Stratified surgery and the signature operator

Paolo Piazza (Sapienza Università di Roma).

Index Theory and Singular structures.
Toulouse, June 1st 2017.
Based on joint work with Pierre Albin
(and also Eric Leichtnam, Rafe Mazzeo and Thomas Schick).
I start by stating a fundamental theorem. Explanations in a moment.

Theorem

(N. Higson and J. Roe, 2004). Let V be a smooth, closed, oriented n-dimensional manifold and let $\Gamma := \pi_1(V)$. We consider a portion of the surgery sequence in topology:

$$L_{n+1}(\mathbb{Z}\Gamma) \longrightarrow S(V) \longrightarrow \mathcal{N}(V) \longrightarrow L_n(\mathbb{Z}\Gamma).$$

There are natural maps α, β, γ and a commutative diagram

$$
\begin{array}{cccccc}
L_{n+1}(\mathbb{Z}\Gamma) & \longrightarrow & S(V) & \longrightarrow & \mathcal{N}(V) & \longrightarrow & L_n(\mathbb{Z}\Gamma) \\
\downarrow\gamma & & \downarrow\alpha & & \downarrow\beta & & \downarrow\gamma \\
K_{n+1}(C^*(\tilde{V})\Gamma) & \longrightarrow & K_{n+1}(D^*(\tilde{V})\Gamma) & \longrightarrow & K_n(V) & \longrightarrow & K_n(C^*(\tilde{V}))
\end{array}
$$

The bottom sequence is the **analytic surgery sequence** associated to V and $\pi_1(V)$.
Later Piazza-Schick gave a different description of the Higson-Roe theorem, employing Atiyah-Patodi-Singer index theory and using crucially the Hilsum-Skandalis perturbation associated to a homotopy equivalence.

This more analytic treatment also gave the mapping of the Stolz surgery sequence for positive scalar curvature metrics to the same K-theory sequence.
The surgery sequence in topology

- the sequence actually extends to an infinite sequence to the left (but we only consider the displayed portion)

\[\cdots \to L_{n+1}(\mathbb{Z}\Gamma) \to S(V) \to \mathcal{N}(V) \to L_n(\mathbb{Z}\Gamma). \]

- one of the goals of this sequence for V a manifold is to understand the **structure set** $S(V)$

- $S(V)$ measures the non-rigidity of V (more later)

- $L_\ast(\mathbb{Z}\Gamma)$ are groups but $S(V)$ is only a set. $\mathcal{N}(V)$ can be given the structure of a group but the map out of it is not a homomorphism. \Rightarrow exactness must be suitably defined

- we now describe briefly the sequence
The structure set $S(V)$ and the normal set $N(V)$

- Elements in $S(V)$ are equivalence classes $[X \xrightarrow{f} V]$ with X smooth oriented and closed and f an orientation preserving homotopy equivalence.

- $(X_1 \xrightarrow{f_1} V) \sim (X_2 \xrightarrow{f_2} V)$ if they are h-cobordant (there is a bordism X between X_1 and X_2 and a map $F: X \to V \times [0, 1]$ such that $F|_{X_1} = f_1$ and $F|_{X_2} = f_2$ and F is a homotopy equivalence).

- $S(V)$ is a pointed set with $[V \xrightarrow{Id} V]$ as a base point

- V is rigid if $S(V) = \{[V \xrightarrow{Id} V]\}$

- $N(V)$ is the set of degree one normal maps $f: M \to V$ considered up to normal bordism (we shall forget about the adjective ”normal” in this talk)

