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A better defined quantity in field theory is the extended modular Hamiltonian H

H=—logA=—log(pa®p;') = Ha— H;z

> We compute modular Hamiltonian Ha and the associated H for an excited
state obtained via perturbing vacuum state by a unitary operator U.
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Set-up

) = UJ0) — e 6|0} — exp [—ie L 4 FRO() | [0)

Here O(x) is a Hermitian operator, f(x) is a real-valued function, and € is an
expansion parameter. ¥ is some spacelike/null hypersurface.

> Our framework is a field theory in arbitrary dimensions d and we compute
the change in modular Hamiltonian dHa to first order in perturbations.

For most part A = Rindler half-space.

> The non-factorizability of Hilbert space in QFT shows up in an interesting
way in 6Ha or 0H.

» We provide a general form for §H for perturbations by J™ which is a
local hermitian operator of modular weight n under vacuum modular flow.

iH© iH© indler ns y(n s —s_ -
J(")(x)}sze'H /27 () (x)e =M s/2m  Rindier o J()(e xT, e x 7, xy1)
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> Modular Hamiltonians under shape deformations:

Allais-Mezei 2014, Faulkner et al. 2015-2016, Lewkowycz-Parrikar 2018,
Balakrishnan-Parrikar 2020 etc.



Contributions to dHp

Naively for spatial slice ¥ € AU A, implies G = GAa®@ 15 + 14 ® Gj.

Since Ga and Gz commute, the unitary transformation factors into

U=UaQ® U;



Contributions to dHp

Naively for spatial slice ¥ € AU A, implies G = GAa®@ 15 + 14 ® Gj.

Since Ga and Gz commute, the unitary transformation factors into

U=UaQ® U;

The reduced density matrices, modular operators and modular Hamiltonian for
the state |1)) would then behave as

pa=UapOUL,  pa=Usp UL

>

!

A=pa®p; =UAU", H=UHOU".
The first-order change in the modular Hamiltonian would then be given by

5ﬁcommutator _ 7I.€[G, E(O)]
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Only true for factorized systems and doesn't strictly hold for FTs. An explicit

‘endpoint’ (surface separating A and A) contribution arises to dH in various
examples .

P P -
SH = 6Hcommutator + (S-Hendpoint

> For perturbations via J(, (SHj“(;p;l““t is a sum of light-ray moments of

J and its descendants on the x* horizon (similar result for negative n).

n 2— k
n—2 2 0
—27re2 (0 Z (n—k—2/— 1)J dxt(xT) el M (x*,0,0)
k= 0 1=0 —0

> The simplest example is for stress-tensor perturbations in CFT», for which
> . 0
SHEPOMt — _2mre fof dx™ T4 (x") = ANEC operator.
—©

> The endpoint contribution is absent for modular weights n = —1,0, 1.



A property of the endpoint term

To first order in ¢, modular Hamiltonian annihilating the state implies

(H© 4 6H) (1 — ieG)[0) = 0
For 6H = —ie[G, H®] + §HPoint e should have 6 H*"4P°int|g) = 0,
This is indeed how the lightray operators and the lightray moments behave.

Kravchuk- Simmons-Duffin 2018, Kologlu et al. 2019

The light-ray moments of the form

00
L) = f dxT(x I (xT x7,x)  for k=0,1,2,...

—c0

annihilates the conformal vacuum both to the left and the right provided
k<A+n-1.

LIy =0=<0|c "] fork<A+n—1.

Same goes for the descendants.



Outline

» CFT vacuum perturbed by stress tensor (4 ways)

- Conformal transformation,
- General operator methods (two ways),

- Path integral method.

These methods can be generalized to obtain higher order O(e™) contributions
as well.

