Poisson algebra bundles and covariant field theory

Alessandra Frabetti University of Lyon 1 - France

Joint work with Olga Kravchenko and Leonid Ryvkin

based on https://arxiv.org/abs/2407.15287

and forthcoming next part

JPM DiLyMe à Lyon September 23-26, 2024

Context: field theory in a nutshell

Data: vector bundle $E \to M$ over spacetime manifold plus Lagrangian $\mathcal{L}: JE \to \mathrm{Dens}_M$ **Fields:** $\mathcal{E}(M,E) = \Gamma^\infty(M,E) = \{ \mathrm{smooth\ sections\ } \varphi: M \to E \}$

Observables: on-shell $C^{\infty}(\mathcal{E}_{\mathcal{L}}(M,E)) = \{F: \mathcal{E}_{\mathcal{L}}(M,E) \to \mathbb{R} \text{ smooth} \}$ start with off-shell $C^{\infty}(\mathcal{E}(M,E)) = \{F: \mathcal{E}(M,E) \to \mathbb{R} \text{ smooth} \}$ then $C^{\infty}(\mathcal{E}_{\mathcal{L}}(M,E)) = C^{\infty}(\mathcal{E}(M,E)) / I(\mathcal{E}_{\mathcal{L}}(M,E))$ both algebras with multiplication $(F_1 \cdot F_2)(\varphi) = F_1(\varphi)F_2(\varphi)$ but restrictions for Poisson bracket $\{F_1,F_2\}_{\mathcal{L}}(\varphi) = F_1'(\varphi)\Delta_{\mathcal{L}}F_2'(\varphi)$ where $\Delta_{\mathcal{L}}$ is the causal propagator det. by \mathcal{L} (Peierls bracket)

QFT: deformation quantization of Poisson algebra $(A_0 \subset C^{\infty}(\mathcal{E}_{\mathcal{L}}(M, E)), \cdot, \{\ ,\ \}_{\mathcal{L}})$ plus time-ordered product = different deformation using Feynman propagator plus renormalization to fix some ambiguities.

Motivation: bundle description of observables in field theory

Local observables:
$$F_f(\varphi) = \int_M \langle f(x), (j\varphi)^n(x) \rangle dx$$
 represented by (generalized) sections $f: M \to S^n(JE^*)$

Multilocal observables: product of local

$$(F_{f_1} \cdot F_{f_2})(\varphi) = \int_{M \times M} \langle f_1(x) \otimes f_2(y), (j\varphi)^{n_1}(x) \otimes (j\varphi)^{n_2}(y) \rangle dx dy$$

rep. by $f_1 \boxtimes f_2 : M \times M \to S^{n_1}(JE^*) \boxtimes S^{n_2}(JE^*)$

where \boxtimes is the external tensor product of vector bundles on M

Problem: $F_{f_1} \cdot F_{f_2}$ is commutative,

but $f_1 \boxtimes f_2$ is not commutative, because $(x, y) \neq (y, x)$ in $M \times M$.

Aim: find a consistent bundle description of polynomial (multilocal) observables.

Claim [FKR 2024]: there is an injective Poisson algebra map

$$F: \mathcal{D}'_{Pois}(\mathrm{UConf}(M),\mathsf{P}_{\mathcal{L}}(E)) \hookrightarrow C^{\infty}(\mathcal{E}(M,E))$$

sending a distribution T to the function $F_T : \mathcal{E}(M, E) \to \mathbb{R}$

$$\varphi \mapsto F_{\mathcal{T}}(\varphi) = \langle \mathcal{T}, \mathbf{e}(\varphi) \rangle = \int_{\mathrm{UConf}(M)} \langle \mathcal{T}(\underline{x}), \mathbf{e}(\varphi)(\underline{x}) \rangle$$

UConf(M) =space of unordered configurations replacing $M \times M \times \cdots \times M$ (cf. Olga's talk)

Plan of the talk: explain the other ingredients

 $P_{\mathcal{L}}(E)$ is a suitable Poisson algebra bundle on UConf(M) (cf. Olga's talk)

 $e(\varphi)$ is a canonical section of a bundle dual to $P_{\mathcal{L}}(E)$

 \mathcal{D}'_{Pois} is a suitable space of distributions T closed for the induced Poisson algebra structure and which makes the value of F_T finite.

