Poisson algebra bundles and covariant field theory

Alessandra Frabetti University of Lyon 1 - France

Joint work with Olga Kravchenko and Leonid Ryvkin

based on <https://arxiv.org/abs/2407.15287>

and forthcoming next part

JPM DiLyMe à Lyon September 23-26, 2024 **Data:** vector bundle $E \rightarrow M$ over spacetime manifold plus Lagrangian $\mathcal{L}: J\mathcal{E} \to \mathrm{Dens}_M$

Fields: $\mathcal{E}(M, E) = \Gamma^{\infty}(M, E) = \{\text{smooth sections } \varphi : M \to E\}$

Solutions of eq. of motion: $\mathcal{E}_{\mathcal{L}}(M, E) = \{\varphi \mid \text{Euler-Lagrange eq. } EL(\varphi) = 0\}$

Observables: on-shell $C^{\infty}(\mathcal{E}_{\mathcal{L}}(M, E)) = \{F : \mathcal{E}_{\mathcal{L}}(M, E) \to \mathbb{R} \text{ smooth}\}$ start with off-shell $\textit{C}^\infty(\mathcal{E}(M, E)) = \{F : \mathcal{E}(M, E) \rightarrow \mathbb{R} \text{ smooth}\}$ then $C^{\infty}(\mathcal{E}_{\mathcal{L}}(M, E)) = C^{\infty}(\mathcal{E}(M, E))/I(\mathcal{E}_{\mathcal{L}}(M, E))$ both algebras with multiplication $(F_1 \cdot F_2)(\varphi) = F_1(\varphi)F_2(\varphi)$ but restrictions for Poisson bracket $\{F_1, F_2\}_\mathcal{L}(\varphi) = F'_1(\varphi) \Delta_\mathcal{L} F'_2(\varphi)$ where $\Delta_{\mathcal{L}}$ is the causal propagator det. by \mathcal{L} (Peierls bracket)

 $\mathsf{\mathsf{QFT}}\colon$ deformation quantization of Poisson algebra $(\mathcal{A}_0 \subset C^\infty(\mathcal{E}_\mathcal{L}(M,E)), \cdot, \{\ ,\ \}_\mathcal{L}$ plus time-ordered product $=$ different deformation using Feynman propagator plus renormalization to fix some ambiguities.

Local observables: $\langle f(x), (j\varphi)^n(x) \rangle dx$

represented by (generalized) sections $f : M \to S^n(JE^*)$

Multilocal observables: product of local

$$
(F_{f_1} \cdot F_{f_2})(\varphi) = \int_{M \times M} \langle f_1(x) \otimes f_2(y), (j\varphi)^{n_1}(x) \otimes (j\varphi)^{n_2}(y) \rangle dx dy
$$

rep. by $f_1 \boxtimes f_2 : M \times M \to S^{n_1}(JE^*) \boxtimes S^{n_2}(JE^*)$ where \overline{X} is the external tensor product of vector bundles on M

Problem: $F_{f_1} \cdot F_{f_2}$ is commutative, but $f_1\boxtimes f_2$ is not commutative, because $(x, y) \neq (y, x)$ in $M \times M$.

Aim: find a consistent bundle description of polynomial (multilocal) observables.

Claim [FKR 2024]: there is an injective Poisson algebra map

$$
F: \mathcal{D}'_{Pois}(\mathrm{UConf}(M), P_{\mathcal{L}}(E)) \hookrightarrow C^{\infty}(\mathcal{E}(M, E))
$$

sending a **distribution** T to the function $F_T : \mathcal{E}(M, E) \to \mathbb{R}$

$$
\varphi \mapsto F_T(\varphi) = \big\langle T, e(\varphi) \big\rangle = \int_{\mathrm{UConf}(M)} \big\langle T(\underline{x}), e(\varphi)(\underline{x}) \big\rangle
$$

 $UConf(M)$ = space of unordered configurations replacing $M \times M \times \cdots \times M$ (cf. Olga's talk)

Plan of the talk: explain the other ingredients

 $P_{\mathcal{L}}(E)$ is a suitable Poisson algebra bundle on $UConf(M)$ (cf. Olga's talk)

 $e(\varphi)$ is a canonical section of a bundle dual to P_C(E)

 \mathcal{D}'_{Pois} is a suitable space of distributions $\mathcal T$ closed for the induced Poisson algebra structure and which makes the value of F_T finite.

