier relation holds :

for all x ∈ Rd , k(x) =
∫
Rd

k̂(ω)eiω⊤x dω

Then k is SNND if and only if k̂ takes positive values

=⇒ A convenient characterization of stationary covariance functions
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Proof of one implication of Bochner’s theorem

Assume that k̂ takes positive values
For all x1, ..., xn ∈ X, λ1, ..., λn ∈ R :

n∑
i,j=1

λiλj k(xi , xj ) =
n∑

i,j=1

λiλj k(xi − xj )

=
n∑

i,j=1

λiλj

∫
Rd

k̂(ω)eiω⊤(xi−xj )dω

=

∫
Rd

k̂(ω)

 n∑
i,j=1

λiλj eiω⊤xi e−iω⊤xj

 dω

=

∫
Rd

k̂(ω)

 n∑
i,j=1

λi eiω⊤xiλj eiω⊤xj

 dω

=

∫
Rd

k̂(ω)

∣∣∣∣∣
n∑

i=1

λi eiω⊤xi

∣∣∣∣∣
2

dω

≥ 0

Hence k is SNND
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Hence some stationary covariance functions on R

Exponential covariance function

k(x1, x2) = σ2e−|x1−x2|/ℓ

=⇒ parametrized by variance σ2 and correlation length ℓ
(positive Fourier transform)
Square exponential (or Gaussian) covariance function

k(x1, x2) = σ2e−(x1−x2)
2/ℓ2

(positive Fourier transform)
Matérn covariance function

k(x1 − x2) =
σ2

Γ(ν)2ν−1

(
2
√
ν|x1 − x2|
ℓ

)ν

Kν

(
2
√
ν|x1 − x2|
ℓ

)
ν > 0 is called the smoothness parameter
Γ is the Gamma function
Kν is the modified Bessel function of the second kind

The Fourier transform k̂ is of the form, for ω ∈ R,

k̂(ω) =
a

(b + ω2)ν+1/2
≥ 0,

where a ≥ 0 and b > 0 depend on σ2, ℓ, ν but not on ω
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 (ν = 3/2) covariance

function, for a Gaussian process on R,
is parameterized by

A variance parameter σ2 > 0

A correlation length parameter
ℓ > 0

The Matérn formula is simplified to

k(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

ℓ

)
e−

√
6
|x1−x2|

ℓ 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

co
v

l=0.5
l=1
l=2

Interpretation

stationary

σ2 corresponds to the order of magnitude of the functions that are realizations of
the Gaussian process

ℓ corresponds to the speed of variation of the functions that are realizations of the
Gaussian process

François Bachoc Gaussian processes 22 / 65



The Matérn 3
2 covariance function on R : illustration of ℓ

Plot of realizations of a Gaussian process having the Matérn 3
2 covariance function for

σ2 = 1 and various values of ℓ
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ℓ = 0.5 ℓ = 1 ℓ = 2
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Smoothness of the covariance function and Gaussian process

Continuous covariance function =⇒ continuous Gaussian process :

Proposition (see e.g. Adler, 1990)

Let ξ be a Gaussian process on R with mean function 0 and covariance function k
Then

k is continuous (+ mild technical assumptions)

=⇒
The trajectories of ξ are almost surely continuous on R

Smooth covariance function =⇒ smooth Gaussian process :

Proposition (see e.g. Adler, 1990)

Let ξ be a Gaussian process on R with mean function 0 and covariance function k
Then, for r ∈ N,

k is 2r times differentiable (+ mild technical assumptions)

=⇒
The trajectories of ξ are almost surely r times differentiable on R

The covariance function k needs to be twice as much differentiable as ξ, because it
can be shown that, with ξ′ the derivative of ξ,

Cov
(
ξ′(u), ξ′(v)

)
=
∂k(u, v)
∂u∂v
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Using the Fourier transform

Using properties of Fourier transform :

