Counting with random walks

Baptiste Louf
with Andrew Elvey—Price, Wenjie Fang and Michael Wallner

A

< - )

Y E—V

Ve y

W e Y L >



2-year postdoc position with me

Bordeaux, starting Fall 2025, deadline 31 December 2024

On High genus geometry and/or asympotic enumeration:
- hyperbolic geometry

- maps

- random graphs

- enumeration (cf this talk)

- and more |

For more info, check my website: https://baptiste.louf.fr/



A bit of context:
combinatorial maps and enumerative combinatorics



Definition : maps

Map = discrete surfaces
i.e. gluing of polygons along their edges to create a (compact, connected, oriented)

surface
Genus g of the map = genus of the surface = # of handles
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Counting maps
Question : how many maps are there?

Exact answer for planar maps (i.e in genus 0)

Theorem [Tutte '60s|: " Catalan number” (counts trees etc.)
a, = nb of planar maps with n edges 1 /on
/ Cat(n) =
n+1\n
2-3"-Cat(n)
A, =
n -+ 2

Method : Generating function and recursive decomposition

F(z) = Z an 2"

n>0

o 60
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Counting maps ... asymptotically

How about maps in positive genus 7

Theorem [Lehman—Walsh '72+ Bender—Canfield '86] :
a9 = nb of maps of genus g with n edges

a%g) ~ C, 197,5/2(9—1)

as n — oo for g fixed.

What if n and g both go to oo 7

Large genus geometry: negative average discrete curvature, hyperbolic behaviour.
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If n, g — o0, we're dealing with bivariate asymptotics
— it is notoriously difficult !

Cambridpe swdies in advanced mathemacecs

Analytic Recent progress to get asymptotics when the
Combinatorics in generating function is explicit and "simple”
Several Variables

Recond Ealclon (2nd edition, 2024, 550 pages !)

ROBIN PEMANTLE
MARK C. WILSON

STEPHEN MELCZER

— maps do not fit in this case !




The problem: enumerating unicellular maps, asymptotically,
bivariately
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Unicellular maps

Simplest model of maps: maps with only one face/gluing of a single polygon

(unicellular map of genus 0 = tree !)

Let F(n,g) be the number of unicellular maps with n edges and genus g
Goal: Study the asymptotics of E(n,g) as n,g — oo !



Unicellular maps: what’s known ?
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Unicellular maps: what’s known ?

Theorem [Harer—Zagier '86|: E(0,0) =1, for n > 1,n > 2g, we have

(m+1)E(n,g) =22n—-1)E(n—-1,9)+(n—1)2n—-3)2n—1)E(n — 2,9 — 1)

E(n,g) _ 1+y\"

— 1+2 2 ’ ntlntl-2¢g _ [ 2 1 J

Ty 2 ) on—nn? " 1y
9=>0,n>0

Asymptotic enumeration:
o for £ — 0 ¢ (0,1/2) [Angel-Chapuy-Curien—Ray "13]
o for g = O(n'/?) [Curien—Kortchemski—-Marzouk '23]

Method : A bijection between unicellular ¥\ /
maps and decorated trees

|[Chapuy—Féray—Fusy '12] (first case) n /—i\‘ -
core/kernel decomposition (second case)

image : G. Chapuy



Univellular maps: full asymptotics

Our goal: Obtain asymptotics for F(n, g) for all regimes of n, g using only the
Harer-Zagier recurrence (we forget about the combinatorics !)



Univellular maps: full asymptotics

Our goal: Obtain asymptotics for FE(n, g) for all regimes of n, g using only the
Harer-Zagier recurrence (we forget about the combinatorics !)

Theorem: |[Elvey-Price—Fang—L.—\Wallner '2x]
As n,g — oo with n — 2g >> log(n)

1 g
E(n,g) ~ 2 27Tn2g—26nf(z){] (2) ,

S

with




Idea of proof 1: guess and check
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(HZ) (n+1)E(n,g9)=22n—1)E(n—1,9)+(n—1)2n—3)2n—1)E(n—2,9—1)

Idea: if | have explicit formulas for number €2(n, g) such that they satisfy (HZ) and
(2(0,0) = E(0,0), then E(n,g) = Q(n,g) always !

