Bifibrations of model categories (and the Reedy construction) Amiens 2016 — GDR Topologie algébrique et applications

> Pierre Cagne joint work with Paul-André Melliès

> > IRIF, Université Paris Diderot

October 14th, 2016

I. Liminaries

2. Bifibration of model categories

3. Comparison and applications

Liminaries

Grothendieck bifibrations

A <u>cloven</u> Grothendieck bifibration is a functor $p: \mathcal{E} \to \mathcal{B}$ together with

Push and pull

Hence $u_!$ and u^* extend to functors:

For any $f : X \to Y$ in \mathcal{E} over $u : A \to B$,

This produces an adjunction $u_! : \mathcal{E}_A \hookrightarrow \mathcal{E}_B : u^*$ between fibers.

Weak factorization system

In a category \mathcal{M} , denote $j \boxtimes q$ when for any

Definition

A weak factorisation system on a category ${\mathfrak M}$ is a couple $({\mathfrak L}, {\mathfrak R})$ such that

- $\mathfrak{L} = \{j : \forall q \in \mathfrak{R}, j \boxtimes q\}$ and $\{q : \forall j \in \mathfrak{L}, j \boxtimes q\} = \mathfrak{R}$
- each morphism factors as $q \circ j$ for $j \in \mathfrak{L}$ and $q \in \mathfrak{R}$.

Model category

Definition

A model category is a complete and cocomplete category ${\mathfrak M}$ together with Cof, W, Fib such that

- W has 2-out-of-3,
- $(Cof \cap W,Fib)$ and $(Cof,W \cap Fib)$ are weak factorisation systems.

An adjunction $L: \mathcal{M} \hookrightarrow \mathcal{N} : R$ is Quillen when:

 $L(Cof_{\mathcal{M}}) \subseteq Cof_{\mathcal{N}} \qquad R(Fib_{\mathcal{N}}) \subseteq Fib_{\mathcal{M}}$

Bifibration of model categories

Lifting weak factorisation systems

Define a wfs-adjunction as an adjunction $L: \mathcal{M} \leftrightarrows \mathcal{N} : R$ such that

$$L(\mathfrak{L}_{\mathcal{M}}) \subseteq \mathfrak{L}_{\mathcal{N}} \qquad R(\mathfrak{R}_{\mathcal{N}}) \subseteq \mathfrak{R}_{\mathcal{M}}$$

Proposition (folklore)

Given a bifibration $p : \mathcal{E} \to \mathcal{B}$ with a wfs $(\mathfrak{L}, \mathfrak{R})$ on \mathcal{B} and a wfs $(\mathfrak{L}_A, \mathfrak{R}_A)$ on each fiber \mathcal{E}_A , if each pair (u_1, u^*) is a wfs-adjunction, the following classes yield a wfs on \mathcal{E} :

$$\mathfrak{L}_{\mathcal{E}} = \{ f : p(f) \in \mathfrak{L}, f_{\triangleright} \in \mathfrak{L}_{\mathcal{B}} \} \qquad \mathfrak{R}_{\mathcal{E}} = \{ f : p(f) \in \mathfrak{R}, f_{\triangleleft} \in \mathfrak{R}_{\mathcal{A}} \}$$

General principle

From now on, $p : \mathcal{E} \to \mathcal{B}$ is a bifibration with model structure (Cof, W, Fib) on \mathcal{B} and (Cof_A, W_A, Fib_A) on each fiber \mathcal{E}_A such that every (u_1, u^*) is Quillen.

Call f in \mathcal{E}

- a total acyclic cofibration if $p(f) \in Cof \cap W$ and $f_{\triangleright} \in Cof_{B} \cap W_{B}$,
- a total acyclic fibration if $p(f) \in \operatorname{Fib} \cap W$ and $f_{\triangleleft} \in \operatorname{Fib}_A \cap W_A$.

Denote $Cof_{\mathcal{E}}, WCof_{\mathcal{E}}$ and $Fib_{\mathcal{E}}, WFib_{\mathcal{E}}$ the corresponding classes.

