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Ouitline of the course

Overview of the role of Gaussian processes

Definition and existence of a Gaussian process

The covariance function

Conditional distribution given observations

Covariance function estimation
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Gaussian processes in different fields

Gaussian processes are studied in different fields :

geostatistics computer experiments machine learning

Temperaturs

Stein, 99 Santner et al, 03 Rasmussen and Williams, 06

Common ground but also
m Different type of data
m Different algorithms
m Different theoretical focus
m Different vocabulary
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Canonical goal : learning an unknown function

We are interested in learning a fixed unknown function

f:X—>R
x — f(x)

m X : input space (no assumption so far)
m X :input parameter
m f(x) : quantity of interest

The function f is a black box
— Only available through observations
= No or few a priori information available

Examples :
m Geostatistics : x is a two-dimensional position and f(x) is a pollutant concentration
m Computer experiments : x is a simulation parameter and f(x) is a simulation result
m Machine learning : x is a set of flight features and f(x) is a delay time
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Various types of observations of f

Regression
m Exact observations : We observe f(x1), ..., f(xn)

m Noisy observations : We observe f(x1) + €1, ..., f(Xn) + €n
f can be interpreted as a conditional expectation

Binary classification
e We observe Yi,..., Ypwhere,fori=1,...,n, Y; € {0,1} and

B(Y; = 1) = 6(f(x)),

with ¢ strictly increasing from (—oo, c0) to (0, 1)
E.g. logistic function ¢(t) = e'/(1 + €')

And more : multiclass classification, f gives the intensity of a point process,...
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The role of Gaussian processes

The previous types of observations can be tackled by several statistics or machine
learning algorithms

m Kernel smoothing
m Random forests
m Neural networks
® and many more

Gaussian processes also tackle these types of observations and are based on a
Bayesian prior on the function f
= Hence they provide an important benefit for uncertainty quantification
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Gaussian processes as Bayesian prior

Modeling the black box function f as a single realization of a Gaussian process
X — &(x) on the domain X

> O A

fl\l 4
2 1 0 1 2
X
Usefulness

Using the conditional distribution of &, given the observations, to learn f
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A quick summary

Gaussian processes provide a Bayesian prior over unknown functions, that enables to
address various machine learning problems, with the benefit of uncertainty
quantification
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Overview of the role of Gaussian processes

Definition and existence of a Gaussian process

The covariance function

Conditional distribution given observations

Covariance function estimation



Stochastic processes

A stochastic process on X is a function 4
& : X — R such that £(x) is a random of
variable for all x € X. WERLLN
Alternatively a stochastic process is a -
function on X that is random

Probability space

We explicit the randomness of £(x) by writing it £(w, x) with w in a probability space .
For a given wg, we call the function x — &(wp, X) a realization of the stochastic process

.:> The probability space Q is the same for all £(w, x) with x € X
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Gaussian variables and vectors

A random variable X on R is a Gaussian
variable with mean p € R and variance
o2 > 0 when its probability density
function is

1 1
f X) = — ——(x —p)?
1,02 (X) o &P ( 552 (X —H) )
A n-dimensional random vector V is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density

function is S

7 NN
st
- -

fm,R(V) =
1

(2r)2 \/det(R)
Characterization by mean and variance

E.g. for Gaussian variables : 1 and o2 are both parameters of the probability density
function and the mean and variances of it. That is f_*;’j xf, ,2(X)dx = pand

JIZ(x = w)?f, 2 (x)dx = o2

exp (,%(V, m)TR (v — m))
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Gaussian variables and vectors : degenerate cases

A random variable X that is constant equal to u is said to be a Gaussian variable with
mean p and variance o2 = 0

A n-dimensional random vector V is a Gaussian vector with mean vector m and
covariance matrix R when, for any fixed n x 1 vector A, AT V is a Gaussian variable
with mean AT m and variance AT RA

m This definition holds whether or not R is invertible
— All linear combinations of Gaussian vectors are Gaussian variables

m When R is not invertible, V is supported on a lower dimensional linear subspace
of R"
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Gaussian processes

Definition
A stochastic process £ on X is a Gaussian process when for all x, ..., Xp € X, the
random vector (£(x1), ..., €(xn)) is a Gaussian vector

