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On High genus geometry and/or asympotic enumeration:
- hyperbolic geometry
- maps
- random graphs
- enumeration (cf this talk)
- and more !
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A bit of context:
combinatorial maps and enumerative combinatorics



Definition : maps

Map = discrete surfaces
i.e. gluing of polygons along their edges to create a (compact, connected, oriented)
surface
Genus g of the map = genus of the surface = # of handles



Counting maps
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Question : how many maps are there?

Exact answer for planar maps (i.e in genus 0)

Theorem [Tutte ’60s]:
an = nb of planar maps with n edges

an =
2 · 3n · Cat(n)

n+ 2

”Catalan number” (counts trees etc.)

Cat(n) =
1

n + 1

(
2n

n

)

Method : Generating function and recursive decomposition

F (z) =
∑
n≥0

anz
n

= + +
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Counting maps . . . asymptotically

How about maps in positive genus ?

Theorem [Lehman–Walsh ’72+ Bender–Canfield ’86] :

a
(g)
n = nb of maps of genus g with n edges

a(g)n ∼ Cg12
nn5/2(g−1)

as n → ∞ for g fixed.

What if n and g both go to ∞ ?

Large genus geometry: negative average discrete curvature, hyperbolic behaviour.
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Bivariate asymptotics

If n, g → ∞, we’re dealing with bivariate asymptotics
→ it is notoriously difficult !

Recent progress to get asymptotics when the
generating function is explicit and ”simple”

→ maps do not fit in this case !

(2nd edition, 2024, 550 pages !)



The problem: enumerating unicellular maps, asymptotically,
bivariately



Unicellular maps

Simplest model of maps: maps with only one face/gluing of a single polygon

(unicellular map of genus 0 = tree !)



Unicellular maps

Simplest model of maps: maps with only one face/gluing of a single polygon

Let E(n, g) be the number of unicellular maps with n edges and genus g
Goal: Study the asymptotics of E(n, g) as n, g → ∞ !

(unicellular map of genus 0 = tree !)



Unicellular maps: what’s known ?

Theorem [Harer–Zagier ’86]: E(0, 0) = 1, for n ≥ 1, n ≥ 2g, we have

(n+ 1)E(n, g) = 2(2n− 1)E(n− 1, g) + (n− 1)(2n− 3)(2n− 1)E(n− 2, g − 1)

=⇒ 1 + 2xy + 2
∑

g≥0,n>0

E(n, g)

(2n− 1)!!
yn+1xn+1−2g =
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(n+ 1)E(n, g) = 2(2n− 1)E(n− 1, g) + (n− 1)(2n− 3)(2n− 1)E(n− 2, g − 1)

=⇒ 1 + 2xy + 2
∑
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E(n, g)

(2n− 1)!!
yn+1xn+1−2g =

(
1 + y
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)x

Asymptotic enumeration:
• for g

n → θ ∈ (0, 1/2) [Angel–Chapuy–Curien–Ray ’13]

• for g = O(n1/3) [Curien–Kortchemski–Marzouk ’23]

Method : A bijection between unicellular
maps and decorated trees
[Chapuy–Féray–Fusy ’12] (first case)
core/kernel decomposition (second case)

−

−+

+

−
+

image : G. Chapuy



Univellular maps: full asymptotics

Our goal: Obtain asymptotics for E(n, g) for all regimes of n, g using only the
Harer-Zagier recurrence (we forget about the combinatorics !)
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Our goal: Obtain asymptotics for E(n, g) for all regimes of n, g using only the
Harer-Zagier recurrence (we forget about the combinatorics !)

Theorem: [Elvey-Price–Fang–L.–Wallner ’2x]
As n, g → ∞ with n− 2g >> log(n)

E(n, g) ∼ 1

2
√
2π

n2g−2enf(
g
n )J

( g

n

)
,

with

θ(λ) =
1

2
−

λ log
(

1+
√
1−4λ

1−
√
1−4λ

)
√
1− 4λ

,

f(θ) = −θ log

(
1− 4λ

4λ2

)
− 2θ − log(λ),

J(θ) =

√
2

λ(θ)(1− 4λ(θ)− 2θ + 4θλ(θ))
.
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(HZ) (n+1)E(n, g) = 2(2n−1)E(n−1, g)+(n−1)(2n−3)(2n−1)E(n−2, g−1)

Idea: if I have explicit formulas for number Ω(n, g) such that they satisfy (HZ) and
Ω(0, 0) = E(0, 0), then E(n, g) = Ω(n, g) always !

Can we do it asymptotically ?