Can we do it asymptotically 7

Goal: find numbers 2(n, g) such that:

(n,0) ~ E(n,0) as n — o0 *asymptotic initial condition”

(n+ 1)Q(n,g) = 2(2n—1)Q(n—1,g) “asymptotic recurrence”
+(n—12n-3)2n—1)Q(n—2,9 — 1)

Then hopefully
n, g) ~ E(n,g)



Idea of proof 2: random walks



Rewriting the recurrence in terms of walks

Set A(v, g) := E(v + 2g, g) Harer—Zagier rewrites

2(2n—1)
n—+1

(n—1)2n —3)(2n — 1)
n—+ 1

A(v,g) = Alv—1,g)+ A(v,g —1)
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Rewriting the recurrence in terms of walks

Set A(v, g) := E(v + 2g, g) Harer—Zagier rewrites

2(2n — 1) (n—1)(2n —3)(2n — 1)

A(v,g) = ] Alv—-1,g)+ ] A(v,g—1)
o 2 —122n-3),
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Rewriting the recurrence in terms of walks

Set A(v, g) := E(v + 2g, g) Harer—Zagier rewrites

2(2n — 1 —1)(2n —3)(2n — 1
A(v,g) = (nn+1 )A(V—l,g)+ = 1)( Z+1)( & )A(V,g—l)
g _2(2n — 1)2(2n—3)A<V_ 2.g)
(v,g) (n+1)n
o o . Jr2(277,— 1)(n (—n2J)r(i;7,n— 5)(2n—3)A(V_ g 1)
| SE. S E—l (n—1)(2n — 3)(2n — 1)2(2n — 5)
oLl | T Din—1) Av—-1.g-1)
L N (n—1)(2n — 3)(2n — 1)(n—3)(2n—7)(2n—5)A<V g —2)
(n+1)(n—1) ’
(o,of‘ L ‘ >y

= Z H wetght(step)

paths from (v, g) to (0, 0) steps of the paths

(because A(0,0) =11)
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Modelling by random walks: first ideas

Question: What are the paths that contribute to the counting ?
Behaviour of RW started from Ny, Gg, with weight steps:

22n—1) E(n—1,9) o (mn—1)2n—-3)2n—1) E(n—2,9g — 1)
n+1 E(n,g) n+1 E(n,g)

Approximation goal: Find €2(n, g) such that

22n —1)Q(n —1,9) N (n—1)2n—3)2n—1) Q(n —2,9 — 1) <1
n+1  Qn,g) n+1 2n, 9)




Proof: more details



Defining 2(n, g)

Setup:

v L V99/e) aga npczy 5 (9 _V2m(n—2g)" %0
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Defining (n, g)

Setup:

_ 1 9(g/e)? ag o npczy,(9)  V2m(n—2g)" 29"
Qn, g) := 2,/ q! n el () g (5) e(n—Zg)F(n — 29+ 3/2)7
2(2n —1) Qn — 1, g)

n+1 Q(n, g)
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n—+1 Q(n, g)
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Defining 2(n, g)

Setup:
1 \/§(9/6)9 29—2 nf(< g \/ﬂ(n _ 2g)n—29+1
Q(n, g) = 2/m ¢! n?9~2enf ) (5) e =29 (n — 2g + 3/2)’
_22n-1)Q(n—1,9)
Am9) == Qn, g)
Bn, g) = D =3)@n 1) An — 2.9 1)

n+1 Q(n, g)

Key property: for n > 2g and g > O:

1

nlog?(n)

a(n,g) + Bln,g) = 1+ 0 ( ) “—— summable !

This means that our approximation by a random walk will be valid !



