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What are detectors?



Detectors at the LHC

E(n̂) = lim
r→∞

∫ ∞

0

dtr2niT0i(t, rn̂) .

[Basham Brown Ellis Love, Korchemsky Sterman]



Detectors are light-ray operators
Energy detector E(n̂) = L[T ](∞, z), z = (1, n̂) in a one-point event
shape [EHT ’19]
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Event shapes, energy-energy correlators

〈BH BH|E(n̂1)E(n̂2)|BH BH〉
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General detectors
More general detectors are fuzzier, measuring nontrivial angular
distributions.

I +

I −

i+

i−

i0



What is the space of detectors?



What are allowable asymptotic measurements?



What is the “space” of detectors in a theory (CFT)?

Detectors ⇔ what we can measure in a cross section.

Theory dependent!

C.f. bare local operator O0(x): “measure at a point”

⇒ renormalize: “good” operator OR(x) = ZO0(x).

e.g. φ2(x) in Wilson-Fisher theory.

Similarly, detectors D0 suffer from IR divergences

⇒ renormalize detectors: DR = ZD0
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On hammers and cameras

=
∑

i

hiOi =
∑

j

cjDj

experiment vs dynamics



No hammers just cameras in gravity



O vs D

local operator O detector D
“measure at a point” “measure in cross-sections”

QFT: X GR: X QFT: X GR: X
UV divergence IR divergence

need to renormalize need to renormalize
theory-dependent theory-dependent

OPE light-ray OPE
radial quantization ?



Some simple detectors

EJ(n̂), n̂ ∈ Sd−2

Free massless theory: counts particles propagating along n̂, weighted by
EJ−1.

Turn on interactions: J 6= 2 is not IR safe!

E is conserved. E# not due to soft and collinear radiation.

Renormalize to obtain good detectors.
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Detectors in free massless scalar theory

Leading twist trajectory in free theory given by “EJ−1” detectors:

L[T ](n̂) = E2(n̂) ∝
∫ ∞

0

dE Ed−2a†(En̂)a(En̂)

OJ(n̂) = EJ(n̂) ∝
∫ ∞

0

dE EJ+d−4a†(En̂)a(En̂)

For J ∈ 2Z≥0,

EJ =

∫

null line

OJ

where OJ = φ∂µ1 · · · ∂µJφ.

⇒ γEJ ∼ γOJ

More generally, EJ makes sense as a “light-ray operator” of the leading
twist Regge trajectory. In particular, not

∫
null line

O for some O.



Regge trajectories and the Chew-Frautschi plot

J
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Local operators do not make sense at continuous J . Trajectories are
light-ray operators O±i,J . [Kravchuk Simmons-Duffin ’18]

Today: What does this plot look like in perturbative quantum gravity?
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Some questions on detectors in quantum gravity

1. What is the spectrum of asymptotic detector operators in quantum
gravity?

2. What are the dynamics of asymptotic states and detector operators
in quantum gravity?

3. What is the detector OPE in quantum gravity?

4. What is the interplay of asymptotic symmetries with detector
operators?

We begin with a few humble first steps.

Need to compute accessibles observables to address these questions.

⇒ Detector event shapes.
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Suitable observables: event shapes

In order to understand detector operators and extract physics, we need to
study their correlation functions inside suitable states: event shapes

〈Ψ|D · · · D|Ψ〉 .

Energy correlators have been very useful in extracting interesting physics
from collider experiments, e.g. extraction of αs from the EEC at LHC
[CMS ’23].

What can the EEC and other event shapes teach us in gravitational
theories?
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Event shapes in gravity: classical and quantum

Recently, classical parts of event shapes in gravity have been studied, via
soft limits [Gonzo Pokraka ’20]. They have also computed the factorizing
piece 〈E〉2 of the EEC in gravity. This does not include the correlations
between detectors: “〈E2〉 − 〈E〉2”.

Detector one-point functions are very useful and natural observables. For
example, LIGO measurements of gravitational waves can be thought of
as one-point event shapes

〈LIGO detector〉 ∼ gravitational waveform ∼ 〈
∫
dαeiωα∂vhij〉 .

A lot of interesting work in computing waveforms and other classical
observables [Kosower Maybee O’Connell ’18, . . . ].

Focus has been on properties of states rather than of detectors. We
propose the reverse. Compute quantum correlations of detectors in
simple states and extract properties of detectors.
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Plan

• Review detectors / light-ray operators in QFT.

• Construct some simple detectors in gravity.

• Reformulate computation of detector event shapes in perturbation
theory from underlying scattering amplitudes.

• Compute EEC (and more) in perturbative quantum gravity.

• More in progress!



Results

• EEC in gravity to leading nontrivial order in GN .

• Collinear DDC in gravity to leading nontrivial order in GN .

In progress:

• Collinear EEEC in gravity to leading nontrivial order in GN .

• Energy correlators in supergravity.

• Loop corrections and detector renormalization in
gravity/supergravity.



Review: Detectors in QFT



Detectors in free (perturbative) massless scalar theory

Expected structure:
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Features: Diagonal trajectories, shadow symmetry, intersections, and
horizontal trajectories.
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Review: Light-transform

Introduce polarizations,

O(x, z) ≡ Oµ1···µJ (x)zµ1 · · · zµJ .

Spin is homogeneity degree in z:

O(x, λz) = λJO(x, z).

Define light-transform of a local operator

L[O](x, z) =

∫ ∞

−∞
dα (−α)−∆−JO

(
x− z

α
, z
)
.

Quantum numbers are

L : (∆, J)→ (1− J, 1−∆).

Continuous spin representation of the Lorentz group.

L[O](x, z)|Ω〉 = 0.



Review: general light-ray operators [Kravchuk Simmons-Duffin ’18]

More general light-ray operators O(x, z) are not L[O] for some O.

Convenient to denote the quantum numbers of O as

(∆L, JL) ≡ (1− J, 1−∆).

Non-perturbatively, they are best thought as more general representations
appearing in the OPE of local operators.

They can be constructed by projecting via a suitable kernel

O∆,J(x, z) =

∫
ddx1d

dx2K∆,J(x1, x2;x, z)O1(x1)O2(x2) .