Goal: find numbers Ω(n, g) such that:

Ω(n, 0) ∼ E(n, 0) as n → ∞ “asymptotic initial condition”

(n+ 1)Ω(n, g) ≈ 2(2n− 1)Ω(n− 1, g) “asymptotic recurrence”

+ (n− 1)(2n− 3)(2n− 1)Ω(n− 2, g − 1)

Then hopefully
Ω(n, g) ∼ E(n, g)



Idea of proof 2: random walks
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Rewriting the recurrence in terms of walks

Set A(v, g) := E(v + 2g, g) Harer–Zagier rewrites

A(v,g) =
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n+ 1
A(v − 1,g) +
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n+ 1
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A(v − 1,g − 1)

+
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+
(n− 1)(2n− 3)(2n− 1)(n− 3)(2n− 7)(2n− 5)
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=
∑

paths from (v, g) to (0, 0)

∏
steps of the paths

weight(step)

(0,0)

(because A(0, 0) = 1 !)
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Modelling by random walks: first ideas

Question: What are the paths that contribute to the counting ?
Behaviour of RW started from N0, G0, with weight steps:

2(2n− 1)

n+ 1

E(n− 1, g)

E(n, g)
and

(n− 1)(2n− 3)(2n− 1)

n+ 1

E(n− 2, g − 1)

E(n, g)

Approximation goal: Find Ω(n, g) such that

2(2n− 1)

n+ 1

Ω(n− 1, g)

Ω(n, g)
+

(n− 1)(2n− 3)(2n− 1)

n+ 1

Ω(n− 2, g − 1)

Ω(n, g)
≈ 1



Proof: more details



Defining Ω(n, g)

Setup:

Ω(n, g) :=
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Ω(n, g)

Key property: for n > 2g and g > 0:

α(n, g) + β(n, g) := 1 +O

(
1

n log2(n)

)

This means that our approximation by a random walk will be valid !

summable !



Defining the random walk

Setup: Start from N0, G0 = n, g, stop when Gk = 0 or Nk = 2Gk.
Stopping time τ = τ(n, g)

(Nk+1, Gk+1) = (Nk − 1, Gk) with proba
α(Nk, Gk)
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Defining the random walk

Setup: Start from N0, G0 = n, g, stop when Gk = 0 or Nk = 2Gk.
Stopping time τ = τ(n, g)

(Nk+1, Gk+1) = (Nk − 1, Gk) with proba
α(Nk, Gk)

α(Nk, Gk) + β(Nk, Gk)

(Nk+1, Gk+1) = (Nk − 2, Gk − 1) with proba
β(Nk, Gk)

α(Nk, Gk) + β(Nk, Gk)

Conserved quantity:

Q(n, g) :=
E(n, g)

Ω(n, g)

(HZ) rewrites

Q(n, g) = α(n, g)Q(n− 1, g) + β(n, g)Q(n− 2, g − 1)

Hence
E(Q(Nk+1, Gk+1)) ≈ E(Q(Nk, Gk))



Typical behaviour and asymptotic result
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Gτ = 0 and Nτ → ∞



Typical behaviour and asymptotic result

Typical behaviour:
Propostion: As n, g → ∞ with n− 2g >> log n, with “very high probability”:

Gτ = 0 and Nτ → ∞

Asymptotics as a corollary:
Since Q(n, 0) → 1 as n → ∞,

E(Q(Nτ , Gτ )) ∼ 1

, but
E(Q(Nτ , Gτ )) ∼ Q(N0, G0) = Q(n, g)

hence
E(n, g) ∼ Ω(n, g)
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Plotting:
Fix θ ∈ (0, 1/2) and plot

E(⌊θ−1g⌋, g − 1)
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it grows like g2

E(⌊θ−1g⌋ − 1, g)
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it converges but depends on θ
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How to guess ?

Plotting:
Fix θ ∈ (0, 1/2) and plot

E(⌊θ−1g⌋, g − 1)

E(⌊θ−1g⌋, g)
it grows like g2

E(⌊θ−1g⌋ − 1, g)

E(⌊θ−1g⌋, g)
it converges but depends on θ

(HZ) (n+1)E(n, g) = 2(2n−1)E(n−1, g)+(n−1)(2n−3)(2n−1)E(n−2, g−1)

“Guess and check”:

E(n, g) ≈ n2gexp (nf(g/n)))

First order of (HZ) gives a differential equation for f .
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Conclusion

Robust method: Doesn’t rely on the combinatorics of the model, in fact we can
study other linear recurrences of the same kind !
→ Open question: how large is the class of recurrences tackled by our method ?

Recap: Approximating a linear bivariate recurrence by a random walk
Guess and check type of method
Nice feature: once the RW is defined, we only have to manipulate explicit formulas (a
bit tedious though)

Perspectives:
• linear → quadratic
• sticky walls → bouncy walls
• coefficients depend only on n → coefficients depending on n and g

Other works on recurrences and random walks:
[Aggarwal ’18,’20, Elvey-Price–Fang–Wallner ’19,’20, Chassaing–Flin ’22,. . . ]



Thank you !