- there is a natural map $S(V) \to N(V)$
The L-groups. Exactness

- The L-groups $L_\ast (\mathbb{Z} \Gamma)$ are defined algebraically as equivalence classes of quadratic forms with coefficients in $\mathbb{Z} \Gamma$
- A fundamental theorem of Wall tells us that $L_\ast (\mathbb{Z} \Gamma)$ is isomorphic to a bordism group $L_1^1 (B \Gamma)$ of manifolds with b.
- In fact, one can choose yet a more specific realization with "special cycles" ($L_2^2 (B \Gamma)$); a special cycle is $(W, \partial W)$ with a degree one normal map $F : W \to V \times [0, 1]$ such that $F|_{\partial W} : \partial W \to \partial (V \times [0, 1])$ is a homotopy equivalence + $r : V \to B \Gamma$
- Through this special realization $L_{n+1} (\mathbb{Z} \Gamma)$ acts on $S(V)$ and exactness at $S(V)$ means the following: $[X \xrightarrow{f} V]$ and $[Y \xrightarrow{g} V]$ are mapped to the same element in $\mathcal{N}(V)$ if and only if they belong to the same $L_{n+1} (\mathbb{Z} \Gamma)$-orbit.
- The map $\mathcal{N}(V) \to L_n (\mathbb{Z} \Gamma)$ is called the surgery obstruction.
- Exactness at $\mathcal{N}(V)$ means that $[X \xrightarrow{f} V] \in \mathcal{N}(V)$ is mapped to 0 in $L_n (\mathbb{Z} \Gamma)$ if and only if it is the image of an element in $S(V)$ (i.e. can be surgered to an homotopy equivalence).
The Browder-Quinn surgery sequence for a smoothly stratified space

- Let now V be a smoothly stratified pseudomanifold.
- we bear in mind the Wall’s realization of the L-groups
- we give ”essentially” the same definitions but we require the maps to be *stratified* and *transverse* (will come back to definitions)
- we obtain the Browder-Quinn surgery sequence

$$
\cdots \to L_{n+1}^{BQ}(V) \to S^{BQ}(V) \to N^{BQ}(V) \to L_n^{BQ}(V)
$$

There are differences: for example $L_*^{BQ}(V)$ depends now on the fundamental groups of all closed strata.

Warning: in the paper of Browder and Quinn there are precise statements but no proofs; a few key definitions are also missing.

Part of our work was to give a rigorous account.
Our program now:

- explain the Higson-Roe theorem (following Piazza-Schick)
- say why this is an interesting and useful theorem
- pass to stratified spaces and explain problems
- explain how to use analysis on stratified pseudomanifolds in order to achieve the same goal for the Browder-Quinn surgery sequence

\[
L_{n+1}^{BQ}(V) \rightarrow S^{BQ}(V) \rightarrow N^{BQ}(V) \rightarrow L_n^{BQ}(V)
\]

assuming \(V \) to be a Witt space or more generally a Cheeger space.
Higson-Roe analytic surgery sequence

- **change of notation:** M is a riemannian manifold with a free and cocompact isometric action of Γ. We write M/Γ for the quotient.

 Thus, with respect to the previous slides,
 \[V = M/\Gamma \text{ and } \tilde{V} = M. \]

- we also have a Γ-equivariant complex vector bundle E

- $D_c^*(M)^\Gamma \subset B(L^2(M, E))$ is the algebra of Γ-equivariant bounded operators on $L^2(M, E)$ that are of finite propagation and pseudolocal

- $D^*(M)^\Gamma$ is the norm closure of $D_c^*(M)^\Gamma$

- $C_c^*(M)^\Gamma \subset B(L^2(M, E))$ is the algebra of Γ-equivariant bounded operators on $L^2(M, E)$ that are of finite propagation and locally compact

- $C^*(M)^\Gamma$ is the norm-closure of $C_c^*(M)$

- $C^*(M)^\Gamma$ is an ideal in $D^*(M)^\Gamma$
we can consider the short exact sequence (of Higson-Roe);

\[0 \to C^*(M)^\Gamma \to D^*(M)^\Gamma \to D^*(M)^\Gamma / C^*(M)^\Gamma \to 0 \]

and thus

\[\cdots \to K_*(D^*(M)^\Gamma) \to K_*(D^*(M)^\Gamma / C^*(M)^\Gamma) \xrightarrow{\delta} K_{*+1}(C^*(M)^\Gamma) \to \cdots \]

Paschke duality: \(K_*(D^*(M)^\Gamma / C^*(M)^\Gamma) \cong K_{*+1}(M/\Gamma) \)

one can also prove that \(K_*(C^*(M)^\Gamma) \cong K_*(C_r\Gamma) \)

these groups behave functorially (covariantly).