Setup: vector bundles over configuration spaces

Many-points manifolds / orbifolds of "non-pure dimension":

- Vector bundles over $\mathrm{UConf}(M)$: $V = \bigsqcup_{\underline{x} \in \mathrm{UConf}(M)} V_{\underline{x}} = \bigsqcup_{k \geqslant 0} V_k$
- Symmetric 2-monoidal category: $\left(VB(\mathrm{UConf}(M)), \otimes, I_{\otimes}, \boxtimes, I_{\boxtimes}\right)$

$$\mathsf{Hadamard} \colon \quad (\mathsf{V} \otimes \mathsf{W})_{\underline{\mathsf{x}}} = \mathsf{V}_{\underline{\mathsf{x}}} \otimes \mathsf{W}_{\underline{\mathsf{x}}} \quad \mathsf{with} \quad \mathsf{I}_{\otimes} = \mathrm{UConf}(\mathit{M}) \times \mathbb{K}$$

Cauchy:
$$(V \boxtimes W)_{\underline{x}} = \bigoplus_{\underline{x} = \underline{x}' \sqcup \underline{x}''} V_{\underline{x}'} \otimes W_{\underline{x}''} \quad \text{with} \quad I_{\underline{x}} = \begin{cases} \mathbb{K} \to \{\emptyset\} & k = 0 \\ \{0\} \to \mathrm{UConf}_k(M) & k \geqslant 1 \end{cases}$$

• Theorem: \boxtimes on UConf(M) is a symmetrized version of \boxtimes on OConf(M)

Cauchy-Hadamard 2-algebra bundles

• 2-algebra bundle: $A \to \mathrm{UConf}(M)$ with

 $m_{\otimes}: A \otimes A \to A$ $u_{\otimes}: I_{\otimes} \to A$ $m_{\boxtimes}: A \boxtimes A \to A$ $u_{\boxtimes}: I_{\boxtimes} \to A$

plus compatibility using μ , δ , ι , ${\rm sh.}$

2-coalgebra bundle: $C \to \mathrm{UConf}(M)$ with dual maps Δ_{\otimes} , ε_{\otimes} , Δ_{\boxtimes} , ε_{\boxtimes} and dual relations $\Longrightarrow C^*$ is a 2-algebra bundle.

• \otimes and \boxtimes -tensor bundles: from $E \to M$ with dual $E^* \to M$:

- Theorem: $|\operatorname{Dens}_{\operatorname{UConf}(M)} \cong S^{\boxtimes}(\operatorname{Dens}_M)|$ commutative \boxtimes -algebra bundle with \boxdot .
- Bundle of observables: $\boxed{ \mathsf{P}_{\mathcal{L}}(E) := S^{\boxtimes} S^{\otimes} (JE)^* \otimes \mathrm{Dens}_{\mathrm{UConf}(M)} \cong \left(\hat{\Sigma}^{\boxtimes} \hat{\Sigma}^{\otimes} (JE) \right)^{\vee} }$
 - $\langle \ , \ \rangle$ canonical pairing between sections $T = \Phi \otimes \nu$ of $P_{\mathcal{L}}(E)$ and

exponential section
$$e(\varphi) = \sum_{n_1,\dots,n_k} \frac{1}{n_1! \cdots n_k!} (j\varphi)^{\otimes n_1} \boxtimes \cdots \boxtimes (j\varphi)^{\otimes n_1} \text{ of } \hat{\Sigma}^{\boxtimes} \hat{\Sigma}^{\otimes} (JE).$$

