Form factors and overlaps for the spin chains

N. Kitanine

IMB, Université de Bourgogne

Journées PhysMath Lyon 2024

24 September 2024

in collaboration with C. Abetian and V. Terras, arXiv:2409.15194

also based on paper in collaboration with G. Kulkarni SciPost Phys. 6, 076 (2019)

– Typeset by Foil $T_{E}X$ – Lyon, 2024

The XXZ spin-1/2 Heisenberg chain

1. Periodic chain.

Hamiltonian

$$H_{\text{bulk}} = \sum_{m=1}^{L} \left(\sigma_m^x \sigma_{m+1}^x + \sigma_m^y \sigma_{m+1}^y + \Delta \left(\sigma_m^z \sigma_{m+1}^z - 1 \right) \right)$$

 $\Delta = \cosh \zeta$ - anisotropy Periodic boundary conditions: $\sigma_{L+1} = \sigma_1$.

2. Open chain.

$$H = \sum_{m=1}^{L-1} \left(\sigma_m^x \sigma_{m+1}^x + \sigma_m^y \sigma_{m+1}^y + \Delta \left(\sigma_m^z \sigma_{m+1}^z - 1 \right) \right) + h_- \sigma_1^z + h_+ \sigma_L^z$$

 h_\pm - boundary fields.

We consider $\Delta > 1$ - massive antiferromagnetic regime, $\Delta = \cosh \zeta$

Form Factors

The main question: systematic computation of the form-factors in the thermodynamic limit from the Algebraic Bethe ansatz

Form factors: matrix elements of local fields, local spin operators σ_m^a , a = x, y, z

 $|\Psi_g\rangle$ the ground state of the model $|\Psi_e\rangle$ - an excited state

$$\left|\mathcal{F}_{a}(\Psi_{e})
ight|^{2}=rac{\left\langle \Psi_{g}
ight|\sigma_{m}^{a}\left|\Psi_{e}
ight
angle \left\langle \Psi_{e}
ight|\sigma_{m}^{a}\left|\Psi_{g}
ight
angle }{\left\langle \Psi_{g}\left|\Psi_{g}
ight
angle \left\langle \Psi_{e}\left|\Psi_{e}
ight
angle }$$

Then more advanced questions can be studied like matrix elements of currents

- Integrable QFT F. Smirnov 1992 bootstrap approach
- Massive XXZ, M. Jimbo and T. Miwa 1995 *q*-vertex operator approach
- General XXZ, N.K, J.M. Maillet, V. Terras, 1999 Algebraic Bethe ansatz approach

[–] Typeset by Foil $T_{\!E\!} \! \mathrm{X}$ – Lyon, 2024

• Dynamical correlation functions at zero temperature:

$$f_a(m,t) = \langle \sigma_{m+1}^a(t)\sigma_1^a(0) \rangle = \sum_{\Psi_e} \exp(it\Delta E_e - im\Delta p_e) \left| \mathcal{F}_a(\Psi_e) \right|^2$$

Turns out to be an excellent tool of asymptotic analysis.

• Dynamical structure factors:

$$S(k,\omega) = \int_{-\infty}^{\infty} dt \sum_{m=-\infty}^{\infty} f_a(m,t) \exp(imk - it\omega)$$

Experimentally mesurable quantity : can be computed **numerically** from the form factors (J.S. Caux et al.) and **asymptotically (edge exponents)**.

Boundary overlaps

Quench: dynamics of a system after abrupt change of one parameter. We change one boundary field $h_- \longrightarrow \tilde{h}_-$. Local change, but can drastically modify the ground state (globally).

 $|\Psi
angle$ the ground state before the change of field $|\widetilde{\Psi}
angle$ - ground state after the change of field.

The most basic overlap: scalar product of ground states.

$$\left|\mathcal{F}
ight|^{2}=rac{\left\langle \Psi \left|\widetilde{\Psi}
ight
angle \left\langle \widetilde{\Psi} \left|\Psi
ight
angle }{\left\langle \Psi \left|\Psi
ight
angle \left\langle \widetilde{\Psi} \left|\widetilde{\Psi}
ight
angle }
ight
angle$$

Gives for example the dominant term for the Loschmidt echo (dynamics of the initial state after the change of the boundary magnetic field:

$$\mathcal{L}(t) = \left| \left\langle \Psi \right| e^{-i\widetilde{H}t} \left| \Psi \right\rangle \right|^2$$

– Typeset by Foil $T_{E}X$ – Lyon, 2024

XXZ chain: Algebraic Bethe ansatz

L.D. Faddeev, E.K. Sklyanin, L.A. Takhtajan (1979). Main object: quantum monodromy matrix:

$$T_a(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix}_a.$$

• Diagonal elements \longrightarrow commuting conserved charges: transfer matrix

$$\mathcal{T}(\lambda) = \operatorname{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda), \qquad [\mathcal{T}(\lambda), \mathcal{T}(\mu)] = 0$$

• Hamiltonian:

$$H = c \left. \frac{\partial}{\partial \lambda} \log \mathcal{T}(\lambda) \right|_{\lambda = \frac{i\zeta}{2}}, \qquad [H, \mathcal{T}(\lambda)] = 0$$

• Non-diagonal elements — creation/annihilation operators.