The residues (coming from lightcone singularities ⇔ OPE) are the
light-ray operators

O∆,J(x, z) ∼ Oi,J(x, z)

∆−∆i(J)
.



Shadow trajectory

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

Δ-
d
2

J

SJ [O](x, z) =

∫
Dd−2z′(−2z · z′)2−d−JLO(x, z′)

where Dd−2z =
2ddzδ(z2)θ(z0)

volR

Note homogeneity in z: 1− d/2− ν 7→ 1− d/2 + ν.
Shadow transform implements ν ↔ −ν symmetry of Chew-Frautschi plot.



Light-ray operators as detectors: the detector frame

O(x)
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Detectors in free scalar theory

Sample primary detectors:

Dψ(z) =

∫
dα1 . . . dαn ψ(α1, . . . , αn) : φ(α1, z) · · ·φ(αn, z) :

where

φ(α; z) = lim
L→∞

L∆φφ(x+ Lz), α = 2x · z and ∆φ =
d− 2

2
.

Primary if ψ(αi) is homogenous and translationally invariant, since

[Pµ, φ(α, z)] = −2zµ∂αφ(α, z).

Detector spin:
JL[Dψ] = n(1−∆φ) + degα ψ .



Twist-2 detectors in free scalar theory

Leading trajectory detectors measuring “EJ−1” given by

DJL(z) ≡ 1

CJL

∫
dα1dα2|α1 − α2|2(∆φ−1)+JL : φ(α1, z)φ(α2, z) : .

Diagonal trajectory with quantum numbers satisfying

∆L,0 = JL + d− 2 .

Shadow trajectory D̃JL(z) = SJ [D2−d−JL ](z) with ∆L,0 = −JL.
Together, they are the ν = ±J trajectories.

Compute matrix elements in perturbation theory and renormalize!



Detector smorgasbord: results in Wilson-Fisher theory

• Construct and renormalize the leading twist-2 Regge trajectory DJL
from detector renormalization.

• Construct and renormalize the Pomeron by resolving the intersection
of the leading trajectory DJL with its shadow D̃JL ≡ SJ [D2−d−JL ] .

• Construct and renormalize horizontal trajectories, explicitly at
J = −1:

HJL(z) =

∫
Dd−2z1D

d−2z2KJL(z1, z2; z) : L[φ](z1)L[φ](z2) :

• Compute and renormalize higher-point event shapes:
〈φ(p)|DJL1

(z1)DJL2
(z2)|φ(p)〉, . . . [Gonzalez MK Moult, WIP]

• Compute the most general light-ray OPE in perturbation theory.
[WIP]

• Investigate detectors in similar theories such as O(N) models,
including “EJ−1 ×Q” detectors, D−JL . [Gonzalez MK Korchemsky

Moult Zhiboedov, WIP]

• Even more general theories!



Detectors in perturbative gravity



Graviton energy detectors in perturbative gravity

Take gµν = ηµν +
√

32πGNhµν . Useful to define the asymptotic metric
field

hµν(α, z) = lim
L→∞

L∆h hµν(x+ Lz) .

where ∆h = d−2
2 . Graviton energy detector is

Eh(z) = 2

∫ ∞

−∞
dα : (∂αhµν(α, z))(∂αh

µν(α, z)) :

Originally introduced by [Gonzo Pokraka ’20] in d = 4, Bondi gauge:

Eh(z) =
1

16πGN

∫ ∞

−∞
dv(∂vCww)(∂vC

ww)

= 2

∫ ∞

−∞
dv lim

r→∞
1

r2
(γww)2 (∂vhww(r, v, w,w)) (∂vhww(r, v, w,w)) .



Graviton energy detectors: mode expansion

In terms of the mode expansion

hµν(x) =

∫
d̂dp δ̂+(p2)

∑

s

[
εs,∗µν (p)as(p)e

−ip·x + εsµν(p)a†s(p)e
ip·x] ,

Here, εsµν are polarization tensors, where s runs over physical
polarizations.

Evaluating hµν(α, z) in terms of the mode expansion using a stationary
phase method yields

hµν(α, z)

∝
∫ ∞

0

dββ∆h−1
∑

s

[
ie−i

dπ
4 εs,∗µν (βz)as(βz)e

−i βα2 − iei dπ4 εsµν(βz)a†s(βz)e
i βα2

]
.

Yielding

Eh(z) ∝
∫ ∞

0

dββd−2
∑

s

a†s(βz)as(βz) .



A Regge trajectory of detectors in gravity

Graviton EJ−1 detector trajectory is

DJL(z) =
1

CJL

∫ ∞

−∞
dα1dα2 ψJL(α1, α2) : hµν(α1, z)h

µν(α2, z) : .

The wavefunction is

ψJL(α1, α2) = |α1 − α2|2(∆h−1)+JL .

Acts on asymptotic graviton states |X〉 = |{p1, s1}, · · · , {pn, sn}〉 as

DJL(z)|X〉 =
∑

i∈X

∫ ∞

0

dββJ+d−2 δ
d(ki − βz)

2δ(z2)
|X〉 .

One can also construct higher-twist trajectories, and all of their shadows
just as in QFT.
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The start of a “Chew-Frautschi plot” in perturbative
gravity

∆ − d/2

J

-4 -2 2 4

???
2

4

Horizontal trajectories in GR? Analogs of “reggeized gravitons” as
detector trajectories? What else is missing?



Event shapes from amplitudes



Perturbation theory in the detector frame
Recall, detectors annihilate the vacuum:

D(z)|Ω〉 = 0 .

So, compute observables:

〈Ψ1|D(z)|Ψ2〉.

Use in-in formalism with Schwinger-Keldysh contour:

〈Ψ|

|Ψ〉

D(z)
t =∞

t = −∞

t = −∞

fold



Schwinger-Keldysh contour and Feynman rules

t =∞

t = −∞

t = −∞

D(z)

T

T

Wightman



Tree level matrix element: scalar detector
Tree level matrix element

〈0|φ(−q)DJL(z)φ(p)|0〉 = (2π)dδd(p− q)VJL(z; p)

z t =∞

t = −∞

t = −∞
p

p

One computes

VJL(z; p) =

∞∫

0

dββ−JL−1δd(p− βz).