Mean and covariance functions

m The mean function of a Gaussian process ¢ is the function

m: X — R
x — E(§(x))

m The covariance function of a Gaussian process ¢ is the function

k:XxX—=R
(X1, x2) = Cov(§(x1),&(x2))

— A Gaussian process is characterized by its mean and covariance functions
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Constraints on the covariance function

First, remark that k is symmetric :

k(x1,x2) = Cov(&(x1),€(x2)) = Cov(&(X2), &(x1)) = k(x2,x1)

Second, let £ be a Gaussian process on a set X, with covariance function k

Consider xq,...,xp € Xand A\, ..., A\np € R to be fixed
We have

0 < Var (2”: A/E(Xf)>

i=1

= > i Cov(&(x), £(x))

ij=1

n
= ANk (xi, %)

i,j=1

—>Hence a second constraint on k
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Constraints on the covariance function

Symmetric non-negative definite functions

A function h : X x X — R is symmetric non-negative definite (SNND) if

m Forany x1,x € X:
h(x1, X2) = h(x2, x1)

m Forany xq,...,xn € Xand \{,..., \p eR:
n
Z )\,‘)\/h(X,', X/') >0
i,j=1
—Covariance functions are SNND

Alternatively, for any x4, ..., xn € X, the n x n covariance matrix R = [K(x;, X;)]i j=1,....n
of the Gaussian vector (£(xy), ..., &(xn)) is symmetric non-negative definite
Hence, covariance functions can also be called

m kernels

m radial basis functions

B non-negative definite functions
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Existence of Gaussian processes

m Let X be any set

m Let m be any function from X to R

m Let k be any SNND function from X x X to R
Then there exists a Gaussian process ¢ on X with mean function m and covariance
function k

Proof : Kolmogorov extension theorem O

Hence

m To create a Gaussian process it is sufficient to create a mean and covariance
function

m Any function can be a mean function
m The crux is thus to create SNND functions

Next :

Creation of covariance (SNND) functions and interplay with behavior of the
Gaussian process

Given a mean and covariance function — conditional distribution of the
Gaussian process given observations

Estimating the mean and covariance functions
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Overview of the role of Gaussian processes

Definition and existence of a Gaussian process

The covariance function

Conditional distribution given observations

Covariance function estimation



Two extreme covariance functions

Let X be any set

Constant covariance function

Let the function k; : X x X — R be defined by, for any xq, x» € X,
ki(xq,%2) =1

Then ky is SNND
A Gaussian process £ with mean zero and covariance function kj is constant :

forall x € X, £(x) = X,
where X ~ N(0, 1)

White noise covariance function

Let the function k> : X x X — R be defined by, for any xq, x» € X,

ka(x1, X2) = 1 =xy}

Then k, is SNND
A Gaussian process £ with mean zero and covariance function ko is composed of
independent Gaussian values
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Covariance functions on R?

Let X = RY

Stationarity

A covariance function k is stationary when for any xq, x, € R :
k(x1,%2) = k(X1 — X2)
(slight abuse of notation)

— The behavior of the corresponding Gaussian process is invariant by translation

Bochner’s theorem

Consider a continuous function k : R — R with Fourier transform k, such that the
inverse Fourier relation holds :

for all x € RY, k(x) :/ k(w)e *dw
R

Then k is SNND if and only if k takes positive values

— A convenient characterization of stationary covariance functions
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Proof of one implication of Bochner’s theorem

Assume that k takes positive values
Forall xq,....,.xn € X, A\1,.., An E R :

n n
> NN X)) =D NN (X — X;)

ij=1 ij=1

n
= Z )\,‘/\j/ R(w)ein(x,—x/)dw
Rd

ij=1

T . iw X a—iw | X
:/de(w) (ZA,Aje YieT X | dw

i,j=1

n
N T T x
= k(w A Xixew N | dw
[k )(,.; Y >

AL

n T
Z )\ieiw Xj
i=1

2
dw

>0

Hence k is SNND
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Hence some stationary covariance functions on R

m Exponential covariance function
k(xi,xp) = oPePil/t

— parametrized by variance o2 and correlation length ¢
(positive Fourier transform)

m Square exponential (or Gaussian) covariance function
2 /92
k(X17X2) :UZe—(X1—X2) /L