» CFT vacuum perturbed by higher modular weight operators (2 ways)
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Start with

(wv) = v—u
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—0

. Casini-Huerta-Myers 2011

Under the action of a conformal transformation z — g(z)

Hiww =2m f_w 2 @)(&(v)

0

(e(v) — £(2))(e(2) — g(w)
o gy

Das-Ezhuthachan 2018

We will be interested in the linearized perturbation g(z) = z + ef(z) which is
equivalent to perturbation by a stress tensor with the generator

G = sz f(z) T4 (2).
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Resulting change in the modular Hamiltonian

- =0
Hwy = Huwv —Hu,

v—2z)(z—u) +",(Z)u+v72z

v—u v—u

_ zmjoo dz T++(z)[ F(2)L

+F(v) (i:Z)z—f(u) (Z:if]

> The first line is commutator contribution —ie [G, H(O)].

» The second line is an endpoint contribution. Vanishes for f(u) = f(v) = 0.
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Endpoint contribution for Rindler half-space

We can zoom in on endpoints by choosing (a, b > 0). For example,

f(x) = fl(x + b) — fHH(x — a)
f()

[ [ 1 X
-b a

The resulting change in Rindler modular Hamiltonian (v = 0, v — o0)
o 0
0H (0,00) = 2mefy J dz Ty (z)[b6(z+b) +ad(z—a) +0(z+b)—0(z—a)—1]
— 00
a,b— 0% gives

,00)

5Hf3d"°’"t — —27refof dz To1(2).
—©

Note that naively taking a, b — 0T to begin with, gives vanishing f(x) and G.
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Endpoint effects at higher orders

n!

S = W Heom L5 with s peem = (19" [ N mﬁ("), G] ,G] , G] ]

The endpoint contribution depends on the endpoint effect of the conformal
transformation at that order.

o0 o0
z) = Z €"hn(z) = Z g\ (z) . For example, ho(z) = z, m(z) = f(z) etc.
n=0 n=0

(1) “endpoint
S H G0

@]

5 2) Hendpomt [[H(O) E(l)] G] 4 [ﬁ(0)7 E(2)]

(0,00)

i€)
5 Fdnoint _ ) [[[H®, ED], 61, 6] + (i) [[H®, E?], 6] + [H®, D]
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o . +o0 N N @ i€2 , +00 N N
E =—I6f(0)f dx" T4 (x7), E =—jf(0)f (O)J dxT T (xT),

63 N / 2 21 e +7OC
E® = i (FO)(F(0))7 + (FO)1F(0)) LD At Ty (x7) .
+o
E® = —g”(0) [ ax" Tu(x") = ~ig” (0) (ANEC),

In total, the endpoint effect is also a unitary transformation
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Endpoint effects at higher orders

o . +o0 N N @ i€2 , +00 N N
E =—I6f(0)f dx" T4 (x7), E =—jf(0)f (O)J dxT T (xT),

63 N / 2 21 e +7OC
E® = i (FO)(F(0))7 + (FO)1F(0)) LD At Ty (x7) .
+o
E® = —g”(0) [ ax" Tu(x") = ~ig” (0) (ANEC),

In total, the endpoint effect is also a unitary transformation

«> . . «> © .
Zé(n) Hendpolnt _ efleG <|:H(O), — Z g(n) (O) (ANEC):|) eleG

n n=0

= —27g(0) U (ANEC) U'.

ﬁexcited = U {E(O) _ 2ﬂ-g(0) (ANEC)} UJr .
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O0Hp for more general perturbations

Start with .
0O=—=> e Ha®liz
10) ¢?Z DA® i)z
1 _BE:| . .
Py = Tra|0)0] = 5 Y le *Hliranil
1 _BE: - .
P = Tra 00| = }Ze gy e

Similarly for pa etc. for state |¢).

We assume G = Ga ® Gz and expand pa to first order in €
1 _B(E; . . .
(opalm) = fZe PUELENI2 (—ie) (1] Gali(m| Gzl iy

1 5 N .
5 2 TR ()i Galm)<il Gall)

Readily generalizable (for first order perturbation) to G = >}, ¢iGa,i ® Gz,
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dHa for more general perturbations (cont'd)

The expression can be brought to a simpler form by defining modular
conjugated operators Gz by their matrix elements

AlilGaliva = a0l Galia = Gz=JGzJ
... Witten 2018
giving
8 = —icGa(p)*Galp)* + ie(pi)'*Galp) G

Generalizable to

8" pa = 0%?[[ H(pif”)% HOUR Gal Gal -]