Tree level matrix element: graviton detector

Tree level matrix element

〈0|hµν(−q)DJL(z)hρσ(p)|0〉 = (2π)dδd(p− q)Πµνρσ(p)VJL(z; p)

where Π is the projector onto physical states.

z

p, µν

p, ρσ

Once again, universal factor:

VJL(z; p) =

∞∫

0

dββ−JL−1δd(p− βz).



Event shapes from perturbative amplitudes

En =

p1 pk

p1 pk
. . .

. . .

M

M
z1 zn

q1
qn. . .

. . .
+

p1 pk

p1 pk
. . .

. . .

M

M
z1 zn

q1
qn

qn+1

. . .

. . .
+ · · ·

=
1

Nk

∑

X

∫ [ n∏

a=1

d̂dqa VJLa(qa, za)

][∏

b∈X
d̂dqbW (qb)

]
×

δ̂d(q1+ . . .+qn +QX − P )
∣∣Mk→n+|X|(pi, qj)

∣∣2 .



Loop expansion of event shapes

En = g2(k+n−2)
[
E(0)
n + g2Ẽ(1)

n + · · ·
]

= g2(k+n−2)




p1 pk

p1 pk
. . .

. . .

M(0)

M(0)

z1 zn

q1

qn. . .

. . .

+g2




p1 pk

p1 pk
. . .

. . .

M(1)

M(0)

z1 zn

q1

qn. . .

. . .
+

p1 pk

p1 pk
. . .

. . .

M(0)

M(1)

z1 zn

q1

qn. . .

. . .
+

p1 pk

p1 pk
. . .

. . .

M(0)

M(0)

z1 zn

q1

qn
qn+1

. . .

. . .




+ · · ·






Two point event shape from perturbative amplitudes

E2 = E(0)
2 + E(1)

2 + · · · =

p1 pk

p1 pk
. . .

. . .

M

M
z1 z2

q1
q2

+

p1 pk

p1 pk
. . .

. . .

M

M
z1 z2

q1
q2

q3

+ · · · .

E(1)
2 (pi; z1, z2) =

∫ 3∏

a=1

ddqa VJL1
(q1, z1)VJL2

(q2, z2) δ+(q2
3)

×
∣∣Mk→3(pi, q1, q2, q3)

∣∣2 δd(q1 + q2 + q3 − P )

=

∫ ∞

0

dβ1dβ2β
−JL1−1
1 β−JL2−1

2 δ+((P−β1z1−β2z2)2)

×
∣∣Mk→3(pi, q1=β1z1, q2=β2z2, q3=P−β1z1−β2z2)

∣∣2.



Gravity amplitudes



A simple state in a simple theory of gravity

Consider Einstein gravity with minimally coupled massive scalar field:

SEH+Φ =

∫
ddx
√−g

(
1

16πGN
R+

1

2
Φ
(
�−m2

)
Φ

)
.

We are interested in the EEC in a simple state; we pick two annihilating
scalars. To compute the EEC we need the following underlying amplitude
squared:

M(0)

M(0)

q1 q2 q3

p1 p2

p1 p2

where M(0)
2→3 is the tree level amplitude for ΦΦ→ hhh.



Color-kinematics duality and double copy
Using cubic representation of tree level amplitudes, in manifestly
color-kinematic dual form:

a

b c

d a

cb

d a

b c

d

⇔ fabefecd − facefebd − faedfebc = 0.

Double copy gauge theory amplitudes to gravity amplitudes:

iAtree
m (1, 2, 3, . . . ,m) = gm−2

∑

i

nici∏
αi
p2
αi

,

replace ci → ñi :

iMtree
m (1, 2, . . . ,m) =

(κ
2

)m−2∑

i

ni ñi∏
αi
p2
αi

.



Reverse unitarity

Can compute amplitude and sew and square it, or use reverse unitarity on
a suitable loop amplitude:

Cut
[
M(2)

2→2(p1, p2→p1, p2)
]

=

M(0)

M(0)

q1 q2 q3

p1 p2

p1 p2

=
∑

states

M(0)
2→3(p1, p2; qi)M

(0)

2→3(p1, p2; qi).



Some of the diagrams that enter into the computation

M(0)
2→3 is a sum of 15 (cubic) diagrams, |M(0)

2→3|2 is 15× 15 = 225
diagrams, e.g.:

q∗1 q∗2 q∗3

p1 p2

p1 p2

q∗1 q∗2 q∗3

p1 p2

p1 p2

q∗1 q∗2 q∗3

p1 p2

p1 p2



Gravitational Detectorology



Gravitational energy correlators

Want to compute EEC, EEEC in asymptotically-flat GR.

Easiest to compute in scattering massive scalars:

EEC = 〈Φ(p1)Φ(p2)|E(z1)E(z2)|Φ(p1)Φ(p2)〉 ,
EEEC = 〈Φ(p1)Φ(p2)|E(z1)E(z2)E(z3)|Φ(p1)Φ(p2)〉 .

We have computed the EEC to leading nontrivial order in GN . This is
beyond the classical result, exhibiting quantum correlations between
detectors in GR.

We are finishing computing the EEEC in the collinear limit.



Leading (finite-angle) GN correction

E(1)
2 =

M(0)

M(0)

z1 z2

q1
q2

q3

p1 p2

p1 p2

.



The detector integrals

This leads to the following result, after performing the trivial integrals
due to delta functions:

E(1)
2 (pi, zj) =

1

(2π)2d−1
(2P · z1)JL1(2P · z2)JL2(P 2)−JL1−JL2−1

×
∫ 1

0

dα1α
−JL1−1
1 (1− α1)

−JL2−1
(1− α1ζ)JL2 |M|2(pi, q

∗
j ),

where P = p1 + p2, the detector separation cross ratio is

ζ ≡ ζ12 =
(2z1 · z2)(P 2)

(2P · z1)(2P · z2)
=

1− n̂1 · n̂2

2
.

and the amplitude squared is evaluated at special kinematics for the
gravitons

q∗1 =
P 2

2P · z1
α1z1, q∗2 =

P 2

2P · z2

1− α1

1− α1ζ
z2, q∗3 = P − q∗1 − q∗2 .



