Universal central extensions of the Lie algebra of unimodular vector fields

Leonid Ryvkin (j.w. Bas Janssens and Cornelia Vizman)

References

- Bas Janssens, Leonid Ryvkin, and Cornelia Vizman. Universal central extension of the Lie algebra of exact divergence-free vector fields. 2024. arXiv: 2409.05182 [math.DG]. URL: https://arxiv.org/abs/2409.05182.
- [2] Bas Janssens and Cornelia Vizman. "Universal Central Extension of the Lie Algebra of Hamiltonian Vector Fields". In: International Mathematics Research Notices 2016.16 (2016), pp. 4996–5047.
- Karl-Hermann Neeb. "Universal central extensions of Lie groups". English. In: Acta Appl. Math. 73.1-2 (2002), pp. 175–219. ISSN: 0167-8019. DOI: 10.1023/A:1019743224737.
- [4] Phillip A. Ostrand. "Covering Dimension in General Spaces". In: General Topology Appl. 1 (1971), pp. 209–221.
- [5] Jaak Peetre. "Rectification à l'article "Une caractérisation abstraite des opérateurs différentiels"". In: *Mathematica Scandinavica* 8 (1960), pp. 116–120.
- [6] Claude Roger. "Extensions Centrales d'algèbres et de Groupes de Lie de Dimension Infinie, Algèbre de Virasoro et Généralisations".
 In: Reports on Mathematical Physics 35.2 (1995), pp. 225–266.

Plan

Universal central extensions

Lie algebras and their cohomology Perfectness and Central extensions Infinite-dimensional case Roger's conjecture/ main result

Perfectness

The left Leibniz algebra Local perfectness Ostrands theorem and pavings Global perfectness

Proof of the main theorem

Peetre's Theorem The perfectness trick Conclusion

Lie algebras

Definition (Lie algebra)

 ${\mathfrak{s}}$ ${\mathbb R}$ -vector space ${\mathfrak{g}}$

$$\begin{array}{l} \bullet \quad \text{bilinear map } [\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ s.th. } \forall x, y, z \in \mathfrak{g} \\ [x, y] = -[y, x] \text{ (skew-symmetry)} \\ [x, [y, z]] = [[x, y], z] + [y, [x, z]] \text{ (Jacobi identity)} \end{array}$$

Example

- ${}_{igstarrow}$ $\mathfrak{gl}(n,\mathbb{R})=\mathbb{R}^{n imes n}$, all matrices
- ${}_{igstarrow} \ {}_{{\mathfrak X}}(M)$, vector fields on a smooth manifold M

Lie algebra cohomology

Definition (Lie algebra coholomology)

$$\mathbb{R} \xrightarrow{\delta^{0}=0} \mathfrak{g}^{*} \xrightarrow{\delta^{1}} \Lambda^{2} \mathfrak{g}^{*} \xrightarrow{\delta^{2}} \Lambda^{3} \mathfrak{g}^{*} \xrightarrow{\delta^{3}} \Lambda^{4} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \mathfrak{g}^{*} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \lambda^{k} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \lambda^{k} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \lambda^{k} \mathfrak{g}^{*} \xrightarrow{\delta^{4}} \lambda^{k} \lambda^{k} \lambda^{k} \lambda^{k} \overset{\delta^{4}} \lambda^{k} \lambda^{k}$$

Example

 ${\scriptstyle \blacklozenge} \ \ \, \mathfrak{g} \ \, \mathfrak{abelian} \ \, (\mathsf{i.e.} \ \, [\cdot,\cdot]=0) \Longrightarrow H^k(\mathfrak{g}) = \Lambda^k \mathfrak{g}^*$

Perfectness

Definition (perfectness) \mathfrak{g} perfect : $\iff [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$.

 \mathfrak{G} $H^2(\mathfrak{g})$ classifies central extensions by \mathbb{R} ...

Central extensions

Definition (Central extension)

Central extension of \mathfrak{g} : \iff Lie algebra surjection $p: \tilde{\mathfrak{g}} \to \mathfrak{g}$ such that $[\ker(p), \tilde{\mathfrak{g}}] = 0$. Call it a central extension by $\mathfrak{c} = \ker(p)$.

Example

- trivial central extension by $\mathfrak{c} = \mathbb{R}^n$: $\tilde{\mathfrak{g}} = \mathfrak{g} \oplus \mathfrak{c}$ (with brackets extending trivially)
- \$\$ g = ℝ² = ⟨⟨a, b⟩⟩\$ (with trivial bracket), c = ℝ = ⟨⟨c⟩⟩,
 bracket on ğ̃ = g⊕ c by [a, b] = c.
 (Heisenberg algebra as extension of ℝ².)
 \$\$
- finite-dimensional semisimple Lie algebras are perfect have no non-trivial central extensions.