' Many-points manifolds / orbifolds of "non-pure dimension":

tuples manifold\n
$$
\begin{array}{ccc}\n&\text{tuples manifold} &\text{multi-configurations orbifold} \\
&\downarrow \downarrow_{k \geq 0} M^k & \xrightarrow{\mathbb{S}_k} & \downarrow \downarrow_{k \geq 0} M^k/\mathcal{S}_k \\
&\uparrow & & \uparrow & & \uparrow \\
&\text{OConf}(M) = \bigsqcup_{k \geq 0} M^k \backslash \Delta^k & \xrightarrow{\mathbb{S}_k} \text{UConf}(M) = \bigsqcup_{k \geq 0} (M^k \backslash \Delta^k)/\mathcal{S}_k \\
&\text{ordered configurations mfd} &\text{unordered configurations mfd} \\
&\text{\bullet} &\text{Vector bundles over } \text{UConf}(M): & \vee = \bigsqcup_{\underline{x} \in \text{UConf}(M)} \vee_{\underline{x}} = \bigsqcup_{k \geq 0} V_k \\
&\text{\bullet} &\text{Symmetric 2-monoidal category:} &\text{VB}(\text{UConf}(M)), \otimes, I_{\otimes}, \boxtimes, I_{\boxtimes} \\
&\text{Hadamard:} &\text{V}\otimes \text{W}\underline{y} = \text{V}_{\underline{x}} \otimes \text{W}_{\underline{x}} &\text{with} & I_{\otimes} = \text{UConf}(M) \times \mathbb{K} \\
&\text{Cauchy:} &\text{V}\boxtimes \text{W}\underline{y} = \bigoplus_{\underline{x} = \underline{x}' \sqcup \underline{x}''} V_{\underline{x}'} \otimes \text{W}_{\underline{x}''} &\text{with} & I_{\boxtimes} = \begin{cases} \mathbb{K} \rightarrow \{\varnothing\} & k = 0 \\ \{0\} \rightarrow \text{UConf}_k(M) & k \geq 1 \end{cases}\n\end{array}
$$

• Theorem: \Box on $UConf(M)$ is a symmetrized version of \boxtimes on $OConf(M)$

Cauchy-Hadamard 2-algebra bundles

• 2-algebra bundle: $A \rightarrow \text{UConf}(M)$ with

 $m \otimes : A \otimes A \longrightarrow A$ $u \otimes : I \otimes \rightarrow A$ $m_{\overline{\boxtimes}} : A \overline{\boxtimes} A \longrightarrow A$ $u_{\overline{\boxtimes}} : I_{\overline{\boxtimes}} \longrightarrow A$

plus compatibility using μ , δ , ι , sh.

algebra

2-coalgebra bundle: $C \rightarrow \mathrm{UConf}(M)$

with dual maps Δ_{\otimes} , ε_{\otimes} , $\Delta_{\overline{\otimes}l}$, $\varepsilon_{\overline{\otimes}l}$ and dual relations

 $\implies C^*$ is a 2-algebra bundle.