Proposition

Let k be a stationary covariance function with Fourier transform k̂ , such that the
inverse Fourier transform relation holds

for all x ∈ Rd , k(x) =
∫
Rd

k̂(ω)eiω⊤x dω

Then, for r ∈ N,

The Fourier transform k̂ verifies
∫
R ω

2r k̂(ω) < +∞
=⇒

k is 2r times differentiable

Fourier transform decays quickly at infinity =⇒ covariance function is smooth =⇒
Gaussian process is smooth
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Smoothness of the Matérn model

Recalling that the Fourier transform of Matérn is

k̂(ω) =
a

(b + ω2)ν+1/2
≥ 0,

we obtain

Proposition

Let ξ be a Gaussian process on R with mean function 0 and covariance function k of
the Matérn class with parameters σ2 ≥ 0, ℓ > 0 and ν > 0. Then, for r ∈ N,

ν > r

=⇒
The trajectories of ξ are almost surely r times differentiable on R

=⇒ The integer part of ν is the number of derivatives
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Illustration of the impact of ν

Trajectories of Gaussian processes with mean function 0 and Matérn covariance
functions with σ2 = 1, ℓ = 1 and various values of ν
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ν = 1/2 ν = 3/2 ν = 5/2
continuous, not differentiable once differentiable twice differentiable
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Product and mapping of kernels

Proposition (product of SNND functions)

Let k1 and k2 be two SNND functions on X (here can be any space)
Then k1k2 is SNND on X

See e.g. Scholkopf and Smola, 06

Proposition (kernel mapping)

Let k2 be a SNND function on a set X2. Let ϕ : X1 → X2 be any function. Let k1 be
defined on X1 × X1 by, for u, v ∈ X1,

k1(u, v) = k2(ϕ(u), ϕ(v))

Then k1 is SNND

Proof : For x1, . . . , xn ∈ X1 and λ1, . . . , λn ∈ R,

n∑
i,j=1

λiλj k1(xi , xj ) =
n∑

i,j=1

λiλj k2(ϕ(xi ), ϕ(xj ))

≥ 0

since k2 is SNND and ϕ(x1), . . . , ϕ(xn) ∈ X2
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Tensorization to create covariance functions on Rd

Proposition (tensorization)

Let k1, . . . , kd be SNND functions on R. Let k be defined on Rd × Rd as

k(u, v) = k1(u1, v1)× . . .× kd (ud , vd )

for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd .
Then k is SNND

Proof : Application of the two previous propositions with mapping functions ϕ1, . . . , ϕd
with ϕi (x) = xi for x = (x1, . . . , xd ) ∈ Rd
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Standard tensorized covariance functions

The function k defined by, for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd ,

k(u, v) = σ2
d∏

i=1

ψ(|ui − vi |/ℓi )

is
the tensorized exponential covariance function when

ψ(t) = e−t

the tensorized square exponential covariance function when

ψ(t) = e−t2

the tensorized Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

Interpretation of the parameters :
σ2 is the variance and is interpreted as before
For i = 1, . . . , d , ℓi is the correlation length for the variable i
ℓi small means that variable i is important
=⇒ Allows variable ranking and screening

M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa and L. Tomaso, Gaussian
Process based dimension reduction for goal-oriented sequential design,
SIAM/ASA Journal on Uncertainty Quantification, 7(4) (2019) 1369-1397

François Bachoc Gaussian processes 30 / 65



Isotropic covariance functions

We want to create covariance functions on Rd of the form, for x1, x2 ∈ Rd ,

k(x1, x2) = ψ(||x1 − x2||), (1)

with ψ : R+ → R

We have a characterization of the functions ψ for which we obtain an SNND function
for all d ∈ N

Theorem (Shoenberg, 38)

Let k : Rd × Rd → R defined by (1) where ψ is not constant. Then the following
statements are equivalent

