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Motivation

Orthogonal polynomials are important to describe several phenomena 
in mathematics and physics.

Random Matrices

Vertex models Integrable systems
Eigenvalue problems



Orthogonal polynomials

Orthogonal polynomials are a sequence of  polynomials in  that are defined by 
the following inner product on an interval  w.r.t the weight :

z
[a, b] 𝗐(z)

∫
b

a
Pm(z)Pn(z)𝗐(z)dz = hnδmn .

• Basis  

• Interval [a,b] 

•Weight

Definition:

Examples: 

1. Legendre polynomials: [-1,1] with  

2. Laguerre polynomials:   with  

3. Hermite polynomials:   with 

𝗐(z) = 1

[0,∞) 𝗐(z) = e−z

(−∞, ∞) 𝗐(z) = e−z2

Necessary ingredients

Colloquially,  has a zero of  order  at Pn(z) n z = 0 :

Pn(z) ∼ zn(1 + 𝒪(z))



Properties of  Orthogonal Polynomials

1. Moment representation 

2. Three term recurrence relation 

3. Riemann-Hilbert problem



1. Moment representation 

2. Three term recurrence relation 

3. Riemann-Hilbert problem

mk := ∫
b

a
zk𝗐(z)dz .1. Moments are defined as The polynomials can then be written as

Pn = dn det

m0 m1 . . . mn
m1 m2 . . . mn+1. . . . . . . . .

mn−1 mn . . . m2n−1

1 z . . . zn

This uncovers the Hankel determinant representation.

2. All OPs satisfy the three term recurrence relation

zPn(z) = anPn+1(z) + bnPn(z) + cnPn−1(z) .

Properties of  Orthogonal Polynomials



3. Riemann-Hilbert problem

Was introduced in the seminal work of  Deift, Kricherbauer, McLaughlin, Venakides, Zhou  
with contributions from many many others… 

Yn(x) = (
Pn(x) 𝒞(Pn)(x)

2πi
hn−1

Pn−1(x) 2πi
hn−1

𝒞(Pn−1)(x)) .

Statement: The polynomials  appear as  entries of  the solution of  the RHP given byPn 11



3. Riemann-Hilbert problem

Upshot:

•Let us obtain asymptotic behaviour of  the polynomials for  

•Reveals integrable structures 

•Several applications to Random matrices: key to obtain universality results among others

n → ∞,

Was introduced in the seminal work of  Deift, Kricherbauer, McLaughlin, Venakides, Zhou  
with contributions from many many others… 
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Pn(x) 𝒞(Pn)(x)

2πi
hn−1
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hn−1

𝒞(Pn−1)(x)) .

Statement: The polynomials  appear as  entries of  the solution of  the RHP given byPn 11



Yn(x) = (
Pn(x) 𝒞(Pn)(x)

2πi
hn−1

Pn−1(x) 2πi
hn−1

𝒞(Pn−1)(x)) .

Statement: The polynomials  appear as  entries of  the solution of  the RHP given byPn 11

3. Riemann-Hilbert problem

*only counts articles with ‘orthogonal polynomials’ in their title

Was introduced in the seminal work of  Deift, Kricherbauer, McLaughlin, Venakides, Zhou  
with contributions from many many others… 



To the elliptic world…

Systems on higher genus surfaces:

•Reveals highly non-trivial, topological properties of  the system. For example, some 
properties of  tau-function become apparent when we go to genus 1.

F. Del Monte, H.D, P. Gavrylenko; Isomonodromic tau functions on a torus as Fredholm determinants, 
and charged partitions. CMP ’22; arXiv:2011.06292

•Systems on higher genus can define a ‘master’ class of  equations. The Landau-Lifshitz 
equation is one such example.