(positive Fourier transform)
m Matérn covariance function

_ 2\/v|x1 — X VK 2yv[x1 — xo
T r(v)2v-T ‘ v ¢

k(x1 — x2)

m v > 0is called the smoothness parameter
m [ is the Gamma function
m K, is the modified Bessel function of the second kind

The Fourier transform k is of the form, for w € R,
~ a

k(w) = (b+w2)u+1/2 >0,

where a > 0 and b > 0 depend on o2, £, v but not on w
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Example of the Matérn g covariance function on R

The Matém 2 (v = 3/2) covariance
function, for a Gaussian process on R,
is parameterized by

m A variance parameter o2 > 0

m A correlation length parameter
£>0

The Matérn formula is simplified to

1.0
L

0.8
L

cov
04 06
L L

0.2
L

0

X1 — X X —xo| 24
k(X1,X2):o‘2 (1 +\/§¥) ei\/é 1[. 2 3 T 3 3 7

Interpretation

m stationary

m o2 corresponds to the order of magnitude of the functions that are realizations of
the Gaussian process

m ¢ corresponds to the speed of variation of the functions that are realizations of the
Gaussian process
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The Matérn % covariance function on R : illustration of ¢

Plot of realizations of a Gaussian process having the Matérn % covariance function for
o2 = 1 and various values of ¢
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Smoothness of the covariance function and Gaussian process

Continuous covariance function = continuous Gaussian process :

Proposition (see e.g. Adler, 1990)

Let £ be a Gaussian process on R with mean function 0 and covariance function k
Then

B K is continuous (+ mild technical assumptions)
=
m The trajectories of ¢ are almost surely continuous on R

Smooth covariance function = smooth Gaussian process :

Proposition (see e.g. Adler, 1990)

Let £ be a Gaussian process on R with mean function 0 and covariance function k
Then, for r € N,

m K is 2r times differentiable (+ mild technical assumptions)
=
m The trajectories of £ are almost surely r times differentiable on R

The covariance function k needs to be twice as much differentiable as &, because it
can be shown that, with £’ the derivative of &,

Cov (€/(u)€(v)) = 2 1)
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Using the Fourier transform

Using properties of Fourier transform :

Let k be a stationary covariance function with Fourier transform k, such that the
inverse Fourier transform relation holds

for all x € RY, k(x) = /d k(w)e® *dw
R

Then, for r € N,

m The Fourier transform k verifies Jz w2 k(w) < +oo
—

B k is 2r times differentiable

Fourier transform decays quickly at infinity = covariance function is smooth —-
Gaussian process is smooth
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Smoothness of the Matérn model

Recalling that the Fourier transform of Matérn is

a

>0,

we obtain

Proposition

Let £ be a Gaussian process on R with mean function 0 and covariance function k of
the Matérn class with parameters 2 > 0, ¢ > 0 and v > 0. Then, for r € N,

mv>r
=
m The trajectories of ¢ are almost surely r times differentiable on R

— The integer part of v is the number of derivatives
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lllustration of the impact of v

Trajectories of Gaussian processes with mean function 0 and Matérn covariance
functions with 02 = 1, ¢ = 1 and various values of v

-2

v=>5/2
twice differentiable

v=1/2 v=3/2
continuous, not differentiable once differentiable
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Product and mapping of kernels

Proposition (product of SNND functions)

Let k1 and k» be two SNND functions on X (here can be any space)
Then ki ko is SNND on X

See e.g. Scholkopf and Smola, 06

Proposition (kernel mapping)

Let k» be a SNND function on a set X,. Let ¢ : Xy — X5 be any function. Let ky be
defined on Xy x Xy by, for u, v € Xy,

k1 (U, V) = k2(¢(U),¢(V))
Then ky is SNND
Proof : For xy,...,xn € Xy and A\1,...,Ap € R,

Z )\,‘)\jk1 (X,‘7 X]) = Z )\i)\jk2(¢(xi): d)(xj))

= =
>0

since kp is SNND and ¢(x1), ..., ¢(xn) € Xo O
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Tensorization to create covariance functions on R¢

Proposition (tensorization)
Let k1, ..., kg be SNND functions on R. Let k be defined on RY x R? as

k(u7 V) = ky (U1,V1) X... X kd(ud7 Vd)

foru= (uq,...,ug) €ERYand v = (vy,...,vy) € RY.

