A Generalized Blakers-Massey Theorem

Georg Biedermann

LAGA, Univ. Paris 13

GdR 2875 Topologie Algébrique et Application, Amiens

12.10.2016

New proof of classical BMT in Homotopy Type Theory Favonia-Finster-Licata-Lumsdaine "A Mechanization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory" arXiv:1605.03227

"Reverse engineered version" Rezk "Proof of the Blakers-Massey Theorem", homepage

Different approach Chachólski-Scherer-Werndli "Homotopy Excision and Cellularity" arXiv:1408.3252

Theorem (Anel-B-Finster-Joyal)

Let $(\mathcal{L}, \mathcal{R})$ be a modality in an ∞ -topos. Consider a homotopy pushout

lf

 $\Delta(f) \Box \Delta(g) \in \mathcal{L}$

then the cartesian gap map

$$(f,g): A \to B \times^h_D C$$

is in \mathcal{L} . In symbols: $(f,g) > \Delta(f) \Box \Delta(g)$

An ∞ -topos is a left exact localization of a simplicial presheaf category (on a small category).

Example

- simplicial sets S = "spaces"
- functors to simplicial sets (from a small category)
- n-excisive functors to simplicial sets
- spectra parametrized by spaces

Given a commutative diagram

we call the canonical map

$$(f,g): A \to B \times_D C$$

the (cartesian) gap (map). The canonical map

 $B\sqcup_A C \to D$

will be the *cocartesian gap map/cogap*.

Given a map

 $f\colon A\to B$

the diagonal is the canonical map

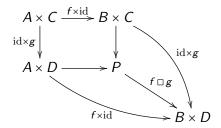
$$\Delta(f): A \to A \times_B A.$$

Example

$$-\Delta(* \rightarrow X) = * \rightarrow \Omega X$$

 $-\Delta(X \rightarrow *) = X \rightarrow X \times X$, the diagonal.

Consider maps $f: A \rightarrow B$ and $g: C \rightarrow D$.



One has:

 $(f \Box g) \Box h = f \Box (g \Box h)$

Given two objects A and B.

Example

We have

$$(A \to *) \Box (B \to *) = (A * B \to *),$$

where $A \star B$ denotes the join of A and B.

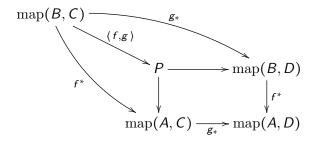
Example

We have

$$(* \rightarrow A) \square (* \rightarrow B) = (A \lor B \rightarrow A \times B).$$

The Pullback Bracket

Adjointly:



One has:

$$\langle f, \langle g, h \rangle \rangle = \langle f \Box g, h \rangle$$

A map f is *left orthogonal to* g, if $\langle f, g \rangle$ is a weak equivalence. We write:

 $f \perp g$

Given a class \mathcal{R} of maps, we write ${}^{\perp}\mathcal{R}$ for the class of maps that are left orthogonal to all maps in \mathcal{R} . Similarly, \mathcal{L}^{\perp} , $({}^{\perp}\mathcal{R})^{\perp}$, ...

Let $\mathcal L$ and $\mathcal R$ be two classes of maps. The pair $(\mathcal L,\mathcal R)$ forms a *factorization system* if

1. each map f can be functorially factored (uniquely up to homotopy) into $f = r\ell$ where $\ell \in \mathcal{L}$ and $r \in \mathcal{R}$

and

2. $\mathcal{L}^{\perp} = \mathcal{R}$ and $\mathcal{L} = {}^{\perp}\mathcal{R}$.

Example

For $n \ge -1$ the pair (*n*-connected, (n-1)-truncated) form a factorization system on spaces.

A modality is a factorization system $(\mathcal{L}, \mathcal{R})$ such that the left class \mathcal{L} is closed under base change.

Example

Given a left exact localization F of an ∞ -topos. Then

```
(F-equivalences, F-local maps)
```

form a modality.

Proposition (ABFJ)

Given a set S of maps in an ∞ -topos, there exists a smallest modality such that $S \subset \mathcal{L}$.

Definition

This smallest modality is called the modality generated by S.

We then write $\ell > S$ for any $\ell \in \mathcal{L}$.

In particular, if $S = \{f\}$, then $\ell > f$.

If $\ell: A \to *$ and $f: B \to *$, then this is equivalent to

A > B

in the sense of Dror Farjoun ("A is killed by B", $P_B(A) = *$).

Fix a map ℓ . We say that a map f is *fiberwise right orthogonal* and write

 $\ell \perp f$

if f is right orthogonal to any base change of ℓ .

Observe: A modality $(\mathcal{L}, \mathcal{R})$ is just an ordinary factorization system where each map in \mathcal{R} is fiberwise right orthogonal to any map in \mathcal{L} .