Bethe states

Ferromagnetic state: $|0\rangle = |\uparrow\uparrow \dots \uparrow\rangle$, $A(\lambda) |0\rangle = a(\lambda) |0\rangle$, $D(\lambda) |0\rangle = d(\lambda) |0\rangle$. Off-shell Bethe states: $|\Psi(\{\lambda_1, \dots, \lambda_N\})\rangle = B(\lambda_1) \dots B(\lambda_N) |0\rangle$. For any Bethe state we define **Baxter polynomial** and **exponential counting function**

$$q(\lambda) = \prod_{j=1}^{N} \sin(\lambda - \lambda_j), \qquad \mathfrak{a}(\lambda) = \frac{a(\lambda)}{d(\lambda)} \frac{q(\lambda + i\zeta)}{q(\lambda - i\zeta)}.$$

if the **Bethe equations** are satisfied (on-shell Bethe state)

$$\mathfrak{a}(\lambda_j) + 1 = 0, \qquad j = 1, \dots N$$

then it is an eigenstate of the transfer matrix and the Hamiltonian

$$\mathcal{T}(\mu) |\Psi(\{\lambda\})\rangle = \tau(\mu) |\Psi(\{\lambda\})\rangle, \qquad \tau(\mu) = \left(\mathfrak{a}(\mu) + 1\right) \frac{q(\mu - i\zeta)}{q(\mu)}.$$

– Typeset by Foil $T_{E}X$ – Lyon, 2024

Open spin chain, Algeraic Bethe ansatz

Boundary matrices satisfying reflection equation (Cherednik 1984)

 $R_{12}(\lambda - \mu) K_1(\lambda) R_{12}(\lambda + \mu) K_2(\mu) = K_2(\mu) R_{12}(\lambda + \mu) K_1(\lambda) R_{12}(\lambda - \mu).$

We consider only diagonal solution: $K(\lambda) = \begin{pmatrix} \sinh(\lambda + \xi - i\zeta/2) & 0\\ 0 & \sinh(\xi - \lambda - i\zeta/2) \end{pmatrix}$,

Algebraic Bethe Ansatz, Sklyanin 1988, Double row monodromy matrices:

 $T(\lambda)$ -usual monodromy matrix, $\widehat{T}(\lambda) = \sigma_0^y T^{t_0}(-\lambda) \sigma_0^y$ returned monodromy matrix.

$$\mathcal{U}_{-}(\lambda) = T(\lambda) K_{-}(\lambda) \widehat{T}(\lambda) = \begin{pmatrix} \mathcal{A}_{-}(\lambda) & \mathcal{B}_{-}(\lambda) \\ \mathcal{C}_{-}(\lambda) & \mathcal{D}_{-}(\lambda) \end{pmatrix},$$

$$\mathcal{U}^{t_0}_+(\lambda) = T^{t_0}(\lambda) \, K^{t_0}_+(\lambda) \, \widehat{T}^{t_0}(\lambda) = \begin{pmatrix} \mathcal{A}_+(\lambda) & \mathcal{C}_+(\lambda) \\ \mathcal{B}_+(\lambda) & \mathcal{D}_+(\lambda) \end{pmatrix},$$

– Typeset by Foil $T_{\!E\!}X$ – Lyon, 2024

Form factors and overlaps

Algebraic Bethe Ansatz, open chain

1. Transfer matrix:

$$\mathcal{T}(\lambda) = \mathrm{tr}_0\{K_+(\lambda)\,\mathcal{U}_-(\lambda)\} = \mathrm{tr}_0\{K_-(\lambda)\,\mathcal{U}_+(\lambda)\}.$$

 $[\mathcal{T}(\lambda), \mathcal{T}(\mu)] = 0$

2. Hamiltonian:

$$H = c \frac{d}{d\lambda} \mathcal{T}(\lambda)_{|\lambda = -i\zeta/2} + \text{constant.}$$
$$h_{\pm} = -\sinh\zeta \, \coth\xi_{\pm}$$

3. Bethe states, Baxter polynomials:

$$\ket{\psi_+(\{\lambda\})} = \prod_{k=1}^N \mathcal{B}_+(\lambda_j) \ket{0}, \qquad \mathcal{Q}(\lambda) = \prod_{j=1}^N \sin(\lambda - \lambda_j) \sin(\lambda + \lambda_j)$$

Note: operators $\mathcal{B}_+(\lambda)$ don't depend on h_- .