Then k is SNND

Proof : Application of the two previous propositions with mapping functions ¢4, . .., ¢g
with ¢;(x) = x; for x = (x1,..., xq) € R? O
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Standard tensorized covariance functions

The function k defined by, for u = (uy,...,ug) € R%and v = (v, ..., v4) € RY,
d

k(u,v) = o? [T wlui — vil /1)
i=1
is
m the tensorized exponential covariance function when

P(t)y=e"

m the tensorized square exponential covariance function when

p()=e
m the tensorized Matérn covariance function when
1 v
P(t) = O] (2vrt)” K, (2v/vt)
Interpretation of the parameters :
m o2 is the variance and is interpreted as before
m Fori=1,...,d,¢;is the correlation length for the variable i
m /; small means that variable / is important
— Allows variable ranking and screening

@ M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa and L. Tomaso, Gaussian
Process based dimension reduction for goal-oriented sequential design,
SIAM/ASA Journal on Uncertainty Quantification, 7(4) (2019) 1369-1397
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Isotropic covariance functions

We want to create covariance functions on R? of the form, for x1, x» € R,
k(x1,%2) = ¥(|Ix1 — x2|]), 1
with o : Rt > R

We have a characterization of the functions v for which we obtain an SNND function
foralld e N

Theorem (Shoenberg, 38)

Let k : RY x RY — R defined by (1) where 1 is not constant. Then the following
statements are equivalent

k is SNND for all d € N
1 is of the form

+o0
w(t) = /O e~ dju(w),

with a non-negative measure p on R, not concentrated at 0

¥(,/-) is completely monotone on [0, co) and not constant. A function g on [0, co)
is completely monotone if

(=1)'g"(t) >0 forreNandt e [0,occ)
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Standard isotropic covariance functions

The function k defined by, for u € R and v € RY,
k(u, v) = o®y(||u— v||/0)
is
m the isotropic exponential covariance function when

m the isotropic Matérn covariance function when

Y(t) = W (2vrt)” K, (2v/vt)

Interpretation of the parameters :
m o2 is the variance and is interpreted as before

m /is the correlation length, controls how fast covariance changes with distance (in
any direction)
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Geometric anisotropy

The function k defined by, for u = (uy,...,ug) € R%and v = (v, ..., v4) € RY,

k(u,v) = 024 ( Z V’)Z)

i=

is
m the geometric anisotropic exponential covariance function when
Y(t)=e"
m the geometric anisotropic square exponential covariance function when
w(t) = e

m the geometric anisotropic Matérn covariance function when

WV;T (2vit)” K, (2vt)

— These functions are SNND from the previous results

P(t) =

Interpretation of the parameters :
m o2 is the variance and is interpreted as before
m Fori=1,...,d, ¢ is the correlation length for the variable i
m /; small means that variable / is important
— Allows variable ranking and screening
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Conclusions on covariance functions

Conclusions

m Covariance function drives the order of magnitude and speed of variation of the
Gaussian process

m On RY, smooth covariance function = smooth Gaussian process
m Catalog of available SNND functions on R¢

Topics we did not address
m Covariance functions for functional or distributional inputs
m Covariance functions on character strings
m Covariance functions on a manifold (e.g. the sphere in climate sciences)
m Covariance functions on neural network architectures
m ...

Next : Conditional distribution given observations (with a fixed given covariance
function)
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Overview of the role of Gaussian processes

Definition and existence of a Gaussian process

The covariance function

Conditional distribution given observations

Covariance function estimation



Gaussian conditioning theorem

Theorem
Let (Y1, Y2)T be a (ny + np) x 1 Gaussian vector with mean vector (m],m; )T and

covariance matrix
R1’2 R>

Then, conditionaly on Y4 = y4, Y» is a Gaussian vector with mean
E(Y2|Y1=y;) =my+ R{,R; ' (y; — my)
and variance

var(Yz|Y1 =y;) = R — R{ ;R 'Ry >

Illustration

Let (Ys, Y2) T be a2 x 1 Gaussian vector with mean vector (i1, u2) T and covariance
matrix
1 p
( p 1 )

E(Yz|Y1 = y1) = 2+ p(y1 — 1) and var(Ya|Ys = y1) =1 —p°

Then
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The case of exact observations

We can obtain exact observations of the function f

Typical example : f(x) is the result of a deterministic computer experiment with
simulation parameters x
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Reminder of the Bayesian model

It is a function interpolation/approximation problem
Possible methods : polynomial regression, neural networks, splines, RKHS; ...