1 k is SNND for all d ∈ N
2 ψ is of the form

ψ(t) =
∫ +∞

0
e−ωt2

dµ(ω),

with a non-negative measure µ on R+, not concentrated at 0

3 ψ(
√
.) is completely monotone on [0,∞) and not constant. A function g on [0,∞)

is completely monotone if

(−1)r g(r)(t) ≥ 0 for r ∈ N and t ∈ [0,∞)
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Standard isotropic covariance functions

The function k defined by, for u ∈ Rd and v ∈ Rd ,

k(u, v) = σ2ψ(||u − v ||/ℓ)

is

the isotropic exponential covariance function when

ψ(t) = e−t

the isotropic square exponential covariance function when

ψ(t) = e−t2

the isotropic Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

Interpretation of the parameters :
σ2 is the variance and is interpreted as before

ℓ is the correlation length, controls how fast covariance changes with distance (in
any direction)
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Geometric anisotropy

The function k defined by, for u = (u1, . . . , ud ) ∈ Rd and v = (v1, . . . , vd ) ∈ Rd ,

k(u, v) = σ2ψ


√√√√ d∑

i=1

(ui − vi )2

ℓ2i


is

the geometric anisotropic exponential covariance function when

ψ(t) = e−t

the geometric anisotropic square exponential covariance function when

ψ(t) = e−t2

the geometric anisotropic Matérn covariance function when

ψ(t) =
1

Γ(ν)2ν−1

(
2
√
νt
)ν Kν

(
2
√
νt
)

=⇒ These functions are SNND from the previous results

Interpretation of the parameters :
σ2 is the variance and is interpreted as before
For i = 1, . . . , d , ℓi is the correlation length for the variable i
ℓi small means that variable i is important
=⇒ Allows variable ranking and screening
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Conclusions on covariance functions

Conclusions
Covariance function drives the order of magnitude and speed of variation of the
Gaussian process

On Rd , smooth covariance function =⇒ smooth Gaussian process

Catalog of available SNND functions on Rd

Topics we did not address
Covariance functions for functional or distributional inputs

Covariance functions on character strings

Covariance functions on a manifold (e.g. the sphere in climate sciences)

Covariance functions on neural network architectures

. . .

Next : Conditional distribution given observations (with a fixed given covariance
function)
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1 Overview of the role of Gaussian processes

2 Definition and existence of a Gaussian process

3 The covariance function

4 Conditional distribution given observations

5 Covariance function estimation
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Gaussian conditioning theorem

Theorem
Let (Y 1,Y 2)

⊤ be a (n1 + n2)× 1 Gaussian vector with mean vector (m⊤
1 ,m

⊤
2 )⊤ and

covariance matrix (
R1 R1,2

R⊤
1,2 R2

)
Then, conditionaly on Y 1 = y1, Y 2 is a Gaussian vector with mean

E(Y 2|Y 1 = y1) = m2 + R⊤
1,2R−1

1 (y1 − m1)

and variance
var(Y 2|Y 1 = y1) = R2 − R⊤

1,2R−1
1 R1,2

Illustration
Let (Y1,Y2)

⊤ be a 2 × 1 Gaussian vector with mean vector (µ1, µ2)
⊤ and covariance

matrix (
1 ρ
ρ 1

)
Then

E(Y2|Y1 = y1) = µ2 + ρ(y1 − µ1) and var(Y2|Y1 = y1) = 1 − ρ2
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The case of exact observations

We can obtain exact observations of the function f
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Typical example : f (x) is the result of a deterministic computer experiment with
simulation parameters x
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Reminder of the Bayesian model

It is a function interpolation/approximation problem
Possible methods : polynomial regression, neural networks, splines, RKHS, ...
−→ can provide a deterministic error bound

Gaussian process model : representing the deterministic and unknown function f by a
realization of a Gaussian process.
−→ gives a stochastic error bound
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Bayesian statistics

In statistics, a Bayesian model generally consists in representing a deterministic and
unknown number/vector by the realization of a random variable/vector (the prior)
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Gaussian process prediction

