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This talk is an introduction to the recent series of papers by
Benoist, Bruneau, J, Panati, Pillet:

A note on two-times measurement entropy production and mod-
ular theory, Lett. Math. Phys. 2024.

On the thermodynamic limit of two-times measurement entropy
production, to appear in Rev. Math. Phys.

Entropic fluctuations in statistical mechanics II. Quantum dy-
namical systems, preprint

Entropic fluctuation theorems for spin-fermion model, preprint.

The references can be found therein. Continuation of the story
in Laurent’s talk.
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OPEN QUANTUM SYSTEMS

Ruelle 2001, J-Pillet 2001. Small Hamiltonian system S coupled
to two thermal reservoirs R1 and R2.
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Hilbert space HR1
⊗HS ⊗HR2

.

Hamiltonians: H0 = HS +HR1
+HR2

,

H = H0 + V.

Initial state:

ρ =
1

Z
e−β1HR1

−β2HR2.

System S is in a tracial state (for convenience).

Φj = i[HRj
, H] = i[HRj

, V ]

the energy flux observable (out of the j-th reservoir).
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The entropy production observable is

σ = −β1Φ1 − β2Φ2.

If

S = − log ρ = β1HR1
+ β2HR2

+ logZ,

St = eitHSe−itH , ρt = e−itHρeitH ,

d

dt
St

∣∣∣
t=0

= σ

Entropic cocycle

ct = St − S =
∫ t

0
eisHσe−isHds.
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Relative entropy S(ν|µ) = tr(ν(log ν − logµ)). S(ν|µ) ≥ 0

with equality iff ν = µ.

Entropy balance equation (EBE)

S(ρt|ρ) = tr(ρct) =
∫ t

0
ρs(σ)ds

= −β1

∫ t

0
ρs(Φ1)ds︸ ︷︷ ︸

Energy change of R1

−β2

∫ t

0
ρs(Φ2)ds︸ ︷︷ ︸

Energy change of R2

≥ 0 ⇐⇒ heat flows from hot to cold

The sign in the ”second law” comes from the choice of initial
condition.
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TD limit (quantum spin systems, Ruelle 2001) or general ab-
stract framework (J-Pillet 2001): Quantum dynamical system
(O, τ t, ρ),

O = OS ⊗OR1
⊗OR2

,

τ t = etδ, δ = δ0 + i[V, ·], δ0 = δS + δR1
+ δR2

,

ρ = ρS ⊗ ρR1
⊗ ρR2

ρRj
is βj-KMS state.

Φj = δRj
(V ), σ as before, σ, Φj, are in O.

Entropic cocycle ct ∈ O = derivative of Connes’ cocycle of the
pair (ρt, ρ), its definition requires modular theory (non-commutative
measure theory).
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EBE holds with S(ρt|ρ) = ρ(ct) Araki’s relative entropy of the
pair (ρt, ρ).

Non-Equilibrium Steady States (NESS, Ruelle 1999):

ρ+ = w − lim
T→∞

1

T

∫ T

0
ρ ◦ τ tdt.

ρ+ is stationary,

ρ+(Φ1) + ρ+(Φ2) = 0

β1ρ+(Φ1) + β2ρ+(Φ2) = − lim
t→∞

1

t
S(ρt|ρ) ≤ 0.

The first and the second law. Establishing strict inequality in the
second law is crucial!
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(QUANTUM ) OBJECTIONS

The exposed theory parallels the classical one, with modular
structure replacing classical measure theory/probability. We will
refer to it as the direct quantization.

There are however several objections from the physical per-
spective.

(a) Finite time fluctuation relation (the fine form of the second
law) fails.

(b) The observational status of
∫ t
0 σsds and of the fluctuations of

entropy production along the state trajectory is questionable.
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Backed to confined setting.

Entropic cocycle

ct = St − S =
∫ t

0
τs(σ)ds.

It has positive and negative eigenvalues (tr(ct) = 0).
TRI ⇒ the eigenvalues of ct are symmetric wrt 0!
Spectral decomposition

ct =
∑

s∈sp(ct)
sPs

The spectral measure for ρ and ct is

Qt(s) = ρ(Ps), s ∈ sp(ct).
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We have

S(ρt|ρ) = ρ(ct) =
∫

sdQt(s) ≥ 0.

Qt favours positive s (”second law”).
However, the fluctuation relation (the fine form of the second law,
under TRI, in classical case works of Evans-Searles, Gallavotti-
Cohen)

Qt(−s)

Qt(s)
= e−s

fails except in trivial cases.
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TWO-TIME MEASUREMENT ENTROPY PRODUCTION

Kurchan, Tasaki, Tasaki-Matsui 2000-2003. Radically different
proposal for quantum mechanical entropy production.

S = − log ρ = β1H1 + β2H2 + logZ.

ρ =
∑

λPλ. First measurement at t = 0, − logλ is observed
with probability tr(ρPλ). State reduction ρ 7→ ρPλ/tr(ρPλ).

Reduced state evolves to

e−itH [ρPλ/tr(ρPλ)] e
itH .

The second measurement at time t gives − logµ with probabil-
ity

tr
(
e−itH [ρPλ/tr(ρPλ)] e

itHPµ

)
.
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The probability that the pair (− logλ,− logµ) is observed is

pt(λ, µ) = tr
(
e−itHρPλe

itHPµ

)
.