— can provide a deterministic error bound

Gaussian process model : representing the deterministic and unknown function f by a
realization of a Gaussian process.
— gives a stochastic error bound

Bayesian statistics

In statistics, a Bayesian model generally consists in representing a deterministic and
unknown number/vector by the realization of a random variable/vector (the prior)

Francois Bachoc Gaussian processes 38/65



Gaussian process prediction

m We let ¢ be the Gaussian process on X, with mean function m and covariance
function k

m ¢ is observed at xq,...,xp € X

m Let Y, = (£(xq),...,£(xn)) T be the observation vector. It is a Gaussian vector

m Lety, = (f(xy), ..., f(xn)) " be the observed values

m Let m, be the mean vector of Y, : mp = (m(xy), ..., m(xn)) "

m Let R be the n x n covariance matrix of Y, : R; j = k(x;, X;)

m Let x € X be a new input point for the Gaussian process £. We want to predict £(x)
m Let r(x) be the n x 1 covariance vector between Y, and &(x) : r(x); = k(x;, x)

Then the Gaussian conditioning theorem gives the conditional mean function of £ given
the observed values in Yy, :

Mn(x) := B(E(X)|Yn = Yn) = m(x) +1(x) "R (yn — mp)
We also have the conditional covariance function, for u,v € X :
kn(u, v) := Cov(€(u),£(V)|Yn = Yn) = k(u, V) —r(u) TR~ 'r(v)

— Conditionally to Y, = yp, £ is a Gaussian process with mean function m, and
covariance function kp

Francois Bachoc Gaussian processes 39/65



Gaussian process prediction : interpretation

Exact interpolation of known values

Assume x = xq. Then, Ry ; = k(xq,X;) = k(x, X;) = r(x);. Thus

—1

rT () — m(x)
m(x) +r(x) TR™'(yn —mp) = m(x) +r(x)"T x i X
: f(xn) — m(xn)
f(x1) — m(x)
— m(x) +(1,0,...,0) : — f(x1)

() — m(xm)

Conservative extrapolation
Let x be far from xq, ..., Xa. Then, we generally have r(x); = k(x;, x) ~ 0. Thus
mn(x) = m(x) +r(x) TR~ (yn — mp) = m(x)

and
kn(x, x) = k(x,x) — r(x) TR~ Tr(x) ~ k(x, x)

= conservative
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lllustration of Gaussian process prediction

Processus Gaussien conditionné

20

15—

10—

-0.5—

observations

08 0.7 0.8

10
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lllustration of Gaussian process prediction

Processus Gaussien conditionné
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lllustration of Gaussian process prediction

Processus Gaussien conditionné

observations

conditional realizations given Y, =y,

conditional mean x — mp(x)
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lllustration of Gaussian process prediction

Processus Gaussien conditionné

conditional realizations given Y, =y,

conditional mean mju(x)
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Gaussian process prediction with noisy observations

It can be desirable not to reproduce the
observed values exactly :
m when same x can give different iz
observed values = common in
machine learning applications .