Bethe equations

Counting function

$$\mathfrak{A}(\lambda) = \frac{a(\lambda)d(-\lambda)}{d(\lambda)a(-\lambda)}\frac{\sin(\lambda+\imath\xi_{+}+i\zeta/2\sin(\lambda+\imath\xi_{-}+i\zeta/2)}{\sin(\lambda-\imath\xi_{+}-i\zeta/2\sin(\lambda-\imath\xi_{-}-i\zeta/2)}\frac{\mathcal{Q}(\lambda+i\zeta)}{\mathcal{Q}(\lambda-i\zeta)}$$

if the parameters λ satisfy the Bethe equations:

 $\mathfrak{A}(\lambda_j) = 1$

 $|\psi_+(\{\lambda\})\rangle$ is an eigenstate of the transfer matrix $\mathcal{T}(\mu)$:

$$\mathcal{T}(\mu) |\psi_{+}(\{\lambda\})\rangle = \tau(\mu, \{\lambda_{j}\}) |\psi_{+}(\{\lambda\})\rangle,$$

$$\tau(\mu) = \left(\mathfrak{A}(\mu)\frac{\sin(2\mu + i\zeta)}{\sin(2\mu - i\zeta)} + 1\right) \frac{\mathcal{Q}(\mu - i\zeta)}{\mathcal{Q}(\mu)}.$$

Scalar products and norms, periodic case

N. Slavnov, 1989: $\{\lambda_1, \ldots, \lambda_N\}$ - solution of Bethe equations, $\{\mu_1, \ldots, \mu_N\}$ - generic

$$\left\langle \Psi(\{\mu\}) \left| \Psi(\{\lambda\}) \right\rangle = \frac{\prod_{k=1}^{N} q(\mu_k - i\zeta)}{\prod_{j>k} \sin(\lambda_j - \lambda_k) \sin(\mu_k - \mu_j)} \det_N \mathcal{M}(\{\lambda\} | \{\mu\}),$$

$$\mathcal{M}_{j,k}(\{\lambda\}|\{\mu\}) = \mathfrak{a}(\mu_k)t(\lambda_j - \mu_k) - t(\mu_k - \lambda_j), \quad t(\lambda) = \frac{i\sinh\zeta}{\sin\lambda\sin(\lambda - i\zeta)}.$$

Norms of the on-shell Bethe states are given by the Gaudin formula

$$\langle \Psi(\{\lambda\}) | \Psi(\{\lambda\}) \rangle = (-1)^N \frac{\prod_{j=1}^N q(\lambda_j - i\zeta)}{\prod_{j \neq k} \sin(\lambda_j - \lambda_k)} \det \mathcal{N}(\{\lambda\}),$$
$$\mathcal{N}_{j,k}(\{\lambda\}) = \mathfrak{a}'(\lambda_j) \delta_{j,k} - K(\lambda_j - \lambda_k), \quad K(\lambda) = t(\lambda) + t(-\lambda).$$

Computation of determinants

N.K. Maillet Terras '99: **quantum inverse problem**, we know that the computation of form factors can be reduced to the scalar products.

$$S(\{\lambda\}|\{\mu\}) \equiv \frac{\langle \Psi(\{\mu\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\lambda\}) | \Psi(\{\mu\}) \rangle}{\langle \Psi(\{\lambda\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\mu\}) | \Psi(\{\mu\}) \rangle}$$
$$= \prod_{j=1}^{N} \frac{q_{\lambda}(\mu_{j})q_{\mu}(\lambda_{j})}{q_{\lambda}(\lambda_{j})q_{\mu}(\mu_{j})} \cdot \frac{\det \mathcal{M}(\{\lambda\}|\{\mu\}) \det \mathcal{M}(\{\mu\}|\{\lambda\})}{\det \mathcal{N}(\{\lambda\}) \det \mathcal{N}(\{\mu\})}.$$