We let ξ be the Gaussian process on X, with mean function m and covariance
function k
ξ is observed at x1, ..., xn ∈ X

Notations

Let Yn = (ξ(x1), ..., ξ(xn))⊤ be the observation vector. It is a Gaussian vector

Let yn = (f (x1), ..., f (xn))⊤ be the observed values

Let mn be the mean vector of Yn : mn = (m(x1), . . . ,m(xn))⊤

Let R be the n × n covariance matrix of Yn : Ri,j = k(xi , xj )

Let x ∈ X be a new input point for the Gaussian process ξ. We want to predict ξ(x)

Let r(x) be the n × 1 covariance vector between Yn and ξ(x) : r(x)i = k(xi , x)

Then the Gaussian conditioning theorem gives the conditional mean function of ξ given
the observed values in Yn :

mn(x) := E(ξ(x)|Yn = yn) = m(x) + r(x)⊤R−1(yn − mn)

We also have the conditional covariance function, for u, v ∈ X :

kn(u, v) := Cov(ξ(u), ξ(v)|Yn = yn) = k(u, v)− r(u)⊤R−1r(v)

=⇒ Conditionally to Yn = yn, ξ is a Gaussian process with mean function mn and
covariance function kn
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Gaussian process prediction : interpretation

Exact interpolation of known values

Assume x = x1. Then, R1,i = k(x1, xi ) = k(x , xi ) = r(x)i . Thus

m(x) + r(x)⊤R−1(yn − mn) = m(x) + r(x)⊤ ×


r(x)⊤

∗
...
∗


−1

×

f (x1)− m(x1)
...

f (xn)− m(xn)



= m(x) + (1, 0, . . . , 0)

 f (x1)− m(x)
...

f (xn)− m(xn)

 = f (x1)

Conservative extrapolation

Let x be far from x1, ..., xn. Then, we generally have r(x)i = k(xi , x) ≈ 0. Thus

mn(x) = m(x) + r(x)⊤R−1(yn − mn) ≈ m(x)

and
kn(x , x) = k(x , x)− r(x)⊤R−1r(x) ≈ k(x , x)

⇒ conservative
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Illustration of Gaussian process prediction

observations
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)
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Illustration of Gaussian process prediction

observations

conditional realizations given Yn = yn

conditional mean mn(x)

95% confidence intervals based on kn(x, x)
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Gaussian process prediction with noisy observations

It can be desirable not to reproduce the
observed values exactly :

when same x can give different
observed values =⇒ common in
machine learning applications

=⇒ E.g. flight delay from flight features

We consider that at x1, ..., xn, we observe

Yn =

ξ(x1)+E1
...

ξ(xn)+En


E1, ..., En are independent and are Gaussian variables, with mean 0 and variance τ2

We let yn be the realization of Yn

yn =

y1
...

yn

 =

f (x1)+ϵ1
...

f (xn)+ϵn


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Gaussian process prediction with noisy observations

Then the Gaussian conditioning theorem still gives the conditional mean of ξ(x) given
the observed values in yn :

mn(x) := E(ξ(x)|Yn = yn) = m(x) + r(x)⊤(R+τ2In)−1(yn − mn)

We also have the conditional covariance, for u, v ∈ X :

kn(u, v) := Cov(ξ(u), ξ(v)|Yn = yn) = k(u, v)− r(u)⊤(R+τ2In)−1r(v)

=⇒ Conditionally to Yn = yn, ξ is a Gaussian process with mean function mn and
covariance function kn
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Illustration of Gaussian process prediction with measure error

observations
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)
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Illustration of Gaussian process prediction with measure error

observations

conditional realizations given Yn = yn

conditional mean x → mn(x)

95% confidence intervals based on kn(x, x)
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Remarks

The conditioning takes the same form, independently of the input space X
The computation cost for an exact implementation is