• \otimes and \boxtimes -tensor bundles: from $E \to M$ with dual $E^* \to M$: $\mathcal{T}^{a,\boxtimes}(\mathcal{E}^*)=\bigoplus_n(\mathcal{E}^*)^{\boxtimes n},\;\boxtimes\stackrel{\mathcal{E}^{r*}}{\longleftarrow}\mathcal{T}^{c,\boxtimes}(\mathcal{E})=\bigoplus_n\mathcal{E}^{\boxtimes n},\;\Delta_{\boxtimes}$

coalgebra (same for b)

$$
S^{\boxtimes}(\mathcal{E}^*)=\bigoplus_n^{\text{max}}(\mathcal{E}^*)^{\boxtimes n}/S_n,\ \text{or}\ \ \text{sum}_{\text{gr} *} \ \ \Sigma^{\boxtimes}(\mathcal{E})=\bigoplus_n(\mathcal{E}^{\boxtimes n})^{S_n},\ \ \Delta_{\boxdot}
$$

- Theorem: $\big|\operatorname{Dens}_{\operatorname{UConf}(M)}\cong S^{\boxtimes}(\operatorname{Dens}_M)\big|$ commutative \boxtimes -algebra bundle with \boxdot .
- Bundle of observables: $\boxed{\mathsf{P}_\mathcal{L}(E) := S^{\boxtimes}S^\otimes(JE)^* \otimes \mathrm{Dens}_{\mathrm{UConf}(M)} \cong \big(\hat{\Sigma}^{\boxtimes}\hat{\Sigma}^\otimes(JE)\big)^\vee}$

 \langle , \rangle canonical pairing between sections $T = \Phi \otimes \nu$ of $P_{\mathcal{L}}(E)$ and

$$
\text{exponential section}\left[\mathbf{e}(\varphi)=\sum_{n_1,\ldots,n_k}\frac{1}{n_1!\cdots n_k!}(j\varphi)^{\otimes n_1}\boxtimes\cdots\boxtimes (j\varphi)^{\otimes n_1}\right]\text{of }\hat{\Sigma}^{\boxtimes}\hat{\Sigma}^{\otimes}(J\mathcal{E}).
$$

- Poisson 2-algebra bundle: $(P, \bullet_\otimes, 1_\otimes, \bullet_\boxtimes, 1_\boxtimes)$ commutative 2-algebra bundle with Poisson bracket $\begin{bmatrix} \{ , \} : P \boxtimes P \rightarrow P \end{bmatrix}$ such that antisymmetry: $\{a_x, b_y\} = -\{b_y, a_x\}$ Jacobi identity: $\{\{a_x, b_y\}, c_z\} + \{\{b_y, c_z\}, a_x\} + \{\{c_z, a_x\}, b_y\} = 0$ $m_{\overline{X}}$ -Leibniz rule: $\{a_x, b_y \bullet_{\overline{X}} c_z\} = \{a_x, b_y \bullet_{\overline{X}} c_z + b_y \bullet_{\overline{X}} \{a_x, c_z\}$ m_{\otimes} -Leibniz rule: $\{a_x, b_y \bullet_{\otimes} c_y\} = \{a_x, b_y \} \bullet_{\otimes} (1_x \bullet_{\boxtimes} c_y) + (1_x \bullet_{\boxtimes} b_y \bullet_{\otimes} \{a_x, c_y\})$ where we omit sums over disjoint configurations coming from repeated splits.
- Theorem: Any antisymmetric bundle map $k: (JE)^* \boxtimes (JE)^* \to \mathsf{I}_\otimes$ over $\mathrm{UConf}_2(M)$ is the kernel of a Poisson bracket which makes

$$
S^{\boxtimes}S^{\otimes} (JE)^*
$$
 a Poisson 2-algebra bundle

 $P_{\mathcal{L}}(E) = S^{\boxtimes} S^{\otimes} (JE)$

a Poisson \overline{X} -algebra bundle.

Proof: extend k to symmetric powers using Leibniz rules and prove Jacobi.

• N.B. For field theory, the kernel k is determined by the Lagrangian \mathcal{L} .