— E.g. flight delay from flight features

We consider that at x4, ..., X5, We observe

E(x1)+Ex
Y, = :

&(xn)+En

&1, ..., En are independent and are Gaussian variables, with mean 0 and variance 72
m We let y, be the realization of Y,

2 f(x1)+eq

Yn f(Xn)+en
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Gaussian process prediction with noisy observations

Then the Gaussian conditioning theorem still gives the conditional mean of £(x) given
the observed values in yp, :

Ma(x) :=E(&(x)[Yn = ¥n) = m(x) + 1(x) T (R+7°10) " (yn — mn)
We also have the conditional covariance, for u, v € X :
kn(u, v) := Cov(§(u), E(V)|Yn = Yn) = K(u, v) — r(u) T (R+721n) " "r(v)

— Conditionally to Y, = yp, £ is a Gaussian process with mean function m, and
covariance function kn
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lllustration of Gaussian process prediction with measure error

20

0.5

0.0

observations *

05 %

0.0 o1 0.z 0.3 0.4 05 0.6 07 2R 0g 1.0
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lllustration of Gaussian process prediction with measure error

20

7" observations

conditional realizations given Y, =y,

T T T T T T T T T
0.0 o1 0.z 0.3 0.4 05 0.6 07 2R 0g 1.0
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lllustration of Gaussian process prediction with measure error

20

observations

conditional realizations given Y, =y,

conditional mean x — mp(x)

-1.0 T T T T T T T T T T 1
0.0 o1 0.z 0.3 0.4 05 0.6 07 2R 0g 1.0
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lllustration of Gaussian process prediction with measure error

20
157
1.0
0.5
0.0
observations
05 - ) . .
conditional realizations given Y, =y,
1.0 conditional mean x — mp(x)
15 T T T T T T T T T
(s Xs) 0.1 02 03 04 05 086 07 oe 0e 1.0
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Remarks

m The conditioning takes the same form, independently of the input space X
m The computation cost for an exact implementation is
e O(n?) in storage and O(n®) in computation, once, offline
e O(n?) in computation for each new x, online
m Exist various works when n very large
Aggregation of submodels :

@ B. van Stein, H. Wang, W. Kowalczyk, T, Back, and M. Emmerich, Optimally
weighted cluster kriging for big data regression, In International Symposium
on Intelligent Data Analysis, pages 310-321, Springer, 2015

@ D. Rulliere, N. Durrande, F. Bachoc and C. Chevalier, Nested Kriging
predictions for datasets with a large number of observations, Statistics and
Computing, 28(4), 849-867, 2018

Inducing points :

@ J. Hensman, N. Fusi, N.D. Lawrence, Gaussian Processes for Big Data,
Uncertainty in Atrtificial Intelligence conference, paper Id 244, 2013

m Works well with integrals and derivatives (remains Gaussian)
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Gaussian process classification model

m Gaussian process ¢ with realization f
m Observation points xq, ..., Xn
m Observation vector

Y
Yo=]| : | €{0,1}"
Yo
withfori=1,...,n
eaf(x;)
P(W=1|§=f):m

m o large = P(Y; = 1) close to 0 or 1 = Y; almost deterministic given ¢ = f
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Conditional distribution

Step 1 : conditional distribution of Gaussian vector given observations
m Let

&(x1)

Vp = :

&(xn)

m Let y, be the observed realization of Y,

m Then, conditionally to Y, = yn, Vs has density ¢, given by, for
v=(v{,...,vn) ER",

¢n(V) =(constant not depending on v) x N(v|mp, R)

n av;
exVi 1
<] (1{y,:1}7a 0y )
Pl 14 exVi 14+ eV

with
® N(v|m,, R) the Gaussian density at v with mean vector m, and covariance matrix R
— density of V,

m The conditional density ¢n is non-Gaussian
m Sampling from ¢, or approximating ¢n is the difficult part
m MCMC procedures, Laplace approximation, EM algorithm, ...
@ H. Nickisch and C. E. Rasmussen, Approximations for binary Gaussian

process classification, Journal of Machine Learning Research, 9 :
2035-2078, 2008
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Conditional distribution

Step 2 : Classification after V, is sampled from ¢,
Assumes that v, is a conditional realization of V, given Y, = y, (density ¢n)

m Conditionally to Y, = yn and V, = vp, £ is a Gaussian process with mean function
mp (depends on vj) and covariance function kp

m Conditionally to Y, = yn and V, = v, £(x) is Gaussian with mean mn(x)
(depends on vj) and variance kn(x, x)

m Consider a new observation Yy € {—1,1} such that

eaf(x)