The entropy production random variable is

E(λ, µ) = − logµ− (− logλ)

It describes the entropy produced in the time period [0, t],

E(λ, µ) = s = β1∆E1 + β2∆E2

where ∆Ej is the measured change of the energy of the j-th
reservoir. The distribution Qt of E wrt pt is

Qt(s) =
∑

E(λ,µ)=s

pt(λ, µ).

Qt is physically natural and experimentally accessible (in princi-
ple).
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B(H) is Hilbert space with inner product ⟨X,Y ⟩ = tr(X∗Y ).
Relative modular operator

∆ρ|ν(X) = ρXν−1

is positive.
Basic fact (TRI) Ωρ = ρ1/2,∫

R
e−αsdQt(s) = ⟨Ωρ,∆

α
ρ−t|ρ

Ωρ⟩ = tr(ρ1−α
t ρα).

Qt = spectral measure of − log∆ρ−t|ρ for Ωρ (Tasaki-Matsui
2003 definition!).
Its characteristic function is Renyi’s relative entropy of (ρt, ρ).

Observational status of the modular structure!
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Of particular importance is further link of Qt with Ruelle Quan-
tum Transfer Operators and Araki-Masuda theory of non-commutative
Lp-spaces.

Comparison with the direct quantization (Qt spectral measure
for ρ and ct) under TRI.∫

R
sdQt(s) =

∫ t

0
ρ(σs)ds = S(ρt|ρ) =

∫
R
sdQt(s),

∫
R
s2dQt(s) =

∫
R
s2dQt(s).

However, the third moments of Qt and Qt are typically different.

This time Fluctuation Relation holds:

Qt(−s)

Qt(s)
= e−s.
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A physically and mathematically beautiful setting for qm entropy
production.

But there are objections.

(a) The experiments are done only on the models with small
dimH. The 2TMEP is obviously only a thought experiment if
dimH is large. But in the thermodynamic limit dimH → ∞!

(b) Even worse, how to implement/interpret two-times measure-
ment protocol wrt NESS ρ+? This is necessary for the Gallavotti-
Cohen theory of entropic fluctuations.

(c) The conceptual difficulty regarding the role of quantum mea-
surements in development of quantum statistical mechanics.

We will discuss recently proposed solution to (a). For (b) and (c)
see the series.
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ENTROPIC ANCILLA STATE TOMOGRAPHY (2013-onwards)

The ancilla’s Hilbert space is C2 and its initial state is the density
matrix

ρa =

[
ρ++ ρ+−
ρ−+ ρ−−

]
,

with ρ+− ̸= 0.

The Hilbert space of the coupled system is Ĥ = H⊗C2 and its
initial state is ρ̂ = ρ⊗ ρa.
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The coupling between the system and the ancilla is given by the
Hamiltonian

Ĥα = e
α
2 log ρ⊗σz (H ⊗ 1) e−

α
2 log ρ⊗σz

parametrized by α ∈ iR.

Since H = H0 + V with [H0, ρ] = 0,

Ĥα = H ⊗ 1+ Ŵα,

Ŵα =
1

2
Wα ⊗ (1+ σz) +

1

2
Wα ⊗ (1− σz),

Wα = ρα(V )− V.
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The ancilla’s state at time t is given by

ρa(t) = trH(e−itĤαρ̂eitĤα) =

[
ρ++ Ft(α)ρ+−

Ft(α)ρ−+ ρ−−

]
.

where

Ft(α) =
∫
R
e−αsdQt(s).

Ancilla state tomography (projective measurements on C2) gives
the access to ρa(t) and hence to Ft!

These observations are of theoretical and experimental impor-
tance and resolve objection (a).
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What is the series about?

Described two-times measurement protocol: The first measure-
ment of S = − log ρ at time t = 0 when the system was in the
state ρ.

What if the state of the system at t = 0 is some other state ν?
Of particular interest is ν = ρT for large T .

It turned out that due to the decoherence effect induced by the
first measurement, the two-times measurement entropy produc-
tion is (under an ergodicity assumption on the reservoirs) es-
sentially independent of the state of the system at the instant of
the first measurement.

Paper I.
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The strength of this conclusion requires a careful thermody-
namical limit justification of certain formulas that naturally arise
through modular theory description of the two-times measure-
ment protocol.

This TDL justification touches on some foundational open prob-
lems of quantum statistical mechanics related to Araki-Gibbs
condition (quantum analog of DLR).

An unusual thermodynamic limit argument (dynamical assump-
tion that reservoirs are ergodic plays key role).

Paper II.
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The direct relation with entropic ancila state tomography is bro-
ken as soon as the state at the instant of the first measure-
ment is different from ρ. It is however restored in the asymptotic
regimes relevant for Large Deviation Theory and quantum
Evans-Searles/Gallavotti-Cohen Fluctuation Theorems.

Key to this restoration: connection with complex resonances of
quantum transfer operators.

Strong parallel with classical entropic fluctuation theory of Evans-
Searls and Gallavotti-Cohen.

Papers III and IV.
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BRUNEAU-PANATI FORMULA

With ςθρ(A) = eiθ log ρ(A)e−iθ log ρ (modular dynamics),

Ft,T (α) = lim
R→∞

1

R

∫ R

0
ρT

(
ςθρ ([Dρ−t : Dρ]α)

)
dθ

=
∫

e−αsdQt,T (s).

Remarkable and unexpected.

Survives thermodynamic limit/infinite system extension.

Modular dynamics ergodic ⇒Qt,T does not depend on the time
of the first measurement and is constant along the state trajec-
tory.
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