If \(\tilde{u}: M \to E\Gamma \) is a \(\Gamma \)-equiv. classifying map then we can use \(\tilde{u}_* \) to map the Higson-Roe sequence to the universal Higson-Roe sequence:

\[\cdots \to K_*(C_r^\Gamma) \to K_*(D_f^\Gamma) \to K_{*+1}(B\Gamma) \xrightarrow{\delta} K_{*+1}(C_r^\Gamma) \to \cdots \]

where \(D_f^\Gamma := D^*(E\Gamma)^\Gamma \) (for simplicity \(B\Gamma \) is a finite complex here).

It turns out that \(\delta \) is the assembly map.
Index and rho-classes

We assume that we now have a Γ-equivariant Dirac operator D. Let n be the dimension of M. We can define:

- the fundamental class

 $$[D] \in K_n(M/\Gamma) = K_{n+1}(D^*(M)\Gamma/C^*(M)\Gamma)$$

- the index class $\text{Ind}(D) := \delta[D] \in K_n(C^*(M)\Gamma)$

- If D is L^2-invertible we can use the same definition of $[D]$ but get the rho classes $\rho(D)$ in $K_{n+1}(D^*(M)\Gamma)$ (no need to go to the quotient)

- For example if n is odd then

 $$\rho(D) = \left[\frac{1}{2} (1 + \frac{D}{|D|}) \right] = [\Pi_{\geq}(D)] \in K_0(D^*(M)\Gamma)$$
If we only know that $\text{Ind}(D) = 0 \in K_n(C^*(M)^\Gamma)$ then \exists a perturbation $C \in C^*(M)^\Gamma$ such that $D + C$ is L^2-invertible.

can define $\rho(D + C) \in K_{n+1}(D^*(M)^\Gamma)$ as before; e.g. if n is odd $\rho(D + C) := [\prod_{\geq}(D + C)] \in K_0(D^*(M)^\Gamma)$.

notice that $\rho(D + C)$ does depend on C.

Atiyah-Patodi-Singer index theory: if W is an oriented manifold with free cocompact action and with boundary $\partial W = M$ then

by bordism invariance we know that D_∂ has zero index

\exists $C_\partial \in C^*(\partial W)^\Gamma$ such that $D_\partial + C_\partial$ is L^2-invertible

one can prove that there exists an index class

$$\text{Ind}(D, C_\partial) \in K_*(C^*(W)^\Gamma)$$
Mapping surgery to analysis

We can now explain the maps Ind, ρ, β in the following diagram

\[
\begin{array}{cccccc}
L_{n+1}(\mathbb{Z} \Gamma) & \longrightarrow & S(V) & \longrightarrow & \mathcal{N}(V) & \longrightarrow & L_n(\mathbb{Z} \Gamma) \\
\downarrow \text{Ind} & & \downarrow \rho & & \downarrow \beta & & \downarrow \text{Ind} \\
K_{n+1}(C^*(\tilde{V})^\Gamma) & \longrightarrow & K_{n+1}(D^*(\tilde{V})^\Gamma) & \longrightarrow & K_n(V) & \longrightarrow & K_n(C^*(\tilde{V}))
\end{array}
\]

- $\text{Ind}[F : W \to V \times [0, 1], r : V \to B \Gamma]$: use the Hilsum-Skandalis perturbation of $F|_{\partial W}$ and take a suitable APS-index class for the signature operator. Well-definedness due to Charlotte Wahl.