P =16=1= e

m Then, conditionally to Y, = yn, and Vp = vp,
oV

+oo eav
P(Yx = 1¥n = Y, Vo = Vo) = / NImn(0), Ko ) 1oy v

m One-dimensional integral can be computed explicitly
m Things are again Gaussian and simpler
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An example of purely Monte Carlo classification

m Step 1 : obtain N realizations
v vV
n s > ¥n

approximately following the conditional distribution of V,, given Y, =y,
—> Potentially costly MCMC here

m Each realization v(n/) provides a conditional mean function m(n’)
m Step 2 : average classifications

1 N +o00o 0 ex
B(Ye = 1¥n = yo) ~ 1 Z/ NI (0. (. 30) - dv
j=1"Y

Remarks :

m There can be convergence guarantees as N — oo and for large MCMC budget
m Potentially computationally costly

m Approximations in Nickisch and Rasmussen, 2008 are typically faster (but less
guarantees)
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Illustration
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Figure — posterior probabilities of 1
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Covariance function estimation

Parameterization

Covariance function model {0209, 62>0,0¢ e} for the Gaussian Process &
m o2 is the variance parameter

m 0 is the multidimensional correlation parameter. ¢y is a stationary correlation
function

m We want to choose the covariance function k of the form o2¢,
m Assume mean function is 0 for simplicity

Estimation

€ is observed at xq, ..., Xn € X, yielding the Gaussian vector Y, = (£(X1), ..., £(Xn)) .
Estimators 2(Y,) and 4(Y5)

"Plug-in" Gaussian process prediction

1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the conditioning studied
before
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector Y,

Maximum Likelihood

Define Cy as the correlation matrix of Y, = (£(xq), ..., £(xa)) T under correlation
function cy.
The Maximum Likelihood estimator of (o2, §) is

. 1 1
(6%,0m) € argmin — (In(|0209|)+—2Y;,ng1Yn)
2>0,0c0 1 o

Remarks :
m Needs to be optimized numerically
m Cost O(n®) in time per evaluation of likelihood
m Existing work to approximate when n is large, e.g. Gramacy and Apley 2015
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Cross Validation for estimation

m ) = By g (EO0IEC)s oes E(X1—1), E(Xi41), e (X))
m o2(cl )2 = var,z o (E09)[€(x), -

7£(Xi71 ),5(X,‘+1), "'7£(Xn))

Leave one out estimation

n
Ocy € argmin Z(ﬁ(xi) - mg}:))z
0cO =1

and

n (60q) —mt ) ¥
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Virtual Leave One Out formula

Let Cy be the correlation matrix of Y, = (£(xq), ...,£(xa)) T with correlation function ¢y

Virtual Leave-One-Out

c;'Y,) ,
(), g =
o Jii

(c:"),,

@ O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical
Geology, 19883.

£(x) —mSy) =

Using the virtual Cross Validation formula :
N 1 . _ -
fcv € argmin —Y, C; " diag(C, ') ~2C,; 'Y,
oco N

and :
2 Tt g —1 y—1pa—1
by = nY" Cécv d/ag(CéCV) Céchn
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Some references on covariance function estimation

m Practical aspects of cross validation

@ F. Bachoc, Cross Validation and Maximum Likelihood estimation of
hyper-parameters of Gaussian processes with model misspecification,
Computational Statistics and Data Analysis, 66 55-69, 2013

ﬁ H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data,
Environmetrics, 21(3/4) :290-304, 2010

m Theory on maximum likelihood and cross validation

@ F. Bachoc, Asymptotic analysis of covariance parameter estimation for
Gaussian processes in the misspecified case, Bernoulli, 24(2), 1531-1575,
2018

ﬁ C.G. Kaufman and B. A. Shaby, The role of the range parameter for
estimation and prediction in geostatistics, Biometrika, 100(2), 473-484, 2013
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General conclusions

Gaussian processes can be defined on any space X, by using suitable covariance
functions

m Setting of direct observations is favorable for conditioning => benefit of Gaussian
processes

m Indirect observations (e.g. Gaussian process classification) are computationally
more challenging.

m But the Gaussian process still brings simplifications

m Gaussian variables, vectors and processes come with many existing theoretical
results = Gaussian processes are also a convenient theoretical framework

m Gaussian processes can be used as elementary bricks to construct more complex
stochastic processes
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Thank you for your attention!
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