H.D, A. Its, A. Prokhorov; Nonlinear steepest descent on a torus: a case study of  the Landau-Lifshitz 
equation, arXiv: 2405.17662

•We are discovering several structures that want us to study elliptic generalisations: see for 
example Bergenn-Borodin, Kuijlaars-Piorkowski, …



History of  Elliptic Orthogonal Polynomials

1945-70 Rees, Carlitz, Heine, …

Generalization of  Chebyshev polynomials, Akhiezer polynomials, …

Generalized Jacobi polynomials are related to elliptic functions

Ismail, Valent, Yoon; Its, Chen; Vinet, Zhedanov; Nijhoff…2000s

Basor, Chen, Dai, Erhardt...2005-15

Generalized Jacobi polynomials and Painlevé equations

 Bertola, Groot, Kuijlaars2019-21
Bi-orthogonality, Nonlinear steepest descent for polynomials on elliptic 
curves

Fasondini, Olver, Xu2021-23
Bi-orthogonal polynomials on algebraic curves and numerical methods
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Step 1: Construction of  EOPs

1. Basis 

2. Support 

3. Weight

Step 2: Properties

1. Moment representation 

2. Riemann-Hilbert problem

Summary

Step 3: Consequence

1. Recurrence relation 

2. Integrability

Sanity check: Even polynomials give back the cases we already know!



Step 1: Construction of  EOPs

Given an elliptic curve 

τ

1

There are no holomorphic functions on the torus. So what do we mean by polynomials?

y2 = 4x3 − g2(τ)x − g3(τ),

a basis of  functions on the surface is constructed in terms of  . x, y

Basis: {1,x, y, x2, xy, y2, . . . }

0

Λ

x = ℘(z), y = ℘′￼(z) .For doubly periodic functions, 

Statement:

So, it is appropriate to consider polynomials in x, y .



Weirestrass  function is defined on the lattice  as℘ Λ

℘(z) :=
1
z2

+ ∑
λ∈Λ\{0}

( 1
(z − λ)2

−
1
λ2 ) .

Properties:

1. It is doubly periodic

℘(z) = ℘(z + 1) = ℘(z + τ) .

Step 1: Construction of  EOPs

2. The only singularity is a double pole at  and consequently, it has two zeros.z = 0

3. It is an even function

℘(−z) = ℘(z) .

Note: Elliptic functions are unique once we specify the poles, zeros, and periodicity.



Weirestrass  function is defined on the lattice  as℘′￼ Λ

℘′￼(z) := −
2
z3

+ ∑
λ∈Λ\{0}

− ( 2
(z − λ)3

−
1
λ2 ) .

Properties:

1. It is doubly periodic

℘′￼(z) = ℘′￼(z + 1) = ℘′￼(z + τ) .

Step 1: Construction of  EOPs

2. The only singularity is a triple pole at  and consequently, it has three zeros.z = 0

3. It is an odd function

℘′￼(−z) = − ℘′￼(z) .



Step 1: Construction of  EOPs

Pictures!

℘(z) ℘′￼(z)



ℬ = {ℰn}n≥0,n≠1, ℰ2k = ℘(z)k, ℰ2k+3 = − 1
2 ℘′￼(z)℘(z)k, k ≥ 0,

Step 1: Construction of  EOPs
We can now make our basis precise:
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2 ℘′￼(z)℘(z)k, k ≥ 0,

Step 1: Construction of  EOPs
We can now make our basis precise:

Properties:

1. The only poles are at  and have the degreez = 0

ℰ2k ∼ z−2k, ℰ2k+3 ∼ z−2k−3 .

2. The basis is doubly periodic, the even and odd modes are even and odd respectively.



ℬ = {ℰn}n≥0,n≠1, ℰ2k = ℘(z)k, ℰ2k+3 = − 1
2 ℘′￼(z)℘(z)k, k ≥ 0,

Step 1: Construction of  EOPs
We can now make our basis precise:

Properties:

1. The only poles are at  and have the degreez = 0

ℰ2k ∼ z−2k, ℰ2k+3 ∼ z−2k−3 .

2. The basis is doubly periodic, the even and odd modes are even and odd respectively.

Support: 
τ

10

γ

Weight: 

Generic weight is too difficult at the moment. 

Manageable case:  independent, even weight.  n



Step 1: Construction of  EOPs

Elliptic Orthogonal polynomials are a sequence of  polynomials in  that are 
defined by the following inner product on the interval  w.r.t the weight :

x, y
γ 𝗐(z)

∫γ
πm(z)πn(z)𝗐(z)dz = hnδmn .

Definition:



Step 1: Construction of  EOPs

Elliptic Orthogonal polynomials are a sequence of  polynomials in  that are 
defined by the following inner product on the interval  w.r.t the weight :

x, y
γ 𝗐(z)

∫γ
πm(z)πn(z)𝗐(z)dz = hnδmn .