Key observation

If we find a class $W_{\ensuremath{\mathcal{E}}}$ of total weak equivalences such that

- W_E has 2-out-of-3,
- $WCof_{\mathcal{E}} = Cof_{\mathcal{E}} \cap W_{\mathcal{E}}$ and $WFib_{\mathcal{E}} = Fib_{\mathcal{E}} \cap W_{\mathcal{E}}$.

then $Cof_{\mathcal{E}}, W_{\mathcal{E}}, Fib_{\mathcal{E}}$ is a model structure on \mathcal{E} .

Total weak equivalences

Main Idea

You don't have a choice for the total weak equivalences:

 $W_{\mathcal{E}} \stackrel{\text{def}}{=} WFib_{\mathcal{E}} \circ WCof_{\mathcal{E}}$

Call
$$f : X \to Y$$
 acyclic relatively to
 (u, v) if $p(f) = vu$ with $u \in$
Cof \cap W and $v \in$ Fib \cap W, and
 $u_! X \to v^* Y \in W_C$.

Define f to be a total weak equivalence if it is acyclic relatively to some pair.

Necessary conditions

12

H₁ u_1 preserves and reflects weak equivalences if $u \in Cof \cap W$. H₂ v^* preserves and reflects weak equivalences if $v \in Fib \cap W$. hBC every square of the form

satisfies the homotopical Beck-Chevalley condition, i.e. the mate $u'_{!}v^* \rightarrow {v'}^*u_{!}$ is pointwise in $W_{C'}$.

Main result

13

Theorem

The bifibration $p: \mathcal{E} \to \mathcal{B}$ satisfies H_1 , H_2 and hBC if and only if $Cof_{\mathcal{E}}, W_{\mathcal{E}}, Fib_{\mathcal{E}}$ give a model structure on \mathcal{E} where

- $\operatorname{Cof}_{\mathcal{E}} = \{ f : p(f) \in \operatorname{Cof}_{\mathcal{B}} \} \in \operatorname{Cof}_{\mathcal{B}} \}$
- $\operatorname{Fib}_{\mathcal{E}} = \{f : p(f) \in \operatorname{Fib}, f_{\triangleleft} \in \operatorname{Fib}_{\mathcal{A}}\}$
- $\mathbf{W}_{\mathcal{E}} = \{ f : p(f) \in \mathbf{W}, f \text{ acyclic relatively to some } (u, v) \}$

What about completeness and cocompleteness of \mathcal{E} ?

Limits and colimits in $\ensuremath{\mathcal{E}}$ can be constructed from those in the fibers and in the base.

Comparison and applications

Warm up example: the codomain bifibration

Given a category C, the functor $cod : Arr(C) \rightarrow C$, $(A' \rightarrow A) \mapsto A$ is a bifibration where pulls and pushs are given as follow:

If \mathcal{C} is a model category, each fiber $\text{cod}_A \simeq \mathcal{C}_{/A}$ inherit a canonical model structure. The conditions H_1 , H_2 and hBC are satisfied, hence we get a model structure on $\text{Arr}(\mathcal{C})$... which is the injective model structure!

Related works

• Model category structures in bifibred categories (1994) Roig Bifibrations and Weak Factorisation Systems (2012) Stanculescu

Defines $W_{\mathcal{E}}$ as those f such that $p(f) \in W$ and $f_{\triangleleft} \in W_{\mathcal{A}}$.

• The Grothendieck construction for model categories (2015) Harpaz, Prasma Defines $W_{\mathcal{E}}$ as those $f : X \to Y$ such that $u = p(f) \in W$ and $X \to u^*Y \to u^*Y^{\text{fib}} \in W_A$.