The EEC integral

EEC is determined by the dimensionless integral:

G(1)
EEC(ζ, χ1, χ2, x) =

∫ 1

0

dαα2 (1− α)
2

(1− α ζ)−3

∣∣∣∣M2→3

(
pi√
s
,
q∗j√
s

)∣∣∣∣
2

.

We have defined P = p1 + p2, Q = p1− p2 and the following cross ratios,

χa = −Q · za
P · za

, x =

√
s− 4m2

√
s

.

In CoM frame,

ζ =
1− cos θ

2
,

χ1 = x cosψ,

χ2 = x cos θ cosψ − x sin θ sinψ cosφ .



Kinematics in the center of mass (CoM) frame

ψ

φ

θ

~p1

~p2

n̂2
n̂1

s = −(p1 + p2)2, p1,2 =
1

2
(
√
s,±ẑ

√
s− 4m2), zi = (1, n̂i)



EEC in GR: full angular dependence

EEC in gravity in its full glory:

G(1)
EEC(ζ, χ1, χ2, x) = r(0)(ζ, χ1, χ2, x)+

7∑

i=1

r(i)(ζ, χ1, χ2, x)×f (i)(ζ, χ1, χ2) .

Rational coefficients r(i) of the basis of transcendental functions

f (1)(ζ, χ1, χ2) =
arctan

[
χ2−χ1+2ζ χ1√

∆

]
−arctan

[
χ2−χ1−2ζ√

∆

]
√

∆
,

f (2)(ζ, χ1, χ2) =
arctan

[
χ2−χ1+2ζ√

∆

]
−arctan

[
χ2−χ1−2ζ√

∆

]
√

∆
,

f (3)(ζ, χ1, χ2) = log (1− χ1) , f (4)(ζ, χ1, χ2) = log (1 + χ1) ,

f (5)(ζ, χ1, χ2) = log (1 + χ2) , f (6)(ζ, χ1, χ2) = log (1− χ2) ,

f (7)(ζ, χ1, χ2) = log (1− ζ) .

The discriminant ∆ is given by

∆ = 4ζ(1− ζ) + 2χ1χ2(1− 2ζ)− χ2
1 − χ2

2 .



EEC in GR: 2d plots
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EEC in GR: 3d plots



EEC in GR: Collinear limit

The EEC in GR is finite in the collinear limit ζ → 0.

G(1)
EEC(θ → 0, ψ, φ, x) = g0(ψ, x)+g2(ψ, x) cos(2φ)+g4(ψ, x) cos(4φ)+O(θ) ,

where we define the coefficient functions

g0(ψ, x) =
(
1− x2

)2
(

11y2

36
+

14y

9
+

2839

840
+

1037

252y
+

361

105y2
+

9

5y3
+

1

2y4

)

g2(ψ, x) =
(
1− x2

)2
(
−11y2

36
− 14y

9
− 1003

315
− 459

140y
− 92

45y2
− 7

10y3

)

g4(ψ, x) =
(
1− x2

)2 (1 + y)2

1260y2

and y = (x2 cos2 ψ−1)
(1−x2) . In the massless limit (x = 1),

G(1)
EEC(θ → 0, ψ, φ, x = 1) =

11

18
sin4 ψ sin2 φ+O(θ) .



EEC in GR: back-to-back limit

Another interesting limit to study is in the back-to-back region, where
θ → π. In comparison to the collinear limit, we find a power divergence
as we approach θ → π:

G(1)
EEC(θ → π, ψ, φ, x) ∼ b(ψ, φ, x)

(θ − π)2
+O

(
(θ − π)−1

)
,

where b(ψ, φ, x) is a transcendental function of the form

b(ψ, φ, x) = b0 + b1 arctanh (x cosψ) + b2

arctan

(
x cosφ sinψ√

∆̃(ψ,φ,x)

)

√
∆̃(ψ, φ, x)

where ∆̃(ψ, φ, x) = 1− x2
(
cos2 ψ + cos2 φ sin2 ψ

)
.



Collinear DDC in GR

One can also compute the event shapes of more general EJ−1 type
detectors, DJL , in the collinear limit.

G(1)
JL1,JL2,col.(ψ, φ, x) =

∫ 1

0

dα1α
−JL1−1
1 (1− α1)

−JL2−1 |Mcol.
2→3|2

(
pi√
s
,
qcj√
s

)
.

G(1)
JL1,JL2,col.(ψ, φ, x) =

Γ (2− JL1) Γ (2− JL2)

Γ (4− JL1 − JL2)
(1− x2)2 (1 + y)2

2y2
cos 4φ

+ h2(χ, x) cos 2φ+ h0(χ, x),

where h2 and h0 are some known but unwieldy polynomials in χ, x
(meromorphic in JL1,JL2).

The result has interesting pole structure in JL1 and JL2. What are the
implications for the spectrum of detectors in GR?



An IHES special



Fresh off the bakery: EEC in N = 8 supergravity

Visiting IHES has already paid off! Thanks to Julio for his warm

hospitality and for computing |M(0),N=8
2→3 |, I present. . .

. . . drumroll . . .

G(1),N=8
EEC =

4ζ2 + 4ζ (χ1χ2 − 1) + (χ1 − χ2) 2

(1− ζ)ζ (1− χ2
1) (1− χ2

2) (2(2ζ − 1)χ2χ1 + χ2
1 + χ2

2)

×
[
4ζ (χ1 + χ2)

arctan
(

(2ζ−1)χ1+χ2√
∆

)
√

∆

+
(

(χ1 − χ2)
2

+ 2ζ (2χ2χ1 + χ1 + χ2)
) arctan

(
2ζ+χ1−χ2√

∆

)
√

∆

+
(

(χ1 − χ2)
2

+ 2ζ (2χ2χ1 − χ1 − χ2)
) arctan

(
2ζ−χ1+χ2√

∆

)
√

∆

+ (χ1 − χ2) (arctanh (χ1)− arctanh (χ2))
]
.
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∆
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∆

)
√

∆
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(

(χ1 − χ2)
2
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(
2ζ−χ1+χ2√

∆
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∆
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Fresh off the bakery: EEC in N = 8 supergravity plots
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Fresh off the bakery: EEC in N = 8 supergravity limits

Collinear limit:

G(1),N=8
EEC (θ → 0, ψ, φ) = 8 csc4 ψ sin2 φ+O(θ) .