• O(n2) in storage and O(n3) in computation, once, offline
• O(n2) in computation for each new x , online

Exist various works when n very large
Aggregation of submodels :

B. van Stein, H. Wang, W. Kowalczyk, T, Bäck, and M. Emmerich, Optimally
weighted cluster kriging for big data regression, In International Symposium
on Intelligent Data Analysis, pages 310-321, Springer, 2015

D. Rullière, N. Durrande, F. Bachoc and C. Chevalier, Nested Kriging
predictions for datasets with a large number of observations, Statistics and
Computing, 28(4), 849-867, 2018

Inducing points :

J. Hensman, N. Fusi, N.D. Lawrence, Gaussian Processes for Big Data,
Uncertainty in Artificial Intelligence conference, paper Id 244, 2013

Works well with integrals and derivatives (remains Gaussian)
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Gaussian process classification model

Gaussian process ξ with realization f

Observation points x1, . . . , xn

Observation vector

Yn =

Y1
...

Yn

∈ {0, 1}n

with for i = 1, . . . , n

P(Yi = 1|ξ = f ) =
eαf (xi )

1 + eαf (xi )

α large =⇒ P(Yi = 1) close to 0 or 1 =⇒ Yi almost deterministic given ξ = f
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Conditional distribution

Step 1 : conditional distribution of Gaussian vector given observations
Let

Vn =

ξ(x1)
...

ξ(xn)


Let yn be the observed realization of Yn

Then, conditionally to Yn = yn, Vn has density ϕn given by, for
v = (v1, . . . , vn)⊤ ∈ Rn,

ϕn(v) =(constant not depending on v) ×N (v|mn,R)

×
n∏

i=1

(
1{yi=1}

eαvi

1 + eαvi
+ 1{yi=0}

1
1 + eαvi

)
with

N (v|mn, R) the Gaussian density at v with mean vector mn and covariance matrix R
=⇒ density of Vn

The conditional density ϕn is non-Gaussian
Sampling from ϕn or approximating ϕn is the difficult part
MCMC procedures, Laplace approximation, EM algorithm, ...

H. Nickisch and C. E. Rasmussen, Approximations for binary Gaussian
process classification, Journal of Machine Learning Research, 9 :
2035-2078, 2008

François Bachoc Gaussian processes 53 / 65



Conditional distribution

Step 2 : Classification after Vn is sampled from ϕn
Assumes that vn is a conditional realization of Vn given Yn = yn (density ϕn)

Conditionally to Yn = yn and Vn = vn, ξ is a Gaussian process with mean function
mn (depends on vn) and covariance function kn

Conditionally to Yn = yn and Vn = vn, ξ(x) is Gaussian with mean mn(x)
(depends on vn) and variance kn(x , x)

Consider a new observation Yx ∈ {−1, 1} such that

P(Yx = 1|ξ = f ) =
eαf (x)

1 + eαf (x)

Then, conditionally to Yn = yn and Vn = vn,

P(Yx = 1|Yn = yn,Vn = vn) =

∫ +∞

−∞
N (v |mn(x), kn(x , x))

eαv

1 + eαv
dv

One-dimensional integral can be computed explicitly

Things are again Gaussian and simpler
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An example of purely Monte Carlo classification

Step 1 : obtain N realizations
v(1)

n , . . . , v(N)
n

approximately following the conditional distribution of Vn given Yn = yn
=⇒ Potentially costly MCMC here

Each realization v(i)
n provides a conditional mean function m(i)

n

Step 2 : average classifications

P(Yx = 1|Yn = yn) ≈
1
N

N∑
i=1

∫ +∞

−∞
N (v |m(i)

n (x), kn(x , x))
eαv

1 + eαv
dv

Remarks :
There can be convergence guarantees as N → ∞ and for large MCMC budget

Potentially computationally costly

Approximations in Nickisch and Rasmussen, 2008 are typically faster (but less
guarantees)
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Illustration
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Figure – posterior probabilities of 1