A nice formula exists converting between dpa and dHa to first order
H® + §Ha = — log (p;°> + 5pA)

1 (® ds O\ 1_ s Oy L4 s
o <0>_,J _ 95 O ik s Oy -de s
&Pa 2) o 1+coshs(pA ) palpa’)

Sarosi-Ugajin 2017



dHa for more general perturbations (cont'd)

In our case,

ie [* ds
O0HA = — —
AT 2 ffoo 1+ coshs

—1_is ~ s~
(687735 Galo ) 2 Galo) 5 — (o) Galo)* Galo)H 51 )

In terms of modular-flowed operators (the second equality holds for operators
that just act on Ha)

0|, = & FOAF = (o)) F O *

s

we have

ie [ ds ~ o
0Ha =73 L,O T (Gl Gl — Galal,. )
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Two special cases

> If G4 = 14, then

ie [* ds ~ o
oHa =7 f_w o (6l Gl - Gal Gl )

gives Ha = 0.

> If Gz = 13, then

3 0 o0 —o0+27i is s
6Ha = %f dx f(x) [J +f ] LA7%7H J<n)(X) A%Jrﬁ

, - w2 1+ coshs

Using

ds - ;
a6 — _Ar =im
§1+coshsg(s) & (s = im),

one can show

Q0 >
i ot



Spacelike perturbation by J(")
The best way to approach is to instead write the perturbation as
G=G6a®1l;+14R® G;

with ;
Ga = J dx F(x) S (xt = x,x~ = —0x,0)

and




Spacelike perturbation by J(") (cont'd)

In this case, a careful analysis at early and late modular times (s — +0) gives
the required endpoint effects.

The resulting Sarosi-Ugajin formula looks like (w = e™°)
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Spacelike perturbation by J(") (cont'd)

In this case, a careful analysis at early and late modular times (s — +0) gives
the required endpoint effects.

The resulting Sarosi-Ugajin formula looks like (w = e™°)
ie [ ds

3 ) Treomns [(G4lsie + Gal.) = (Galo e + Gal) |

—ie[ " e (e + ) — (Gl + Gl

OHa =

For concreteness, study 6Ha inside a correlation function with J( (¥). Only in
conjunction with Ggz, well-behaved correlator independent of n at s — +

<(G~A}Sii7r + &A_‘S)J(n)(}/» - { 1/:‘/ for w — o

w forw — 0



Spacelike perturbation by J(") (cont'd)

st + + "
0 w0 exir ;0)" (y))

<GALiirJ(") )= (

~ n 0 ot
(Gal I (v)y = (f ) J_bdx+f(x+)<J<n>(, bt 0)17(y))



Spacelike perturbation by J(") (cont'd)

n et \" 2 o oefrxt guxt .
Gl 1700 = (7)) [t rcn i (2 - 00 )
~ R 1\" [° n xT n
Gl = (<) [t (= owe,0)17 ()

There are also a few branch-cuts which rotate as r —» 7

[w
N —<—
% X {
Y -1 b _a Y-
0b yt yt fa




Perturbation either on A or A

Perturbation acting on A alone: a> —b >0 = OHp = ie[ﬁ(o), G]
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Perturbation either on A or A

Perturbation acting on A alone: a> —b >0 = OHp = ie[ﬁ(o), G]

Lw
#\ <
— XX WA Y
TR
-1 b _a oy
yt yt fa 0b

Perturbation acting on A alone: —b < a <0 = 0Ha =0

[w
/\/\/\/\/\/\/\/\/%/\/\/\/\/\/\/V,\
% X N {
¥y -1 b _a
Oa 0b yt yt




Perturbation straddles the endpoint (a, b > 0)
Switching x* and w integrals we have §Ha = ic §, dx™* f(x)I(x") with

I(xT) = f (V|/({|—7W1)2 <—%)HJ(")(— %,0WX+,0).

oc
Study (§HaJ ™ (y)) leading to
dw 1\" 1
(xS (y)y = f s (——) AT
R A e L R S
For xT™ >0 e.g.
Lw
o) Coss
—— \+A
~1 zt Y~
yt 9t