Blakers-Massey Theorem

Theorem (ABFJ)

Let $(\mathcal{L}, \mathcal{R})$ be a modality in an ∞ -topos. Consider a pushout

lf

 $\Delta(f) \Box \Delta(g) \in \mathcal{L}$

then the cartesian gap map

 $(f,g): A \to B \times_D C$

is in *L*. In other words:

 $(f,g) > \Delta(f) \Box \Delta(g)$

Chacholski-Scherer-Werndli ("Homotopy Excision and Cellularity") prove for spaces:

 $\operatorname{fib}(f,g) > (\Omega \operatorname{fib} f) * (\Omega \operatorname{fib} g).$

Note:

$$\operatorname{fib}(\Delta(f) \Box \Delta(g)) = (\Omega \operatorname{fib} f) * (\Omega \operatorname{fib} g)$$

Observe that the following are equivalent:

- $h > (S^n \to *)$
- h is n-connected
- $-\Delta(h)$ is (n-1)-connected

Proof:

$$\begin{aligned} (f,g) > \Delta(f) \Box \Delta(g) > (S^{m-1} \to *) \Box (S^{n-1} \to *) \\ &= (S^{m-1} \star S^{n-1} \to *) = (S^{m+n-1} \to *) \end{aligned}$$

Theorem (ABFJ)

In an ∞ -topo consider a pullback:

Then for the cogap map

 $B\cup_A C\to D>f \square g.$

イロン イボン イヨン トヨ

Let $\mathcal{F} = \operatorname{Fun}_{\mathcal{S}}(\mathcal{S}^{\operatorname{fin}}, \mathcal{S})$ or $\mathcal{F} = \operatorname{Fun}_{\mathcal{S}}(\mathcal{S}^{\operatorname{fin}}_*, \mathcal{S})$; these are ∞ -topoi.

A *homotopy functor* is a functor that preserves the class of weak equivalences.

Goodwillie: Treat homotopy functors as analogues of C^{∞} -functions and study a Taylor expansion.

Theorem (Goodwillie)

For each homotopy functor F exist a tower of functors

$$F \rightarrow \cdots \rightarrow P_n F \rightarrow \cdots \rightarrow P_1 F \rightarrow P_0 F$$
,

such that $F \rightarrow P_n F$ is initial among all maps to n-excisive functors.

A homotopy functor is *n*-excisive if it sends all strongly cocartesian (n + 1)-cubes to cartesian ones.

Examples

- 1. F 0-excisive \iff F constant up to homotopy
- 2. F 1-excisive $\iff \pi_*F$ gen. homology theory

Here, $P_n F$ = hocolim_k $T_n^k F$ with

$$F(X) \rightarrow T_n F(X) = \operatorname{holim}_{U \neq \emptyset} F(X \star U),$$

where $U \subset \{1, \cdots, n+1\}$.

Let *F* be reduced, ie. F(*) = *. Then

$$F(X) \rightarrow T_1 F(X) = \Omega F(\Sigma X),$$

and

$$P_1F(X) = \operatorname{hocolim}_k \Omega^k F(\Sigma^k X) = \Omega^\infty F(\Sigma^\infty X)$$

For F = id

$$P_1$$
id = $\Omega^{\infty} \Sigma^{\infty}$.

Stable homotopy is the closest homology theory to the identity of pointed spaces.

A map $f: F \to G$ is *n*-excisive (or P_n -local) if

is a homotopy pullback.

A map f is a P_n -equivalence if the induced map $P_n f$ is an equivalence.

Recall: The pair (P_n -equiv., n-exc. maps) is a modality. (P_n is left exact!)

Theorem (Anel/B/Finster/Joyal)

In a homotopy pushout square in \mathcal{F} = Fun $(\mathcal{C}, \mathcal{S})$

let f be a P_m -equivalence and g a P_n -equivalence. Then

$$(f,g): A \to B \times_D C$$

is a P_{m+n+1} -equivalence.

Holds also for functors to \mathcal{S}_* .

Corollary

Let F be n-reduced. Then $P_{2n-1}F \simeq \Omega P_{2n-1}\Sigma F$.

Corollary (Arone-Dwyer-Lesh)

If a functor has derivatives only in the range between n and 2n-1 then it is infinitly deloopable.

Corollary (Goodwillie)

If a functor is n-homogeneous it is infinitly deloopable.

In fact, $BF = P_n \Sigma F$ for F *n*-homogeneous.

We write for $K \in \mathcal{S}_*^{\text{fin}}$

$$R^K = \operatorname{map}_{\mathcal{S}_*}(K, -).$$

We write

$$w_K: * \to R^K$$

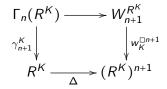
for the canonical map picking out the constant map.

Idea: In the same way as $S^0 \rightarrow *$ generates the connected-truncated modalities, the maps w_K generate the Goodwillie tower.

Consider the map

$$w_{K_0} \Box \cdots \Box w_{K_n} \colon W_{n+1}(R^{K_0}, \cdots, R^{K_n}) \to R^{K_0} \times \cdots \times R^{K_n}.$$

For $K_0 = \cdots = K_n = K$ there is a pullback



and γ_K is called the *n*-th Ganea fibration of R^K .

Proposition (ABFJ)

Using Yoneda γ_n^K induces the map

$$t_nF\colon F\to T_nF$$

used by Goodwillie to define T_nF and then P_nF .

Proposition (ABFJ)

The maps γ_n^K and w_{n+1}^K possess the same fiberwise right orthogonal class of maps.

Corollary (ABFJ)

 P_m -equiv \Box P_n -equiv \subset P_{m+n+1} -equiv

Proposition

In an ∞ -topos one has:

1. A map f is mono iff $\pi_0 f$ is mono and the square

is a homotopy pullback.

2, A map f is epi iff $\pi_0 f$ is epi.

Proposition (ABFJ)

In the ∞ -topos $P_n \mathcal{F}$ we have:

1. A map f is mono iff P_0f is mono and the square

is a homotopy pullback.

2. A map f is epi iff $P_0 f$ is epi.