Back-to-back limit:

G(1),N=8
EEC (θ → π, ψ, φ) =

1

(θ − π)2

4 csc4 ψ sinφ(
cot2 ψ + cos2 φ

)

×
[
4 cosψ sinφ arctanh(cosψ)

− 2 cosφ (π − 2 arctan(cotφ))
]

+O
(

1

θ − π

)
.



EEEC in gravity and supergravity



EEEC leading order

E(1)
3 (pi; z) ⊃

M(0)

M(0)

z1 z2 z3

q1
q2 q3

q4

p1 p2

p1 p2

.



EEEC in the collinear limit
While the full EEEC is computationally challenging, the triple-collinear
limit, where all three detectors approach each other with fixed ratios is
achievable.

The computation is achieved by first computing the triple-collinear limit
of the 2 scalar → 4 graviton amplitude, squaring (sewing) the collinear
amplitude, then performing the detector integrals:

EEEC
∣∣
coll
∼
∫ 1

0

dα1dα2θ(1− α1 − α2)α2
1α

2
2(1− α1 − α2)2

× |M|22→4,coll(pi, q
∗
j ),

where

q∗j =
s

2P · zj
αjzj , for 1 ≤ j ≤ 3, q∗4 = P −

3∑

j=1

q∗i ,

α3 = 1− α1 − α2.

Interesting crossing equation and detector OPE encoded within. . .
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Getting ahead of ourselves:
Renormalization and mixing of detectors in GR



Loop corrections to detector one-point functions in GR

E(2)
1 (pi; z) ⊃

M(0)

M(0)

z

q1
q2

q3

p1 p2

p1 p2

.



Loop integrals

The qualitatively new piece to compute is the following loop integral

E(2)
1 (pi; z) ⊃

∫ ∞

0

dββ−JL−1

∫
ddq2δ

+(q2
2)δ+((P−βz − q2)2)

×
∣∣Mk→3(pi, q1=βz, q2, q3=P−βz−q2)

∣∣2 .

We expect interesting divergences to appear in this observable which
indicate (additive) renormalization / mixing of the detectors.

No collinear divergences in gravity, but soft divergences!



Expected mixing

Since the interactions carry mass dimension, the expected
renormalization is schematically:

[DJL ]R = DJL +GNO(1)
JL

+G2
NO(2)

JL
+ · · · .

Onset of the vertical collapse of the Chew-Frautschi plot in a theory with
scale.

One could detect the presence of horizontal trajectories as they should
appear as poles in J in the loop corrections,

⇒ reggeized graviton trajectories?
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Concluding remarks



Conclusions

• Introduced new families of detector operators in gravity.

• Modernized computation of detector event shapes from perturbative
amplitudes.

• Computed new observables in gravity and supergravity: EEC,
EEEC. . .

• A foray into new quantum observables in gravity!



Gravitational hopes and dreams

• The spectrum of asymptotic observables (detectors) in GR.

• A notion of “Regge trajectories” of detectors in gravity? Analyticity?

• Descendent detectors, K and Ni, and such.

• The light-ray OPE in gravitational theories.

• A unified language for scattering states and detectors.

• An improved understanding of asymptotic symmetries and the
organization of detectors in representations.

• Coupling a CFT to gravity: deformation of a CFT Chew-Frautschi
plot.



Thanks!



Appendix: Detectorology in WF



Detectors in Wilson-Fisher theory



Wilson-Fisher spectra

Recall, leading Regge trajectory

OJ(x) = [φφ]0,J(x)

O+
J (x, z) = L[OJ ](x, z) for J ∈ 2Z≥0

Analytic curve
∆(J) = 2∆φ + J + γ(J)

where

∆φ = 1− 1

2
ε+

1

108
ε2 +

109

11664
ε3 +

(
7217

1259712
− 2ζ(3)

243

)
ε4 +O(ε5),

γ(J) = − 1

9J(J + 1)
ε2 +

(
22J2 − 32J − 27

486J2(J + 1)2
− 2H(J)

27J(J + 1)

)
ε3 +O(ε4),

with H(J) = Γ′(J+1)
Γ(J+1) + γE .

Note (JL,∆L) = (1−∆, 1− J).



A toy model for intersecting trajectories

Consider diagonal shadow trajectories

ν±(J) = ±J

Combine trajectory and its shadow into single complex curve

ν2 − J2 = 0.

Turn on interactions. A toy model:

ν2 − J2 + ε2 = 0

⇒ ∆ = d
2 ±

√
J2 − ε2

= d
2 ±

(
J − ε2

2J

)
+ · · ·

However, the curve ν2 − J2 + ε2 = 0 is smooth!



Resolving the WF intercept

Leading trajectory and its shadow given by

ν±(J) = ±
(
2∆φ + J + γ(J)− d

2

)
.

Combine into single complex curve:

ν2 = (2∆φ − d/2 + J + γ(J))2

= J2 − Jε+

(
J

27
+

1

4
− 2

9(J + 1)

)
ε2

+

(
109J3 + 164J2 + 265J − 114

2916(J + 1)2
− 4H(J)

27(J + 1)

)
ε3 +O(ε4).

Resolved the J = 0 poles!

Further poles at J = −1,−2, . . . indicate other intersections that are
expected to be similarly resolved.



Resolved leading trajectory in WF

Leading Regge trajectory in Wilson-Fisher fixed point in 4− ε dimensions.
Order ε4 interactions, ε = 0.3.

ϕ2

-0.4 -0.2 0.0 0.2 0.4
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Δ-
d

2

J



Regge intercept

J0(ε) =

(
1

2
+

√
2

3

)
ε− 11

√
2 + 21

162
ε2

+
465 + 421

√
2 + 54(4 + 3

√
2)π2 − 648

√
2ζ(3)

17496
ε3

+ c4ε
4 +O(ε5)

= 0.971405ε− 0.225656ε2 + 0.248731ε3 − 0.631547ε4 +O(ε5).



The φ2 operator

Setting J = 0,

|ν| = ε

6
− 19ε2

162
+

(
− 937

17496
+

4ζ(3)

27

)
ε3 +O(ε4)

matches with

∆φ2 = ∆−(0) =
d

2
− |ν|.