The main idea is extremely simple: we compute the following matrices from a system of linear equations

$$F_{\lambda} = \mathcal{N}^{-1}(\{\lambda\})\mathcal{M}(\{\lambda\}|\{\mu\}), \quad F_{\mu} = \mathcal{N}^{-1}(\{\mu\})\mathcal{M}(\{\mu\}|\{\lambda\}),$$

$$\mathfrak{a}_{\lambda}'(\lambda_j)F_{\lambda_{j,k}} - \sum_{a=1}^N K(\lambda_j - \lambda_a)F_{\lambda_{a,k}} = \mathfrak{a}_{\lambda}(\mu_k)t(\lambda_j - \mu_k) - t(\mu_k - \lambda_j).$$

We set

$$\mathfrak{a}_{\lambda}'(\lambda_j)F_{\lambda j,k}=G_{\lambda}(\lambda_j;\mu_k)$$

Linear equations \longrightarrow Contour integral equation for a meromorphic function $G_{\lambda}(\lambda;\mu)$

We set

$$G_{\lambda}(\lambda;\mu) = (1 + \mathfrak{a}_{\lambda}(\mu))\rho_{\lambda}(\lambda;\mu)$$

Thermodynamic limit \longrightarrow Integral equation

$$ho_\lambda(\lambda;\mu)+rac{1}{2\pi i}\int\limits_{-\pi/2+i0}^{\pi/2+i0}d
u\,K(\lambda-
u)
ho_\lambda(
u;\mu)=t(\lambda-\mu).$$

Lieb equation for the density of Bethe roots! —> elliptic Cauchy determinant

$$F_{\lambda_{j,k}} = \frac{\mathfrak{a}_{\lambda}(\mu_k) + 1}{\mathfrak{a}'_{\lambda}(\lambda_j)} \cdot \frac{(q^2, q^2)_{\infty}}{(-q^2, q^2)_{\infty}} \cdot \frac{\vartheta_2(\mu_k - \lambda_j, q)}{\vartheta_1(\mu_k - \lambda_j, q)} + O(L^{-\infty}), \quad q = e^{-\zeta}$$

XXX case: 2-spinon form factor

N.K. G. Kulkarni '19: Matrix element of σ_z between the ground state of the XXX chain and a state with 2 holes (spinons) μ_{h_1} and μ_{h_2}

Final result for the form factor:

$$|\mathcal{Y}(\mu_{h_1} - \mu_{h_2})|^2 = \lim_{L \to \infty} L^2 |\mathcal{F}_z|^2 = \frac{2}{G^4 \left(\frac{1}{2}\right)} \left| \frac{G\left(\frac{\mu_{h_1} - \mu_{h_2}}{2i}\right) G\left(1 + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right)}{G\left(\frac{1}{2} + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right) G\left(\frac{3}{2} + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right)} \right|^2.$$

Where G(z) is the Barnes G-function (related to the double Γ -function).

$$G(z+1) = \Gamma(z)G(z), \qquad G(1) = 1.$$

This reproduces the result for the two-spinon form factor obtained in the *q*-vertex operator framework from the M. Jimbo and T. Miwa multiple integral formulas by A. H. Bougourzi, M. Couture and M. Kacir

– Typeset by Foil $T_{E}X$ – Lyon, 2024

Open chain: scalar products and norms

N.K. K. Kozlowski, J.M. Maillet, G. Niccoli, N. Slavnov, V. Terras '07

$$S(\{\lambda\}|\{\mu\}) \equiv \frac{\langle \Psi(\{\mu\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\lambda\}) | \Psi(\{\mu\}) \rangle}{\langle \Psi(\{\lambda\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\mu\}) | \Psi(\{\mu\}) \rangle}$$
$$= \prod_{j=1}^{N} \frac{\mathcal{Q}_{\lambda}(\mu_{j}) \mathcal{Q}_{\mu}(\lambda_{j})}{\mathcal{Q}_{\lambda}(\lambda_{j}) \mathcal{Q}_{\mu}(\mu_{j})} \cdot \frac{\det \mathcal{M}(\{\lambda\}|\{\mu\}) \det \mathcal{M}(\{\mu\}|\{\lambda\})}{\det \mathcal{N}(\{\lambda\}), \det \mathcal{N}(\{\mu\})}.$$

Slavnov matrix;

$$\mathcal{M}_{j,k}(\{\lambda\}|\{\mu\}) = \mathfrak{A}_{\lambda}(\mu_k)t\big((-\mu_k + \lambda_j) - t(-\mu_k - \lambda_j)\big) + t(\mu_k - \lambda_j) - t(\mu_k + \lambda_j),$$

Gaudin matrix

$$\mathcal{N}_{j,k}(\{\lambda\}) = \mathfrak{A}'_{\lambda}(\lambda_j)\delta_{j,k} - K(\lambda_j - \lambda_k) + K(\lambda_j + \lambda_k)$$