Poisson ⊠-algebra bundles

• Poisson 2-algebra bundle: $(P, \bullet_{\otimes}, 1_{\otimes}, \bullet_{\boxtimes}, 1_{\boxtimes})$ commutative 2-algebra bundle with Poisson bracket $\{, \} : P \boxtimes P \to P$ such that

```
with Poisson bracket \{\ ,\ \}: P\boxtimes P\to P\} such that antisymmetry: \{a_{\underline{x}},b_{\underline{y}}\}=-\{b_{\underline{y}},a_{\underline{x}}\} Jacobi identity: \{\{a_{\underline{x}},b_{\underline{y}}\},c_{\underline{z}}\}+\{\{b_{\underline{y}},c_{\underline{z}}\},a_{\underline{x}}\}+\{\{c_{\underline{z}},a_{\underline{x}}\},b_{\underline{y}}\}=0 m_{\boxtimes}-Leibniz rule: \{a_{\underline{x}},b_{\underline{y}}\bullet_{\boxtimes}c_{\underline{z}}\}=\{a_{\underline{x}},b_{\underline{y}}\}\bullet_{\boxtimes}c_{\underline{z}}+b_{\underline{y}}\bullet_{\boxtimes}\{a_{\underline{x}},c_{\underline{z}}\} m_{\boxtimes}-Leibniz rule: \{a_{\underline{x}},b_{\underline{y}}\bullet_{\boxtimes}c_{\underline{z}}\}=\{a_{\underline{x}},b_{\underline{y}}\}\bullet_{\boxtimes}(1_{\underline{x}}\bullet_{\boxtimes}c_{\underline{y}})+(1_{\underline{x}}\bullet_{\boxtimes}b_{\underline{y}})\bullet_{\boxtimes}\{a_{\underline{x}},c_{\underline{y}}\} where we omit sums over disjoint configurations coming from repeated splits.
```

• Theorem: Any antisymmetric bundle map $k: (JE)^* \boxtimes (JE)^* \to I_{\otimes}$ over $\mathrm{UConf}_2(M)$ is the kernel of a Poisson bracket which makes

$$S^{\boxtimes}S^{\otimes}(JE)^*$$
 a Poisson 2-algebra bundle
$$\boxed{\mathsf{P}_{\mathcal{L}}(E) = S^{\boxtimes}S^{\otimes}(JE)^* \otimes \mathrm{Dens}_{\mathrm{UConf}(M)}} \quad \text{a Poisson \boxtimes-algebra bundle.}$$

Proof: extend k to symmetric powers using Leibniz rules and prove Jacobi.

• N.B. For field theory, the kernel k is determined by the Lagrangian \mathcal{L} .

(Regular) Poisson algebras of sections and distributions

• Sections and distributions: given a vector bundle $V \to UConf(M)$

sections:
$$\phi : \mathrm{UConf}(M) \to \mathsf{V}$$
 as usual $= \{ \phi_k : \mathrm{UConf}_k(M) \to \mathsf{V}_k \}$

$$\mathcal{E}(\mathrm{UConf}(\textit{M}), \mathsf{V}) \quad \mathsf{smooth} \ \supset \ \mathcal{D}(\mathrm{UConf}(\textit{M}), \mathsf{V}) \quad \mathsf{compact} \ \mathsf{support}$$

distributions:
$$\mathcal{D}(\mathrm{UConf}(M), \mathsf{V})' =: \mathcal{D}'(\mathrm{UConf}(M), \mathsf{V}^{\vee})$$

 $\mathcal{E}(\mathrm{UConf}(M), \mathsf{V})' =: \mathcal{E}'(\mathrm{UConf}(M), \mathsf{V}^{\vee})$

where $V^{\vee} = V^* \otimes \mathrm{Dens}_{\mathrm{UConf}(M)}$ is the functional dual such that $(V^{\vee})^{\vee} \cong V$.