[Alday Henriksson van Loon ’17, Caron-Huot Gobeil Zahraee ’20]

In fact, adding the known O(ε4) term in ∆φ2 + analyticity allowed us to
predict the ε4 term in J0.



Renormalization of detectors



The detector frame

O(x)

I +

I −

i0

i+

i−

D

I +

I −

i0

i+

i−



Generators in renormalization
Lorentz generators are exact in perturbation theory.

Local operator O0(x = 0):

primariness [Kµ,O(0)] = 0,
}

corrected in perturbation theory,

spin J,
}

exact in perturbation theory,

dimension ∆
[D,O0(x)] = ∆0O0(x).

}
corrected to ∆ = ∆0 + γ(J).

Detector D(x =∞, z):

primariness [Pµ,D(z)] = 0,

detector spin JL,

}
exact in perturbation theory,

detector dimension
[D,D(∞, z)] = −∆LD(∞, z).

}
corrected ∆L = ∆L,0(JL) + γL(JL).



Anomalous dimension or anomalous spin

Traditional frame:

fix J , renormalize ∆

⇒ γ(J)

Detector frame:

fix JL = 1−∆, renormalize ∆L = 1− J
⇒ γL(JL) ≡ γT (∆− τ0).

Recall, (JL,∆L) = (1−∆, 1− J).



Reciprocity

∆− d
2

= −JL − d−2
2

J = 1−∆L

γT

γ

γ(J) = γL(JL)



Two loop diagram

F (2)
JL

(z; p) =
z

p

p

k

q

p− q − k

One computes

F (2)
JL

(z; p)

=
(−iλµ̃ε)(+iλµ̃ε)

2

∫
ddq

(2π)d
ddk

(2π)d
i

p2 + i0

−i
p2 − i0VJL(z; q)

× (2π)2δ+(k2)δ+((p− q − k)2)

= (λµ̃ε)2 volSd−2

2d(2π)2d−2

Γ(d−2
2 )Γ(−JL)

Γ(−JL + d−2
2 )

(−2z · p)JL(−p2)
d−4

2 −JL−2θ(−p2).



Two loop divergence

The result looks regular, but has a hidden divergence:

(−2z · p)JL(−p2)
d−4

2 −JL−2 =
π

2ε(JL + 1)

∫
dββ−JL−1δd(p− βz) +O(ε0)

=
π

2ε(JL + 1)
VJL(z; p) +O(ε0).

Therefore, the two loop event shape has a divergence proportional to the
tree level vertex:

〈DJL(z)〉2-loop = −1

ε

λ2

2(4π)4

1

JL(JL + 1)
〈DJL(z)〉tree +O(ε0).

So, the detectors are multiplicatively renormalized.



Two loop anomalous dimensions
The bare detector has

〈Ω|φR(−p)DJL(z)φR(p)|Ω〉 = Z−1
φ

(
VJL(z; p) + F (2)

JL
(z, p)

)
+O(λ3),

Define the renormalized detector

[DJL(z)]R = Z−1
JL
DJL(z)

ZJL ≡ Z−1
φ

(
1− 1

ε

λ2

2(4π)4

1

JL(JL + 1)

)
+O(λ3).

The anomalous dimension in the detector frame is then

−γL(JL) =
∂ logZJL

∂λ
β(λ) =

λ2

(4π)4

(
1

JL(JL + 1)
− 1

6

)
+O(λ3)

Finally, we land on the known curve (agrees with ∆(J))

J(∆) = ∆− (d− 2)− γL(1−∆)

= ∆− 2 + ε+
ε2

9

(
1

(∆− 1)(∆− 2)
− 1

6

)
+O(ε3).



The Pomeron of Wilson-Fisher



Resolving the intersection

Want to recover

(1-J⊲)-
d

2

2ϵ
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d

2

J

Study DJL and D̃JL ≡ ŜJ [D2−d−JL ] near the intercept.



The two loop divergence, again

Turns out, to be expected, the two loop diagram has another divergence:

F (2)
JL

(z; p) ∼ 1

JL − J/
λ2µ2ε

2(4π)4
R(ε)ŜJ [V2−d−J/ ](z; p)

where J/ ≡ d−6
2 , coming from

(−p2)
d−4

2 −JL−2θ(−p2) ∼ 1

J/ − JL
δ(p2) .

The coefficient has the form

R(ε) =
1

ε
+ 1 +O(ε) .

With this we have

〈DJL〉 ∼
1

JL − J/
λ2µ2ε

2(4π)4
R(ε)〈D̃J/〉tree + (regular at JL = J/).



Mixing of the leading trajectory and its shadow

Schematically, we have the divergences of the form

〈DJL〉 ∼
1

(J − J/)ε
+

1

J − J/
+

1

ε
.

We seek to renormalize all of these divergences.



Basis of operators at free theory

A convenient, nondegenerate basis is given by

DJL =

(
DJL
D′JL

)
, D′JL ≡

µ2−d−2JLD̃JL −DJL
JL − 2−d

2

These operators have the same mass dimensions and Lorentz spin JL.
However, D′JL do not have definite scaling dimensions.

In fact, D′2−d
2

and D 2−d
2

form a log-multiplet in the free theory.

Interactions break this log-multiplet into two independent operators.

Summarize divergences as

〈DJL〉 =
λ2

(4π)4

([
1

12ε
− 1

2εJL
+

R(ε)

2(JL − J/)

]
〈DJL〉tree

− εR(ε)

2(JL − J/)
〈D′JL〉tree

)
+ (regular)



Dilatation operator at loop level

Define renormalized operators

[DJL ]R ≡ Z−1
JL

DJL

with suitable 2× 2 matrix ZJL .

Dilatation operator D acts on this 2-dim basis as the 2× 2 matrix

D =

(
2− d− JL 0

2 JL

)

+
λ2

(4π)4

(
1
JL
− 1

6 εR(ε)
2

JL(2−d−JL)
1

2−d−JL −
1
6

)
+O(λ3).



The Pomeron and the Regge intercept

The (left) eigenvectors D give the Pomeron and subleading Reggeon

v±[DJL ]R; v± =

(
1,± λ√

2(4π)2
(1 +O(ε)) +O(λ2)

)

and the eigenvalues give the Regge intercepts

J± =

(
1

2
±
√

2

3

)
ε+O(ε2).



