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Lie algebras

Definition (Lie algebra)

R-vector space g

bilinear map [·, ·] : g× g → g s.th. ∀x , y , z ∈ g

[x , y ] = −[y , x ] (skew-symmetry)
[x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]] (Jacobi identity)

Example

gl(n,R) = Rn×n, all matrices

so(n,R), sl(n,R), subalgebras of gl(n,R)
X(M), vector fields on a smooth manifold M

X(M, ω), vector fields preserving a volume form ω ∈ Ωn(M)



Lie algebra cohomology

Definition (Lie algebra coholomology)

R g∗ Λ2g∗ Λ3g∗ Λ4g∗δ0=0 δ1 δ2 δ3 δ4

δk(α)(v1, ..., vk+1) =
∑

1≤i<j≤k+1

(−1)i+jα([vi , vj ], v1, ..., v̂i , ..., v̂j , ..., vk+1)

Hk(g) =
ker δk

Image δk−1

Example

g abelian (i.e. [·, ·] = 0) =⇒ Hk(g) = Λkg∗

g Lie algebra of G (connected, compact)
=⇒ H(g) = HdeRham(G )



Perfectness

always H0(g) = R.
H1(g) = ker(δ1) = ker([·, ·]∗) = {α ∈ g∗ | α([g, g]) = 0}.
I.e. H1(g) = 0 ⇐⇒ [g, g] = g.

Definition (perfectness)

g perfect :⇐⇒ [g, g] = g.

H2(g) classifies central extensions by R...



Central extensions

Definition (Central extension)

Central extension of g
:⇐⇒ Lie algebra surjection p : g̃ → g such that [ker(p), g̃] = 0.
Call it a central extension by c = ker(p).

Example

trivial central extension by c = Rn: g̃ = g ⊕ c (with brackets
extending trivially)

g = R2 = ⟨⟨a, b⟩⟩ (with trivial bracket), c = R = ⟨⟨c⟩⟩,
bracket on g̃ = g⊕ c by [a, b] = c .
(Heisenberg algebra as extension of R2.)

finite-dimensional semisimple Lie algebras are perfect have no
non-trivial central extensions.



Universal central extensions

Definition (Universal central extension)

q̂ : ĝ → g universal central extension
:⇔ for all p : g̃ → g exists unique f : ĝ → g̃ such that q̂ = pf .

ĝ g

g̃ g

q̂

∃!f id

p

Theorem

A universal central extension exists iff H1(g) = 0.

It is characterized by H1(ĝ) = 0, H2(ĝ) = 0.



Infinite dimensions and topologies

Consider now X(M, ω), where ω ∈ Ωm(M) is a volume.

X(M, ω) inherits a Fréchet topology from X(M).
The Lie bracket is continuous
[X(M, ω),X(M, ω)] = Xex(M, ω) = {X | ιXω exact}

Modify previous slides with the topology

Replace H(g) by Hcont(g), which only admits continuous
maps Λkg → R as cochains.
require g̃ → g to be continuous and the existence of a
linear split g → g̃ in the definition of central extension.
g perfect and H2

cont(g) finite-dimensional implies the
existence of a universal central extension.



Main result

Theorem (JRV, Conjecture by Claude Roger 1993)

Let m > 2.
ĝ = Ωm−2(M)

dΩm−3(M)
is the universal central extension of g = Xex(M, ω)

(in the category of linearly split extensions by locally convex
spaces), with

q̂(ᾱ) := Xα for the unique field with ιXαω = dα.

[ᾱ, β̄] := LXαβ

As a diagram the extension reads: Hm−2
deRham(M) → ĝ → Xex(M, ω).

By a theorem of Neeb we need to show

ĝ is perfect

H2
cont(ĝ) = 0



The Leibniz algebra

Definition (left Leibniz algebra)

L, [·, ·] : L× L → L such that [x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]].

Example

L = Ωm−2(M) with [α, β] = LXαβ is a Leibniz algebra,
not a Lie algebra.

Theorem (JRV)

[L,L] = L.

Corollary: ĝ and g are perfect.



