Bifibrations of model categories

Friday, 14 October 2016 14:00 (50)

In this talk, I will explain how to endow the total category \mathcal{E} of a well-behaved Grothendieck bifibration $\mathcal{E} \to \mathcal{B}$ with a structure of a model category when both the basis \mathcal{B} and all fibers \mathcal{E}_b of the bifibration are model categories.

The motivating example is the well-known Reedy model structure on a diagram category $[\mathcal{R}, \mathcal{M}]$. The crucial step in its construction by transfinite induction lies in the successor case, which is usually handled by reasoning on latching and matching functors. A first observation is that those functors define a Grothendieck bifibration on the restriction functor $[\mathcal{R}_{\lambda+1}, \mathcal{M}] \to [\mathcal{R}_{\lambda}, \mathcal{M}]$ where \mathcal{R}_{λ} denotes the full subcategory of \mathcal{R} whose objects have degree less than λ. Unfortunately, this bifibration fails to fulfill the conditions of application of existing theorems in the literature ([1], [2]), which would have allowed to lift the model structure from the base category $\mathcal{B} = [\mathcal{R}, \mathcal{M}]$ to the total category $\mathcal{E} = [\mathcal{R}_{\lambda+1}, \mathcal{M}]$.

I will explain how to relax the hypotheses appearing in [1] and [2] by focusing on (co)cartesian lifts over acyclic (co)fibrations rather than over weak equivalences. This idea leads us to a simple and elegant condition for our new construction: some commutative squares in the base category are required to satisfy a homotopical version of the Beck-Chevalley condition. To conclude, I will apply the result to the Reedy construction and its generalizations ([3], [4]).

Primary author(s) : Mr CAGNE, Pierre (Université Paris 7)
Co-author(s) : Dr MELLIÈS, Paul-André (CNRS, Université Paris 7)
Presenter(s) : Mr CAGNE, Pierre (Université Paris 7)

Track Classification : Topologie algébrique et applications