– Typeset by Foil $T_{\!E\!} X$ – Lyon, 2024

Form factors and overlaps

Computation of determinants: open case

Same idea as in the periodic case

$$F_{\lambda} = \mathcal{N}^{-1}(\{\lambda\})\mathcal{M}\left(\{\lambda\}|\{\mu\}\right), \quad F_{\mu} = \mathcal{N}^{-1}(\{\mu\})\mathcal{M}\left(\{\mu\}|\{\lambda\}\right),$$

Linear equations \longrightarrow Contour integral equation \longrightarrow Linear integral equation

$$\rho_{\lambda}(\lambda;\mu) + \frac{1}{2\pi i} \int_{-\pi/2+i0}^{\pi/2+i0} d\nu K(\lambda-\nu)\rho_{\lambda}(\nu;\mu) = t(\lambda-\mu) + t(\lambda+\mu).$$

Solution:

$$F_{\lambda_{j,k}} = \frac{\mathfrak{A}_{\lambda}(\mu_k) - 1}{\mathfrak{A}'_{\lambda}(\lambda_j)} \cdot \frac{(q^2, q^2)_{\infty}}{(-q^2, q^2)_{\infty}} \left(\frac{\vartheta_2(\lambda_j - \mu_k, q)}{\vartheta_1(\lambda_j - \mu_k, q)} + \frac{\vartheta_2(\mu_k + \lambda_j, q)}{\vartheta_1(\mu_k + \lambda_j, q)} \right) + O(L^{-\infty})$$

Once again Cauchy determinant

Cauchy determinant: open case

We use the following notations:

• ratio of the transfer matrix eigenvalues

$$\chi(\lambda) = \frac{\tau(\lambda, \{\mu_j\})}{\tau(\lambda, \{\lambda_j\})}$$

• and the following function

$$\varphi(\lambda, q) = \frac{\vartheta_1(\lambda, q)}{\sin \lambda}$$

Then we express the overlap as follows

$$S(\{\lambda\}|\{\mu\}) = \prod_{j=1}^{N} \frac{\chi(\lambda_j)}{\chi(\mu_j)} \prod_{j,k=1}^{N} \frac{\varphi(\lambda_j - \lambda_k, q)\varphi(\mu_j - \mu_k, q)\varphi(\lambda_j + \lambda_k, q)\varphi(\mu_j + \mu_k, q)}{\varphi^2(\lambda_j - \mu_k)\varphi^2(\lambda_j + \mu_k)}$$

It remains to fix the two states and compute products in the thermodynamic limit.

Ground states

Configurations of the Bethe roots in the ground state depends on the boundary magnetic fields: $h_{-} = -\sinh\zeta \coth\xi_{-}$ (first site) and $h_{+} = -\sinh\zeta \coth\xi_{+}$ (last site). There are several cases leading to different structures of the ground state (S. Grijalva, J. Di Nardis, V. Terras '19).

We consider 3 most important situations. We limit our analysis to the case $h_- > h_+$.

- $\Delta 1 < h_{-} < \Delta + 1$: All L/2 the roots are real distributed with a density given by the Lieb equation.
- $0 < h_{-} < \Delta 1$. L/2 1 real roots and a boundary root $\lambda_{\rm BR} = -i(\zeta/2 + \zeta_{-}) + O(L^{-\infty})$
- $h_+ < \Delta 1$, $\Delta + 1 < h_-$: L/2 1 real roots and a **boundary root** $\lambda_{
 m BR}$

We change one field $h_- \longrightarrow \widetilde{h}_-, \xi_- \longrightarrow \widetilde{\xi}_-$.

Final result: only real roots

Notations: $q=e^{-\zeta}$, $p=e^{-2\xi_-}$, $\widetilde{p}=e^{-2\widetilde{\xi}_-}$.

$$S(\{\lambda\}|\{\mu\}) = \frac{F^2(q^4p\widetilde{p})}{F(q^4p^2)F(q^4\widetilde{p}^2)}, \qquad F(u) = \frac{(uq^4, q^4, q^4)_{\infty}}{(uq^2, q^4, q^4)_{\infty}}.$$

Final result: one boundary complex root

$$S(\{\lambda\}|\{\mu\}) = \frac{F^2(p^{-1}\tilde{p}^{-1})}{F(p^{-2})F(\tilde{p}^{-2})}$$

q-vertex operator approach: same results by R. Weston

Conclusion and outlook

Advantages of the new approach:

- Explicit results, no Fredholm determinants.
- We know how to deal with complex roots
- Possibility to apply in a systematic way for all the regimes of the XXZ chain, periodic case, open case etc.

Open problems:

- Can we apply this method far from the ground state?
- Impurities, non-local quenches?