Local perfectness

Lemma
Let Lloc = Ωm−2

c (U), U ⊂ Rm connected, ω = dx1 ∧ ... ∧ dxm.
∀x ∈ Lloc exist yi , zi ∈ Lloc such that

x =

(m+1)3∑
i=1

[yi , zi ]

proof: Coordinate computation and Poincare Lemma



Ostrands theorem and pavings

Theorem (Ostrand, Brouwer-Lebesgue)

Let U an open cover of M. Then there exist open sets Vi ,α,
i ∈ {1, ...,m + 1}, α ∈ N with the following properties:

Each Vi ,α is a connected open subset of an element in U .
For fixed i and α ̸= β, Vi ,α ∩ Vi ,β = ∅
Vi ,α cover M.

In particular Wi =
⊔

α Vi ,α gives an open cover of M by m+1 sets.



proof of global perfectness of L

Proof.
Pick an open cover U = {Uβ} of M such that for each Uβ there
are coordinates ϕβ : Uβ → Rm with ω|Uβ

= ϕ∗
β(dx

1 ∧ ... ∧ dxm).

Apply Ostrands theorem and pick a partition of unity for Vi ,α

Use local Lemma to get solutions on Vi ,α

(with (m + 1)3 terms each)

patch them together to solutions on Wi

(with (m + 1)3 terms each)

Put all of them together
(with (m + 1)4 terms in total)



Summary and plan

So far we know:

L = Ωm−2(M) is a perfect Leibniz algebra.

ĝ = Ωm−2(M)
dΩm−3(M)

is perfect.

g = Xex(M, ω) is perfect.

We want to show H2
cont(ĝ) = 0 as follows:

Pick a cocycle Ψ : Λ2ĝ → R
Consider the induced map Ψ̂ : ĝ → ĝ′.
Use π : L → ĝ to obtain Φ = π′Ψ̂π : L → L′

Show it has a good local coordinate expression
(Peetre’s theorem)

Show it is exact locally (using representation theory of sl(m,R))
Glue the local solutions



Peetre’s theorem

Definition (support-decreasing)

Let E ,F be vector bundles over M, Φ : Γc(E ) → Γc(F )
′ is called

support-decreasing if for all f :

supp(Φ(f )) ⊂ supp(f )

Theorem (Peetre’s theorem)

If Φ is support-decreasing

The set of discontinuity of Φ is discrete.

Outside of it Φ can be locally written as:

Φ(f ) =
∑
|I |≤k

aIDI f

where I = (i1, ..., im) are multiindices, DI = (∂x1)
i1 ...(∂xm)

im

and aI are distributions.



The perfectness trick

Let Ψ be a cocycle, and Ψ̂, Φ its induced maps.

Φ support-decreasing
⇐⇒ If α, β ∈ L have disjoint supports, then Ψ(ᾱ, β̄) = 0.

Let supp(α) ⊂ supp(β)c

∃γi , δi (with supports in supp(β)c) such that α =
∑N

i=1[γi , δi ].

Ψ(ᾱ, β̄) =
∑

Ψ([γ̄i , δ̄i ], β̄)

=
∑

Ψ([γ̄i , β̄], δ̄i )−
∑

Ψ([δ̄i , β̄], γ̄i ) = 0

Since [ϵ̄, β̄] = LXϵβ vanishes for support-disjoint β, ϵ.

Peetre’s theorem applies to Φ. Moreover Φ is continuous
=⇒ It is a distribution-valued diff. operator near any point.



Remainder of the proof

Consider Φ|U for small contractible sets U Use the fact that Φ|U
is a Diff. Op. vanishing on Ωm−2

cl (M) to push it to Ωm−1(M).

Diff. Ops. are determined by their values on Polynomials. Use
this to find local potentials of Ψ inductively.

Use sheaf properties of L to glue the local potentials.

=⇒ H2
cont(ĝ) = 0.

Theorem
ĝ = Ωm−2(M)

dΩm−3(M)
is the universal central extension of g = Xex(M, ω).



Further results

H2
cont(Xex(M, ω)) = Hn−2

deRham(M)′. Moreover
H2
cont(X(M, ω)) = Hn−2

deRham(M)′ ⊕ Λ2Hn−1
deRham(M)′.

ĝ = Ωm−2
c (M)

dΩm−3
c (M)

is also the universal central extension of

g = {Xα | α ∈ Ωm−2
c (M)}

(among finite-dimensional extensions)

dΩm−3(M) in Ωm−2(M) is exactly the ideal of squares, i.e.
consists of finite sums of elements of the type [x , x ].

For m = 3 and M compact, we can also find a universal central
extension of Fréchet Lie groups.
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