Defining the random walk

Setup: Start from Ny, Gog = n, g, stop when G, = 0 or N = 2G.
Stopping time 7 = 7(n, g)

: a(NkaGk)
N1, G = (N — 1,G with proba
(Nk41, Grt1) = (Ny, k) P S(Ne G 4 BN G
N
(N1, Gir1) = (Ng — 2,Gj — 1) with proba B(Ni, Gr)



Defining the random walk

Setup: Start from Ny, Gog = n, g, stop when G, = 0 or N = 2G.
Stopping time 7 = 7(n, g)

: a(NkaGk)
N1, G = (N — 1,G with proba
(Nk41, Grt1) = (Ny, k) P S(Ne G 4 BN G
N
(N1, Gir1) = (Ng — 2,Gj — 1) with proba B(Ni, Gr)

Conserved quantity:
E(n, g)

Q(n,g)

/N

Q(n, g) =

(HZ) rewrites

Q(n,g) =a(n,g)Q(n —1,9) + B(n,g)Q(n —2,9 — 1)

Hence
E(Q(Ng+1, Gr+1)) = E(Q(Nk, Gi))



Typical behaviour and asymptotic result

Typical behaviour:
Propostion: As n,g — oo with n — 2g >> logn, with “very high probability”:

G-=0 and N, — x



Typical behaviour and asymptotic result

Typical behaviour:
Propostion: As n,g — oo with n — 2g >> logn, with “very high probability”:

G-=0 and N, — x

Asymptotics as a corollary:
Since Q(n,0) — 1 as n — oo,

E(Q(N-,G;)) ~ 1

 but
E(Q(N7,Gr)) ~ Q(No, Go) = Q(n, g)

hence
E(n,g) ~ Q(n,g)
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How to guess ?

(HZ) (n+1)E(n,g9)=22n—1)E(n—1,9)+(n—1)2n—3)2n—1)E(n—2,9—1)

Plotting:
Fix 6 € (0,1/2) and plot

E(l0~'g],g—1)
E([01g],9)
E(l6~'g] - 1,9)
E(1071g],9)

“Guess and check’:

it grows like g

it converges but depends on ¢

E(n,g) ~ n*exp (nf(g/n)))

First order of (HZ) gives a differential equation for f.



Conclusion

Recap: Approximating a linear bivariate recurrence by a random walk

Guess and check type of method
Nice feature: once the RW is defined, we only have to manipulate explicit formulas (a

bit tedious though)



Conclusion

Recap: Approximating a linear bivariate recurrence by a random walk

Guess and check type of method
Nice feature: once the RW is defined, we only have to manipulate explicit formulas (a

bit tedious though)

Robust method: Doesn't rely on the combinatorics of the model, in fact we can

study other linear recurrences of the same kind !
— Open question: how large is the class of recurrences tackled by our method 7



Conclusion

Recap: Approximating a linear bivariate recurrence by a random walk

Guess and check type of method
Nice feature: once the RW is defined, we only have to manipulate explicit formulas (a

bit tedious though)

Robust method: Doesn't rely on the combinatorics of the model, in fact we can

study other linear recurrences of the same kind !
— Open question: how large is the class of recurrences tackled by our method 7

Perspectives:
e linear — quadratic
e sticky walls — bouncy walls
e coefficients depend only on n — coefficients depending on n and g



Conclusion

Recap: Approximating a linear bivariate recurrence by a random walk

Guess and check type of method
Nice feature: once the RW is defined, we only have to manipulate explicit formulas (a

bit tedious though)

Robust method: Doesn't rely on the combinatorics of the model, in fact we can

study other linear recurrences of the same kind !
— Open question: how large is the class of recurrences tackled by our method 7

Perspectives:
e linear — quadratic
e sticky walls — bouncy walls
e coefficients depend only on n — coefficients depending on n and g

Other works on recurrences and random walks:
[Aggarwal '18,'20, Elvey-Price-Fang—Wallner '19,'20, Chassaing—Flin '22,...]



Thank you |