François Bachoc Gaussian processes 56 / 65



1 Overview of the role of Gaussian processes
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3 The covariance function

4 Conditional distribution given observations

5 Covariance function estimation
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Covariance function estimation

Parameterization
Covariance function model

{
σ2cθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian Process ξ

σ2 is the variance parameter

θ is the multidimensional correlation parameter. cθ is a stationary correlation
function

We want to choose the covariance function k of the form σ2cθ
Assume mean function is 0 for simplicity

Estimation
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector Yn = (ξ(x1), ..., ξ(xn))⊤.
Estimators σ̂2(Yn) and θ̂(Yn)

"Plug-in" Gaussian process prediction

1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the conditioning studied
before
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector Yn

Maximum Likelihood
Define Cθ as the correlation matrix of Yn = (ξ(x1), ..., ξ(xn))⊤ under correlation
function cθ .
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Cθ|) +

1
σ2

Y⊤
n C−1

θ Yn

)

Remarks :

Needs to be optimized numerically

Cost O(n3) in time per evaluation of likelihood

Existing work to approximate when n is large, e.g. Gramacy and Apley 2015
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Cross Validation for estimation

m(−i)
n,θ = Eσ2,θ(ξ(xi )|ξ(x1), ..., ξ(xi−1), ξ(xi+1), ..., ξ(xn))

σ2(c(−i)
n,θ )2 = varσ2,θ(ξ(xi )|ξ(x1), ..., ξ(xi−1), ξ(xi+1), ..., ξ(xn))

Leave one out estimation

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(ξ(xi )− m(−i)
n,θ )2

and

1
n

n∑
i=1

(ξ(xi )− m(−i)
n,θ̂CV

)2

σ̂2
CV (c

(−i)
n,θ̂CV

)2
= 1 ⇔ σ̂2

CV =
1
n

n∑
i=1

(ξ(xi )− m(−i)
n,θ̂CV

)2

(c(−i)
n,θ̂CV

)2
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Virtual Leave One Out formula

Let Cθ be the correlation matrix of Yn = (ξ(x1), ..., ξ(xn))⊤ with correlation function cθ

Virtual Leave-One-Out

ξ(xi )− m(−i)
n,θ =

(
C−1
θ Yn

)
i(

C−1
θ

)
i,i

and (c(−i)
n,θ )2 =

1

(C−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical
Geology, 1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

Y⊤
n C−1

θ diag(C−1
θ )−2C−1

θ Yn

and
σ̂2

CV =
1
n

Y⊤
n C−1

θ̂CV
diag(C−1

θ̂CV
)−1C−1

θ̂CV
Yn
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Some references on covariance function estimation

Practical aspects of cross validation

F. Bachoc, Cross Validation and Maximum Likelihood estimation of
hyper-parameters of Gaussian processes with model misspecification,
Computational Statistics and Data Analysis, 66 55-69, 2013

H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data,
Environmetrics, 21(3/4) :290-304, 2010

Theory on maximum likelihood and cross validation

F. Bachoc, Asymptotic analysis of covariance parameter estimation for
Gaussian processes in the misspecified case, Bernoulli, 24(2), 1531-1575,
2018

C.G. Kaufman and B. A. Shaby, The role of the range parameter for
estimation and prediction in geostatistics, Biometrika, 100(2), 473-484, 2013
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General conclusions

Gaussian processes can be defined on any space X, by using suitable covariance
functions

Setting of direct observations is favorable for conditioning =⇒ benefit of Gaussian
processes

Indirect observations (e.g. Gaussian process classification) are computationally
more challenging.

But the Gaussian process still brings simplifications

Gaussian variables, vectors and processes come with many existing theoretical
results =⇒ Gaussian processes are also a convenient theoretical framework

Gaussian processes can be used as elementary bricks to construct more complex
stochastic processes
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Thank you for your attention !
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