Universal central extensions

Definition (Universal central extension)

 $\hat{q} : \hat{\mathfrak{g}} \to \mathfrak{g}$ universal central extension : \Leftrightarrow for all $p : \tilde{\mathfrak{g}} \to \mathfrak{g}$ exists unique $f : \hat{\mathfrak{g}} \to \tilde{\mathfrak{g}}$ such that $\hat{q} = pf$.

Theorem

- § A universal central extension exists iff $H^1(\mathfrak{g}) = 0$.
- § It is characterized by $H^1(\hat{\mathfrak{g}}) = 0$, $H^2(\hat{\mathfrak{g}}) = 0$.

Infinite dimensions and topologies

- § Consider now $\mathfrak{X}(M,\omega)$, where $\omega\in\Omega^m(M)$ is a volume.
 - $\mathfrak{X}(M,\omega)$ inherits a Fréchet topology from $\mathfrak{X}(M)$.
 - The Lie bracket is continuous
- Modify previous slides with the topology
 - Keplace H(𝔅) by H_{cont}(𝔅), which only admits continuous maps Λ^k𝔅 → ℝ as cochains.
 - require $\tilde{\mathfrak{g}} \to \mathfrak{g}$ to be continuous and the existence of a linear split $\mathfrak{g} \to \tilde{\mathfrak{g}}$ in the definition of central extension.
 - \mathfrak{g} perfect and $H^2_{cont}(\mathfrak{g})$ finite-dimensional implies the existence of a universal central extension.

Main result

Theorem (JRV, Conjecture by Claude Roger 1993)

Let m > 2. $\hat{\mathfrak{g}} = \frac{\Omega^{m-2}(M)}{d\Omega^{m-3}(M)}$ is the universal central extension of $\mathfrak{g} = \mathfrak{X}_{ex}(M, \omega)$ (in the category of linearly split extensions by locally convex spaces), with

$$\hat{q}(\bar{\alpha}) := X_{\alpha} \text{ for the unique field with } \iota_{X_{\alpha}}\omega = d\alpha.$$

$$[\bar{\alpha}, \bar{\beta}] := \overline{L_{X_{\alpha}}\beta}$$

As a diagram the extension reads: $H^{m-2}_{deRham}(M) \to \hat{\mathfrak{g}} \to \mathfrak{X}_{ex}(M,\omega).$

By a theorem of Neeb we need to show

🧉 ĝ is perfect

 $\quad \bullet \quad H^2_{cont}(\hat{\mathfrak{g}}) = 0$

The Leibniz algebra

Definition (left Leibniz algebra)

 $\mathfrak{L},\ [\cdot,\cdot]:\mathfrak{L}\times\mathfrak{L}\to\mathfrak{L} \text{ such that } [x,[y,z]]=[[x,y],z]+[y,[x,z]].$

Example

 $\mathfrak{L} = \Omega^{m-2}(M)$ with $[\alpha, \beta] = L_{X_{\alpha}}\beta$ is a Leibniz algebra, not a Lie algebra.

Theorem (JRV) $[\mathfrak{L}, \mathfrak{L}] = \mathfrak{L}.$

Corollary: $\hat{\mathfrak{g}}$ and \mathfrak{g} are perfect.

Local perfectness

Lemma

Let $\mathfrak{L}_{loc} = \Omega_c^{m-2}(U)$, $U \subset \mathbb{R}^m$ connected, $\omega = dx^1 \wedge ... \wedge dx^m$. $\forall x \in \mathfrak{L}_{loc} \text{ exist } y_i, z_i \in \mathfrak{L}_{loc} \text{ such that}$

$$x = \sum_{i=1}^{(m+1)^3} [y_i, z_i]$$

proof: Coordinate computation and Poincare Lemma

Ostrands theorem and pavings

Theorem (Ostrand, Brouwer-Lebesgue)

Let \mathcal{U} an open cover of M. Then there exist open sets $V_{i,\alpha}$, $i \in \{1, ..., m+1\}$, $\alpha \in \mathbb{N}$ with the following properties:

- Section $V_{i,\alpha}$ is a connected open subset of an element in \mathcal{U} .
- § For fixed i and $\alpha \neq \beta$, $V_{i,\alpha} \cap V_{i,\beta} = \emptyset$
- $V_{i,\alpha}$ cover M.

In particular $W_i = \bigsqcup_{\alpha} V_{i,\alpha}$ gives an open cover of M by m+1 sets.

proof of global perfectness of ${\mathfrak L}$

Proof.

Pick an open cover $\mathcal{U} = \{U_{\beta}\}$ of M such that for each U_{β} there are coordinates $\phi_{\beta} : U_{\beta} \to \mathbb{R}^m$ with $\omega|_{U_{\beta}} = \phi_{\beta}^*(dx^1 \wedge ... \wedge dx^m)$.