Perturbation straddles the endpoint (cont'd)

Large w, n > 0:

1/w" if xT =0

<I(x+)J<n>(y)>~{ 1w it 20

No problem closing the C -shaped contour.
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Perturbation straddles the endpoint (cont'd)

Large w, n > 0:

1/w" if xt =0
<I(x+)J(n>(y)>~{ 1;WA it 20

No problem closing the C -shaped contour.
w—0, n>0:
1/w" if xT =0
I(xT)Jm ~
A~ 20

+

As long as x™ is non-zero, no problem closing the D -shaped contour.

x* large and negative: Contours don't encircle cuts. {/(x*)J™ (y)) = 0

x% large and positive: Contours give commutator contribution.

I(x) = 0(H) [H®, J™ (x*, —0x*,0)]
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Near x* = 0, the singularity involves (—1)*6®) (x*) for k = 0,...,n—2. The
coefficients are found by computing
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Perturbation straddles the endpoint (cont'd)

Near x* = 0, the singularity involves (—1)*6®) (x*) for k = 0,...,n—2. The
coefficients are found by computing

|| a1 )
-8
x* — 0: Consider (possible for our relevant moments)

fﬁ dxt (KU (x ) I () — (— Lw — J::) dx* ((x+)k<l(x+)J(") (y)>)

take xt — —wx™ and expanding in fwx™

fﬂ dx+(X+)k<l(X+)J(n)(y)>
T

0 B/w
([ [ e (0,0) 3%y, 0)

—a/w —o0




Perturbation straddles the endpoint (cont'd)

We can strip off J”)(y) and obtain (for k +2/ > n—1)

[CREDY (_kl!)ké(“(ﬁ)sk with z = 1/w

o0 | ©
__\ (=9 4; dz n7k72l71J‘ Froinkt Al j(n) ot
gk - Z /! (Z + 1)2 ( Z) o dx (X ) a—J (X 707 0)



Perturbation straddles the endpoint (cont'd)

We can strip off J”)(y) and obtain (for k +2/ > n—1)

Ix") =3, (_l)ké(k’(ﬁ)sk with z = 1/w

dz nek=21=1 [ kAl j(n)
( )2 (72) dx (X ) a—J (X ’ 07 0)
0

z+1

o

z=0,—1
Putting everything together, for n > 2 we have

) Ex with

o (=0 ”
Ee=2mi ) g (n—k =21~ 1)J dx T (x ) ™ (xT0,0)



Takeaways

For a general perturbative excitation
a
G= f dx*t Jdd_2xl F(xx)J ™ (xT, —6xT,x1)
—b

algebraic non-bipartition manifested in §H = §Hcommutater | g pjendpoint

n 2— k
«> . 2
SHemdpoint —27rejdd X1 Z f(“ 0,x1) Z (n—k—21—1)
1=0
o0
f dx T (x )l s (xT0,x.1) (for n>2)
—00
For n < -2
ol —2 |n| 22 kJ
ni— k+1
jendpoint _ d— 2 (k) (—1) (\n| — k-2 — 1)
SHemP = +27rejd Z . f (0,x1) TR



Final comments

> Discrete systems

» KMS conditions

» Perturbations over a causal diamond?

> Similar contribution in related quantities?

> Algebraic derivation

> Applications in holography

and many more ...



Thank you for your attention
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Why n > 2: some intuitive remarks

Endpoint contributions arise when the generator G can move operators from A
to A or vice versa along the x* Rindler horizon. Can be explicitly seen for
CFT, case.

Insert O(x™,x™,x.) at the endpoint x* = 0 and look for . O in

JP0)O(x) ~ -+ B2\ 0(x) + -+

On general grounds, for x™ = 0, the modular weight of B * is > 0 as it is
made up of either metric or x*. So, 04+ O can only appear in the OPE with an
operator of weight n > 1.

However, in the equal-time commutator [J((0), O(x)], it can only appear for
n=2.



Effects on entanglement entropy
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Now take f as constant perturbation as f(z) = f0(z + b) — /0(z — a);
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Finally, for a localized perturbation inside the (u, v) region:
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