Definition:

In other words,  has a pole of  order  at : πn(z) n z = 0

πn(z) ∼ z−n(1 + 𝒪(z)) .

Task for the future: Systematic classification of  EOPs

Note:  does not existπ1(z)

Assumptions: weight is strictly positive, and time is pure imaginary so that  is real on . ℘(z) γ



Step 2: Properties

Much like OPs, EOPs have a moment representation.

µ0,0

µ2,0

0

µ4,0

0

µ6,0

0

µ8,0

µ0,2

µ2,2

0

µ4,2

0

µ6,2

0

µ8,2

0

0

µ3,3

0

µ5,3

0

µ7,3

0

µ0,4

µ2,4

0

µ4,4

0

µ6,4

0

µ8,4

0

0

µ3,5

0

µ5,5

0

µ7,5

0

µ0,6

µ2,6

0

µ4,6

0

µ6,6

0

µ8,6

0

0

µ3,7

0

µ5,7

0

µ7,7

0

µ0,8

µ2,8

0

µ4,8

0

µ6,8

0

µ8,8

μi, j := ∫γ
ℰi(z)ℰj(z)𝗐(z)dz (i, j ∈ ℕ≠1)Definition:

The odd and even moments form a checkerboard pattern.



Step 2: Properties

Zeros of  moment matrices for n = 2,3,4,5

Plots of   for πn(z) n = 2,3,4,5

Plots of   for πn(z) n = 6,7,8,9



Step 2: Properties

Riemann-Hilbert problem:

Yn(z, τ) = (
πn(z) 𝒞(πn)(z)

2πi
hn−1

πn−1(z) 2πi
hn−1

𝒞(πn−1)(z)) .

•  is analytic in . 

•For  the following jump condition holds

Yn(z, τ) z ∈ 𝕋∖(γ ∪ {0})

z ∈ γ

Yn,+(z, τ) = Yn,+(z, τ)(1 𝗐(z)
0 1 ) .

•In the asymptotic limit z → 0 :

Yn(z, τ) = (1 + 𝒪(z))(z−n 0
0 zn−2) .

•It is doubly periodic by definition.



Step 2: Properties

Differences with the genus 0 case:

1. The Cauchy kernel needs to be generalised to genus 1:

2. The determinant is now  dependent. For instance, if  the weight is doubly periodic,z

det Yn(z, τ) = ℘(z, τ) + αn(τ) =: fn, αn := c2,n + c̃2,n−1 −
hn

hn−1
.

C(w, z) = ζ(w − z) − ζ(w) .

Theorem (D. - Latimer - Roffelsen ’24): The solution to the RHP exists and is unique.

Riemann-Hilbert problem:

Yn(z, τ) = (
πn(z) 𝒞(πn)(z)

2πi
hn−1

πn−1(z) 2πi
hn−1

𝒞(πn−1)(z)) .



Step 2: Properties

Recovering the usual OPs (sanity check):

When the weight function is even, one can split the EOPs into even and odd parts respectively

π2k(z)

{1,℘(z), ℘2(z), . . . }Basis: 

Change of  variable  
℘(z) → z

pn(z)

{1, z, z2, . . . }

Weight:  𝗐(z) = 1 𝗐(z) = ((z − a)(z − b)(z − c))−1/2

Modified Jacobi weight



Step 2: Properties

Recovering the usual OPs (sanity check):

When the weight function is even, one can split the EOPs into even and odd parts respectively

π2k(z)

{1,℘(z), ℘2(z), . . . }Basis: 

Change of  variable  
℘(z) → z

pn(z)

{1, z, z2, . . . }

Weight:  𝗐(z) = 1 𝗐(z) = ((z − a)(z − b)(z − c))−1/2

Modified Jacobi weight

References: 

- Carlitz 1960 - Basor- Chen- Haq ’14

Upshot: 
Easier to study than Modified 
Jacobi weight



Step 3: Theorem (D. - Latimer - Roffelsen ’24)

Both Recurrence relation and Integrability come from obtaining the linear systems 
for the solution of  the RHP.

Yn+1 = RnYn, Rn =
1
fn

−℘′￼(z)/2 −
hn

2πi fn+1

2πi
hn

fn 0
.Difference equation:

For doubly periodic weight

Sketch of  the proof:

•Compute the quantity . 