Apply Ostrands theorem and pick a partition of unity for $V_{i,\alpha}$

- Use local Lemma to get solutions on $V_{i,\alpha}$ (with $(m+1)^3$ terms each)
- patch them together to solutions on W_i (with $(m+1)^3$ terms each)
- Put all of them together (with (m + 1)⁴ terms in total)

Summary and plan

So far we know:

•
$$\mathfrak{L} = \Omega^{m-2}(M)$$
 is a perfect Leibniz algebra.

$$\hat{\mathfrak{g}} = rac{\Omega^{m-2}(M)}{d\Omega^{m-3}(M)}$$
 is perfect.

 $\mathfrak{g} = \mathfrak{X}_{ex}(M,\omega)$ is perfect.

We want to show $H^2_{cont}(\hat{\mathfrak{g}}) = 0$ as follows:

- Pick a cocycle $\Psi : \Lambda^2 \hat{\mathfrak{g}} \to \mathbb{R}$
- $\begin{array}{l} \bullet \quad \text{Consider the induced map } \hat{\Psi} : \hat{\mathfrak{g}} \to \hat{\mathfrak{g}}'. \\ \text{Use } \pi : \mathfrak{L} \to \hat{\mathfrak{g}} \text{ to obtain } \Phi = \pi' \hat{\Psi} \pi : \mathfrak{L} \to \mathfrak{L}' \end{array}$
- Show it has a good local coordinate expression (Peetre's theorem)
- Show it is exact locally (using representation theory of $\mathfrak{sl}(m,\mathbb{R})$)
- ▲ Glue the local solutions

Peetre's theorem

Definition (support-decreasing)

Let E, F be vector bundles over $M, \Phi : \Gamma_c(E) \to \Gamma_c(F)'$ is called *support-decreasing* if for all f:

 $\mathrm{supp}(\Phi(f))\subset\mathrm{supp}(f)$

Theorem (Peetre's theorem)

If Φ is support-decreasing

- 5 The set of discontinuity of Φ is discrete.
- Outside of it Φ can be locally written as:

$$\Phi(f) = \sum_{|I| \le k} a_I D_I f$$

where $I = (i_1, ..., i_m)$ are multiindices, $D_I = (\partial_{x_1})^{i_1} ... (\partial_{x_m})^{i_m}$ and a_I are distributions.

The perfectness trick

Let Ψ be a cocycle, and $\hat{\Psi},\,\Phi$ its induced maps.

- Φ support-decreasing \iff If $\alpha, \beta \in \mathfrak{L}$ have disjoint supports, then $\Psi(\bar{\alpha}, \bar{\beta}) = 0$.
- **Solution** Let supp(α) ⊂ supp(β)^c ∃γ_i, δ_i (with supports in supp(β)^c) such that $\alpha = \sum_{i=1}^{N} [\gamma_i, \delta_i]$.

$$\begin{split} \Psi(\bar{\alpha},\bar{\beta}) &= \sum \Psi([\bar{\gamma}_i,\bar{\delta}_i],\bar{\beta}) \\ &= \sum \Psi([\bar{\gamma}_i,\bar{\beta}],\bar{\delta}_i) - \sum \Psi([\bar{\delta}_i,\bar{\beta}],\bar{\gamma}_i) = 0 \end{split}$$

Since $[\bar{\epsilon}, \bar{\beta}] = \overline{L_{X_{\epsilon}\beta}}$ vanishes for support-disjoint β, ϵ .

Peetre's theorem applies to Φ. Moreover Φ is continuous → It is a distribution-valued diff. operator near any point.

Remainder of the proof

- Solution Consider $\Phi|_U$ for small contractible sets U Use the fact that $\Phi|_U$ is a Diff. Op. vanishing on $\Omega_{cl}^{m-2}(M)$ to push it to $\Omega^{m-1}(M)$.
- j Diff. Ops. are determined by their values on Polynomials. Use this to find local potentials of Ψ inductively.
- $\ref{starting}$ Use sheaf properties of $\mathfrak L$ to glue the local potentials.

$$\implies H^2_{cont}(\hat{\mathfrak{g}}) = 0.$$

Theorem $\hat{\mathfrak{g}} = \frac{\Omega^{m-2}(M)}{d\Omega^{m-3}(M)}$ is the universal central extension of $\mathfrak{g} = \mathfrak{X}_{ex}(M, \omega)$.

Further results

- $d\Omega^{m-3}(M)$ in $\Omega^{m-2}(M)$ is exactly the ideal of squares, i.e. consists of finite sums of elements of the type [x, x].
- For m = 3 and M compact, we can also find a universal central extension of Fréchet Lie groups.