Reggeized scalars in Wilson-Fisher



Horizontal trajectory

Consider the product of operators

HJL1,JL2
(z1, z2) ≡ DJL1

(z1)DJL2
(z2).

The most important one will be

H3−d,3−d(z1, z2) ∝ : L[φ2](∞, z1)L[φ2](∞, z2) :

Decompose into Lorentz irreps:

HJL1,JL2;JL(z) ≡
∫
Dd−2z1D

d−2z2KJL(z1, z2; z)HJL1,JL2
(z1, z2).



Horizontal trajectory renormalization

z1 z2

p1 p2

q1 q2

+
z1 z2

p1 p2

q1 q2

q2 − p2 − k

k



Horizontal trajectory divergence

〈HJL1,JL2
(z1, z2)〉2 loop,

conn.

∼ (λµ̃ε)2

4(2π)2d−2

−1

JL1 + JL2 + 2

×
∫
Dd−2z3D

d−2z4Kα(z1, z2; z3, z4)〈H3−d,3−d(z3, z4)〉tree

with kernel

Kα(z1, z2; z3, z4) ≡ π

sinπα

(
z13

z23

)α
−
(
z14

z24

)α

z24z13 − z14z23
, α =

JL1 − JL2

2
.

Diagonalizing to Lorentz irreps, we have

〈HJL1,JL2;JL(z)〉2 loop,
conn.

∼ (λµ̃ε)2

(4π)d
−1

JL1 + JL2 + 2
κα(JL)〈H3−d,3−d;JL(z)〉tree,

where

κα(JL) =
2

JL + 1
cos(πJL2 )Γ(−JL2 )2Γ(JL+2

2 − α)Γ(JL+2
2 + α) +O(ε).



Horizontal trajectory anomalous spin?

The full picture is a lot more complicated.

Disconnected diagrams give rise to mixing within infinitely many
horizontal trajectories. Computing the dilatation matrix and extracting
anomalous spins is an interesting future directions.

In the meantime, we can consider a modified theory with only the
diagrams we considered, in which case we have

J(∆) = 1−∆L(JL) = −1 +
λ2

(4π)4
κ0(1−∆) +O(λ3)

= −1 +
λ2

(4π)4

2π2 sin(π∆
2 )

(2−∆) cos(π∆
2 )2

+O(λ3).



Renormalizing two-point event shapes
[Gonzalez MK Moult, WIP]



〈DJL1
(z1)DJL2

(z2)〉: tree level contact term

z1 z2

p

p

〈φ(p)|DJL1
(z1)DJL2

(z2)|φ(p)〉 ∼ δd−2(z1−z2)〈φ(p)|DJL1+JL2+d−2(z2)|φ(p)〉

“En”× “Em” ∼ “En+m”



〈DJL1
(z1)DJL2

(z2)〉: two-loop

≡ F1(p, z1, z2)

z1 z2

p

p

k

q

p− q − k

≡ F2(p, z1, z2)

z1 z2

p

p

k

q

p− q − k



Regular piece and the general light-ray OPE

Event shapes of “fuzzier” detectors (beyond L[O]):

F1(p, z1, z2) =
(λµ̃)2

2(2π)2d−1
(−2p · z1)JL1(−2p · z2)JL2(−p2)−3−JL1−JL2θ(p0)

× G(ζ)

where zi = (1, n̂i),

G(ζ) =
Γ (−JL1) Γ (−JL2)

Γ (−JL1 − JL2)
2F1 (−JL1,−JL2;−JL1 − JL2; ζ) ,

ζ =
(−2z1 · z2)(−p2)

(−2p · z1)(−2p · z2)
=

1− n̂1 · n̂2

2
.

Decomposition into celestial blocks computes DJL1
(z1)×DJL2

(z2)
light-ray OPE in perturbation theory. Celestial MFT-like structure;
DJL(z) ∼ P−JL(y), OPE has celestial “double twist” operators:
[Pδ1Pδ2 ]n,0 ∼ “φ4 type detectors”.



Contact term divergence

F1(p, z1, z2) secretly has a contact term divergence at z1 = z2!

Renormalization of individual detectors DJL1
(z1) and DJL2

(z2) does not
remove this divergence. Need to renormalize the product. (Think
φ2 × φ2 ∼ φ4 + . . . .)

These observables are related to multi-hadron fragmentation functions in
QCD. New insights for the renormalization of such objects.

Computing contact term contributions to the light-ray OPE. Novel
contributions?



Generalization to O(N) models and EQ detectors
[together with G. Korchemsky and A. Zhiboedov]

We can generalize to O(N) models and to CRT-odd trajectories.

Leading “odd spin” trajectory D−JL ⊃ Q =
∫
dvJv.

Charge detectors Q notoriously have pathologies, whereby multiple
insertions are ill defined.

One can get around these issues by considering energy×charge detectors
EQ — or more generally EJ−1 ×Q detectors D−JL — which have milder
singularities due to the extra power of energy.

We are able to compute the two point event shapes of D±JL operators in
the O(N) models, for example, and study their renormalization.
⇒ odderon,
⇒ QCD, collider physics...



Appendix: Some Lorentzian dynamics in CFTs



OPE Inversion formula

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =

∞∑

J=0

∮ d
2 +i∞

d
2−i∞

d∆

2πi
C(∆, J)Ψ∆,J(xi)

where

C(∆, JO) ∼ −f12Of34O†
∆−∆O

.

There is a “Lorentzian” inverse, [Caron-Huot ’17]

C(∆, J) ∝
∫
ddx1d

dx2d
dx3d

dx4〈[O1(x1),O4(x4)][O3(x3),O2(x2)]〉

× G̃J+d−1,∆−d+1(x1, x2, x3, x4).