In both cases, with <u>Y fibrant</u>, if f cartesian and $p(f) \in W$, then $f \in W_{\mathcal{E}}$. Try to apply to the codomain bifibration:

Reedy categories

Definition (Reedy category)

A Reedy category is a category ${\mathcal R}$ together with subcategories ${\mathcal R}^+, {\mathcal R}^-$ such that

- there is a degree $d:\operatorname{Ob}\nolimits \mathcal{R}\to \mu$ raised (lowered) by non-identity maps of \mathcal{R}^+ $(\mathcal{R}^-),$
- every morphism factors uniquely as f^+f^- with $f \in \mathcal{R}^+$ and $f^- \in \mathcal{R}^-$.

Define \mathfrak{R}_{λ} to be the full subcategory with objects of degree $< \lambda$. An extension $X : \mathfrak{R}_{\lambda+1} \to \mathfrak{M}$ of $A : \mathfrak{R}_{\lambda} \to \mathfrak{M}$ is exactly the choiche of factorizations

$$L_r A \to X_r \to M_r A \quad \forall r \text{ with degree } \lambda$$

Reedy model structure

Theorem

If ${\mathcal M}$ is a model category and ${\mathcal R}$ a Reedy category, then there is a model structure on $[{\mathcal R},{\mathcal M}]$ where

- the weak equivalences are pointwise,
- the cofibrations are those $f : A \to B$ such that the induced $L_r B \sqcup_{L_r A} A_r \to B_r$ is a cofibration in \mathcal{M} for any $r \in \mathcal{R}$,
- the fibrations are those $f : A \to B$ such that the induced $A_r \to M_r A \times_{M_r B} B_r$ is a fibration in \mathcal{M} for any $r \in \mathcal{R}$.

Why exactly do those maps naturally come into play?

The Reedy construction...

19

Because they secretly are fiber morphisms!

The restriction $p_{\lambda} : [\mathcal{R}_{\lambda+1}, \mathcal{M}] \to [\mathcal{R}_{\lambda}, \mathcal{M}]$ is a bifibration:

The fiber at A is equivalent to

 $\prod_{r \in \mathcal{R}, \deg(r) = \lambda} L_r A \setminus \mathcal{M}_{/M_r A}$

hence is a model category.

If $[\mathcal{R}_{\lambda}, \mathcal{M}]$ has the Reedy model structure, then H₁, H₂ and hBC are satisfied, and... $[\mathcal{R}_{\lambda+1}, \mathcal{M}]$ gets the Reedy model structure by the theorem.

... and its generalizations

20

In Reedy categories and their generalizations (2015) by Mike Shulman:

Theorem 3.11

If ${\mathcal M}$ and ${\mathcal N}$ model categories, ${\it F},{\it G}:{\mathcal M}\to {\mathcal N}$ and $\alpha:{\it F}\to {\it G}$ st

- F cocont. and maps $Cof \cap W$ to couniversal weak equivalences,
- G cont. and maps $Fib \cap W$ to universal weak equivalences,

then the biglueing $GI(\alpha)$ is a model category.

This is the key theorem to get a framework encompassing all known generalized Reedy situation: classical Reedy categories, Berger-Moerdijk, Cisinski, etc.

Glueing

The category $Gl(\alpha)$ has

• as objects: the factorizations

 $FA \rightarrow X \rightarrow GA$ of α_A $A \in \mathcal{M}, X \in \mathcal{N}$

• as morphisms: the commutative diagrams

$$\begin{array}{ccc} FA & \longrightarrow & X & \longrightarrow & GA \\ Fu & & & & \downarrow_{f} & & \downarrow_{Gu} & u \in \mathcal{M}, f \in \mathcal{N} \\ FB & \longrightarrow & Y & \longrightarrow & GB \end{array}$$

The forgetful functor $Gl(\alpha) \rightarrow \mathcal{M}$ is a Grothendieck bifibration. Hypothesis H_1 , H_2 and hBC are met, hence a model structure on $Gl(\alpha)$.

Thank you.

http://www.normalesup.org/~cagne/ https://pierrecagne.github.io

This document is licensed under CC-BY-SA 4.0 Intrenational.