•The asymptotic behaviour of   fixes the analytic behaviour of   

•The double periodicity of   and  determines the elliptic function in the 11 entry.

Yn+1Y−1
n det Yn

Yn Rn .

Yn det Yn



Step 3: Theorem (D. - Latimer - Roffelsen ’24)

πn+1 = −
℘′￼(z)πn

2fn
−

βn fn+1

fn
πn−1, βn :=

hn

hn−1
.3- term recurrence relation:

Even polynomials (sanity check): πn+2 = (℘(z) − Bn) πn − βnβn−1πn−2,

Gives back the usual relations we know for genus 0 case.

For doubly periodic weight

Both Recurrence relation and Integrability come from obtaining the linear systems 
for the solution of  the RHP.

Yn+1 = RnYn, Rn =
1
fn

−℘′￼(z)/2 −
hn

2πi fn+1

2πi
hn

fn 0
.Difference equation:



Y′￼n = LnYn, n ≥ 3,Differential equation:

For constant weight

Ln =
1
fn

n℘′￼(z)/2
hn

2πi ((n − 1)fn + nfn+1)
2πi
hn−1

((2 − n)fn−1 + (1 − n)fn) (2 − n)℘′￼(z)/2
.

Step 3: Theorem (D. - Latimer - Roffelsen ’24)

Second order differential 
equation for EOPs:

π′￼′￼n = ( ℘′￼

fn
+ n ( fn+1

fn )
′￼

((n − 1) + n
fn+1

fn )
−1

) π′￼n

+(( n℘′￼

2fn )
′￼

− n ( fn+1

fn )
′￼ n℘′￼

2 ((n − 1)fn + nfn+1)
− det Ln) πn .



Y′￼n = LnYn, n ≥ 3,Differential equation:

Even polynomials (sanity check):

For constant weight

Ln =
1
fn

n℘′￼(z)/2
hn

2πi ((n − 1)fn + nfn+1)
2πi
hn−1

((2 − n)fn−1 + (1 − n)fn) (2 − n)℘′￼(z)/2
.

Step 3: Theorem (D. - Latimer - Roffelsen ’24)

∂τY2n = M2nY2n .1. We can obtain a linear system w.r.t ‘time’  :  τ

2. The above two equations form the Lax pair for the elliptic form of  Painlevé VI equation 

3. Consequently, the solutions and tau-function of  elliptic form of  Painlevé VI equation can     
be written in terms of  Hankel determinants of  moments  

(Hitchin case). 



Step 3: Theorem (D. - Latimer - Roffelsen ’24)

Compatibility condition and the differential-difference equation:

R′￼n − Ln+1Rn + RnLn = 0,

βn =
g3 − g2αn + 4α3

n

4(αn−1 − αn)(αn − αn+1)
,

αn+1 =
(1 − n)αn (4α3

n − 3g2αn + 4g3) − αn−1 (4(n − 2)α3
n + ng2αn − (2n − 1)g3)

4nα3
n + (n − 1)αn−1 (g2 − 12α2

n) + g2(n − 2)αn − g2(2n − 3)
.

Task for the future: Find some structure in above equations and find some nice equations
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Step 3: Theorem (D. - Latimer - Roffelsen ’24)

Compatibility condition and the differential-difference equation:

R′￼n − Ln+1Rn + RnLn = 0,

βn =
g3 − g2αn + 4α3

n

4(αn−1 − αn)(αn − αn+1)
,

αn+1 =
(1 − n)αn (4α3

n − 3g2αn + 4g3) − αn−1 (4(n − 2)α3
n + ng2αn − (2n − 1)g3)

4nα3
n + (n − 1)αn−1 (g2 − 12α2

n) + g2(n − 2)αn − g2(2n − 3)
.

Task for the future: Find some structure in above equations and find some nice equations

Even polynomials (sanity check): It gives some discrete Painlevé equation.



Conclusion

Takeaways:

•Systematic study of  EOPs using Riemann-Hilbert problems 

•Recurrence relations and distribution of  zeros of  EOPs 

•Integrable structures underlying EOPs

Open problems:

• Asymptotic analysis of  EOPs 

• Systematic classifiction of  EOPs with complicated weights 

• Higher geus extensions 

• Applications to Random Matrices 

• Possible universality results (something may be in the works)…



Thanks for listening!