regular distributions
$$\mathcal{D}(\mathrm{UConf}(M), {\color{red}\mathsf{V}}^{\vee}) \longleftrightarrow \mathcal{E}(\mathrm{UConf}(M), {\color{red}\mathsf{V}}^{\vee})$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 all distributions
$$\mathcal{E}'(\mathrm{UConf}(M), {\color{red}\mathsf{V}}^{\vee}) \longleftrightarrow \mathcal{D}'(\mathrm{UConf}(M), {\color{red}\mathsf{V}}^{\vee})$$

• **Theorem:** If P is a Poisson \boxtimes -algebra bundle on $\mathrm{UConf}(M)$, then

$$\mathcal{E}(\mathrm{UConf}(\textit{M}),\mathsf{P})$$
 and $\mathcal{D}'(\mathrm{UConf}(\textit{M}),\mathsf{P})$ are Poisson algebras

- Corollary: $\mathcal{D}'(\mathrm{UConf}(M), \mathsf{P}_{\mathcal{L}}(E))$ is a (regular) Poisson algebra (*) for any choice of a kernel bundle map $k: (JE)^* \boxtimes (JE)^* \to \mathsf{I}_{\otimes}$ over $\mathrm{UConf}_2(M)$ i.e. a smooth section $k \in \mathcal{E}(\mathrm{UConf}_2(M), \Lambda^{\boxtimes 2}(JE))$ (a regular distribution).
 - (*) in the cat. of bornological locally convex modules over the Frechet algebra $\mathcal{E}(\mathrm{UConf}(M))$

Poisson algebras of observables in field theory

• **Lemma:** The causal propagator $\Delta_{\mathcal{L}} \in \mathcal{D}'(M \times M, E \boxtimes E)$ determines a singular kernel $k_{\mathcal{L}} \in \mathcal{D}'(\mathrm{UConf}_2(M), \Lambda^{\boxtimes 2}(E))$ for a Poisson bracket on $\mathcal{D}'(\mathrm{UConf}(M), \mathsf{P}_{\mathcal{L}}(E))$.

Work in progress:

Problem 1: distributions with no support restrictions do not give finite integrals, need support restrictions.

Problem 2: Singular kernels require restrictions on the WF sets of distributions, cf. microcausal functionals as in [Brunetti-Fredenhagen-Ribero 2012].

Problem 3: $\mathcal{D}(\mathrm{UConf}(M),\mathsf{P}) \subset \mathcal{E}(\mathrm{UConf}(M),\mathsf{P})$ not a subalgebra!

Idea:

$$\mathcal{D}(\mathrm{UConf}(M),\mathsf{P}_{\mathcal{L}}(E)) \begin{tabular}{l}{ } & \mathcal{E}_{Pois}(\mathrm{UConf}(M),\mathsf{P}_{\mathcal{L}}(E)) \end{tabular} \begin{tabular}{l}{ } & \mathcal{E}(\mathrm{UConf}(M),\mathsf{P}_{\mathcal{L}}(E)) \end{tabular} \begin{tabular}{l}{ } & \mathsf{algebra} \end{tabular} \begin{tabular}{l}{ } & \mathsf{algebra} \end{tabular} \begin{tabular}{l}{ } & \mathsf{elgebra} \end{tabular}$$

Outlook

- Covariant QFT: Poisson ⊠-bundles are compatible with deformation quantization (operator product) and with Laplace pairing deformation (time-ordered product) described on polynomial observables in [C. Brouder, B. Fauser, A.F., R. Oekl 2004].
- Lift the whole construction to the orbifold of multi-configurations $\bigsqcup_k M^k/S_k$ to describe renormalization in QFT [PhD project for Hai Châu Nguyên].
- Extend to graded symmetric tensors to include fermions.
- Study structure group and connections of $P_{\mathcal{L}}(E)$ and extend to gauge fields.
- Include the multisymplectic description of dynamics and compute $C^{\infty}(\mathcal{E}_{\mathcal{L}}(M,E))!$
- Direct links with species, types of algebras, operads...

Thank you for the attention!