(Regular) Poisson algebras of sections and distributions

• Sections and distributions: given a vector bundle $V \to UConf(M)$ sections: ϕ : UConf(M) \rightarrow V as usual = $\{\phi_k : \text{UConf}_k(M) \rightarrow V_k\}$

 $\mathcal{E}(\text{UConf}(M), V)$ smooth $\supset \mathcal{D}(\text{UConf}(M), V)$ compact support

$$
\text{distributions:}\quad \ \mathcal{D}(\mathrm{UConf}(M),V)'=:\mathcal{D}'(\mathrm{UConf}(M),V^\vee)
$$

 $\mathcal{E}(\mathrm{UConf}(M), \mathrm{V})' =: \mathcal{E}'(\mathrm{UConf}(M), \mathrm{V}^{\vee})$

where ${\sf V}^\vee={\sf V}^*\otimes\mathrm{Dens}_{\mathrm{UConf}(M)}$ is the functional dual such that $({\sf V}^\vee)^\vee\cong{\sf V}.$

$$
\begin{array}{ccc}\n\text{regular distributions} & & \mathcal{D}(\text{UConf}(M), V^{\vee}) \longrightarrow \mathcal{E}(\text{UConf}(M), V^{\vee}) \\
\downarrow & & \downarrow \\
\text{all distributions} & & \mathcal{E}'(\text{UConf}(M), V^{\vee}) \longrightarrow \mathcal{D}'(\text{UConf}(M), V^{\vee})\n\end{array}
$$

• Theorem: If P is a Poisson \boxtimes -algebra bundle on $\mathrm{UConf}(M)$, then

 $\mathcal{E}(\mathrm{UConf}(M),\mathsf{P})$ and $\mathcal{D}'(\mathrm{UConf}(M),\mathsf{P})$ are Poisson algebras

• Corollary: $\mathcal{D}'(\mathrm{UConf}(M), \mathsf{P}_{\mathcal{L}}(E))$ is a (regular) Poisson algebra (*) for any choice of a kernel bundle map $k: (J E)^* \boxtimes (J E)^* \to \mathsf{I}_\otimes$ over $\mathrm{UConf}_2(M)$ i.e. a smooth section $k \in \mathcal{E}(\mathrm{UConf}_2(M), \Lambda^{\boxtimes 2}(JE))$ (a regular distribution).

^(*) in the cat. of bornological locally convex modules over the Frechet algebra $\mathcal{E}(\mathrm{UConf}(M))$

 $\bullet\,$ Lemma: The causal propagator $\Delta_\mathcal{L}\in \mathcal{D}'(M\times M, E\boxtimes E)$ determines a singular kernel $k_{\mathcal{L}} \in \mathcal{D}'(\mathrm{UConf}_2(M), \Lambda^{\boxtimes 2}(E))$ for a Poisson bracket on $\mathcal{D}'(\mathrm{UConf}(M), \mathsf{P}_\mathcal{L}(E)).$

' Work in progress:

- Problem 1: distributions with no support restrictions do not give finite integrals, need support restrictions.
- Problem 2: Singular kernels require restrictions on the WF sets of distributions, cf. microcausal functionals as in [Brunetti-Fredenhagen-Ribero 2012].

Problem 3: $\mathcal{D}(\text{UConf}(M), P) \subset \mathcal{E}(\text{UConf}(M), P)$ not a subalgebra!

' Idea:

Outlook

- \bullet Covariant QFT: Poisson \boxtimes -bundles are compatible with deformation quantization (operator product) and with Laplace pairing deformation (time-ordered product) described on polynomial observables in [C. Brouder, B. Fauser, A.F., R. Oekl 2004].
- \bullet Lift the whole construction to the orbifold of multi-configurations $\bigsqcup_k M^k/S_k$ to describe renormalization in QFT [PhD project for Hai Châu Nguyên].
- Extend to graded symmetric tensors to include fermions.
- Study structure group and connections of $P_{\mathcal{L}}(E)$ and extend to gauge fields.
- \bullet Include the multisymplectic description of dynamics and compute $C^\infty(\mathcal{E}_\mathcal{L}(M,E))!$
- Direct links with species, types of algebras, operads...

Thank you for the attention!