CFT data is analytic in J . Poles at Regge trajectories

∆ = ∆i(J).
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Regge trajectories and the Chew-Frautschi plot

J

∆− d
2

4

2
T

Local operators do not make sense at continuous J . Trajectories are
light-ray operators O±i,J . [Kravchuk and Simmons-Duffin ’18]



Regge trajectories and the Chew-Frautschi plot

J

∆− d
2

4

2
T

Local operators do not make sense at continuous J . Trajectories are
light-ray operators O±i,J . [Kravchuk and Simmons-Duffin ’18]



Lorentzian geometry

p

T p

i0 i0

i+

i−

Md

M̃d



Light-transform

Introduce polarizations,

O(x, z) ≡ Oµ1···µJ (x)zµ1 · · · zµJ .

Define light-transform of a local operator

L[O](x, z) =

∫ ∞

−∞
dα (−α)−∆−JO

(
x− z

α
, z
)
.

Quantum numbers are

L : (∆, J)→ (1− J, 1−∆).

Makes sense for continuous spin!

L[O](x, z)|Ω〉 = 0.



Light-ray operators

Construct continuous spin object from local operators,

O±∆,J(x, z) =

∫
ddx1d

dx2K
±
∆,J(x1, x2, x, z)φ1(x1)φ2(x2).

Residues are light-ray operators,

O±∆,J(x, z) ∼ 1

∆−∆±i (J)
O±i,J(x, z).

They agree with local operators when they coincide,

O(−1)J

i,J = f12Oi,JL[Oi,J ], J ∈ Z≥0.

Inversion formula computes matrix elements of light-ray operators,

〈Ω|φ4O±∆,J(x, z)φ3|Ω〉 = −C±(∆, J)〈0|φ4L[O](x, z)φ3|0〉.



An OPE for light-ray operators on a null plane?

v

u

~y

~y12

L[O1] L[O2]

?
=
∑
i

Oi



The light-ray OPE

[Hofman Maldacena ’08, MK Kravchuk Simmons-Duffin Zhiboedov ’19 + Chang ’20]

v
u

~y

~y12

∫ ∞

−∞
dv1O1;v···v(u = 0, v1, ~y1)

∫ ∞

−∞
dv2O2;v···v(u = 0, v2, ~y2)

?
=
∑

i

|~y12|δi−(∆1−1)−(∆2−1)Oi.



The light-ray OPE
[Hofman Maldacena ’08, MK Kravchuk Simmons-Duffin Zhiboedov ’19 + Chang ’20]

v
u

~y

~y12

∫ ∞

−∞
dv1O1;v···v(u = 0, v1, ~y1)

∫ ∞

−∞
dv2O2;v···v(u = 0, v2, ~y2)

= πi
∑

s=±

∑

i

C∆i−1(~y12, ∂~y2
)Osi,J=J1+J2−1(~y2)

+ higher transverse spin.

Dilatations around x for L[O1](x, z1)L[O2](x, z2) ⇔ J = J1 + J2 − 1.
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Energy detector OPE

E×E =
∑

i

(
O+
i,J=3,j=0 + O+

i,J=3,j=2 + O+
i,J=3,j=4

)
+
∑

n,i

D2nO+
i,J=3+2n,j=4.

J

∆− d
2

3

5

7

9

11

j = 0,2, 4, 0, 2, 4



Transverse spin j conjugate to φ

ψ

φ

θ

e+

e−

n̂1
n̂2



Appendix: Deriving the light-ray OPE
Decompose product on the celestial sphere

L[φ1](x, z1)L[φ2](x, z2) =
∑

i

∞∑

j=0

C12i(z1, z2, ∂2)W∆i,j(x, z2) ,

if and only if

W∆,j(x, z) =

∫
ddz1d

dz2L∆,j(z1, z2; z)L[φ1](x, z1)L[φ2](x, z2)

=

∫
ddx1d

dx2L∆,j(x1, x2;x, z)φ1(x1)φ2(x2) .

Relate the kernel L∆,j to the light-ray operator kernel,

O±∆,J(x, z) =

∫
ddx1d

dx2K
±
∆,J(x1, x2, x, z)φ1(x1)φ2(x2).

Turns out

L∆,j ∝ DjK+
∆,J=−1+j +DjK−∆,J=−1+j ,

and we have

W∆i,j(x, z) ∝ DjO(−1)j

∆,J=−1+j(x, z)
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Appendix: LHC physics



OPE in nature: N -point energy correlator at the LHC

E(n̂1)OJ(n̂2) ∼ |n12|γ(J+1)OJ+1(n̂2)
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[Komiske Moult Thaler Zhou ’22]



Applications: transverse spin interferometry

E×E =
∑

i

(
O+
i,J=3,j=0 + O+

i,J=3,j=2 + O+
i,J=3,j=4

)
+
∑

n,i

D2nO+
i,J=3+2n,j=4.
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Figure 12: All-order comparison of the toy shower and the analytic resummation per-

formed in Ref. [38], for a quark-initiated (left) and a gluon-initiated jet (right). The

resummation is performed using ↵s = 0.0868 and restricting the opening angles as in

Eq. (3.6). The result from a fixed-order expansion, normalised so that its mean coincides

with the mean value of the analytic curve, is also shown for comparison.

ting, here we show the results integrated over angles to enhance the statistics. Inspired by

Ref. [38] we choose the following integration bounds on the opening angles of the primary

and secondary branchings:15

p
0.1 < ✓L < 1 ,

0.01 < ✓S < 0.1 , (3.6)

and take ↵s = 0.0868 corresponding to a hard scale of roughly 1 TeV. The toy shower and

analytic resummation results [38] are shown in Fig. 12, summed over all final branching

flavour channels, demonstrating good agreement. The figure also shows the second-order

expansion, normalised so that its mean value coincides with the resummed result, illustrat-

ing a modest reduction in the degree of spin correlations from the resummation, which is

similar to our findings above with the Lund declustering observables.

4 Numerical validation of spin correlations within PanScales showers

In this section, we validate the PanScales showers against various numerical predictions.

In particular we want to demonstrate that the algorithm described above reproduces fixed-

order matrix elements in the strongly ordered limit and that it produces the correct NLL

distributions at all orders. Here, we first provide a brief summary of the PanScales showers.

A comprehensive description can be found in Ref. [24].

15Cf. figure 3 in Ref. [38]
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[Salam et al, Moult et al]



Applications: top quark decay

“E detectors” 〈E2E2E2〉 and “E2 detectors” 〈E3E3E3〉 in top quark decay:

[Holguin Moult Pathak Procura ’22]
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