- $\rho[X \xrightarrow{f} V]$: use the Hilsum-Skandalis perturbation of f and take the corresponding rho class for the signature operator

- $\beta[U \xrightarrow{f} V] := f_*[\bar{\partial}^U_{\text{sign}}] - [\bar{\partial}^V_{\text{sign}}]$

Well-definedness of ρ and commutativity of diagram is all in the next Theorem.
Theorem

(P-Schick) Let C_∂ be a trivializing perturbation for D_∂. For the index class $\text{Ind}(D, C_\partial) \in K_*(C^*(W)^\Gamma)$ the following holds:

$$\iota_*(\text{Ind}(D, C_\partial)) = j_*(\rho(D_\partial + C_\partial)) \quad \text{in} \quad K_0(D^*(W)^\Gamma).$$

Here $j: D^*(\partial W)^\Gamma \to D^*(W)^\Gamma$ is induced by the inclusion $\partial W \hookrightarrow W$ and $\iota: C^*(W)^\Gamma \to D^*(W)^\Gamma$ the natural inclusion.

Further contributions:

- P-Schick for Stolz
- Xie-Yu for Stolz using localization algebras
- Zenobi (Higson-Roe à la P-Schick for V a topological manifold)
- Zenobi (Higson-Roe via groupoids)
- Weinberger-Xie-Yu (Higson-Roe for V a topological manifold)

Stratified pseudomanifolds

Above is an example of depth 1; below is an example of depth 2:
Basics

Let us concentrate on the depth one case.

So there is a decomposition of \hat{X} into two strata: $\hat{X} = Y \cup X$.

Y is the singular set (the bottom blue circle) and X is the regular part (the union of the red cones (without the vertices)).

The link of a point $p \in Y$ is a smooth closed manifold Z (the green circle).

A neighborhood of $p \in Y$ looks like $B \times C(Z)$, with B a ball in $\mathbb{R}^{\dim Y}$. In fact, a tubular neighborhood T of Y is a bundle of cones $C(Z) \to T \xrightarrow{\pi} Y$, as in the figure.
Examples

- singular projective algebraic varieties
- quotients of non-free actions
- compactifications of locally symmetric spaces
- moduli spaces
Questions and problems:

- can we run the machine in the singular case?
- problem 1: for stratified spaces Poincaré duality does not hold
- consequently, we do not have a signature
- we do analysis on the regular part X of \hat{X}; we need to fix a metric g on X
- natural metrics are typically incomplete
- problem 2: the signature operator on $\Omega^*_c(X)$ has many extensions
 (so, even granting the Fredholm property, which one will be "connected to topology" ?!)
Witt spaces

We now restrict the class of pseudomanifolds. We consider Witt spaces:

Definition
\(\hat{X} \) is a Witt space if any even-dimensional link \(L \) has
\[
\text{IH}_{m}^{\dim L/2}(L; \mathbb{Q}) = 0.
\]

If \(\hat{X} \) is Witt then.....everything works !
Cheeger spaces

We want to drop the Witt assumption and treat more general stratified spaces. We shall treat Cheeger spaces.

\[\{\text{Witt spaces}\} \subset \{\text{Cheeger spaces}\} \subset \{\text{Stratified spaces}\} \]

References:

Iterated conic metrics.

Let us concentrate on the depth one case.

Recall that a neighborhood of \(p \) in the singular set \(Y \) (the blue circle) looks like \(B \times C(Z) \), with \(B \) a ball in \(\mathbb{R}^{\dim Y} \).

In fact a tubular neighborhood \(T \) of \(Y \) is a bundle of cones as in figure:

\[
C(Z) \to T \overset{\pi}{\longrightarrow} Y
\]

If \(x \) is the variable along the cone then \(x = 1 \) defines a fibration

\[
Z \to H \to Y
\]

A conic metric on \(X \) is, by definition, an incomplete metric of the form \(g := dx^2 + x^2 g_Z + \pi^* g_Y \).
Closed extensions

- we want to use Hilbert-space techniques
- we want closed operators
- if \hat{X} is Witt, then $d_{\text{min}} = d_{\text{max}}$ and $\tilde{\partial}_{\text{sign}} : \Omega_c^+ \oplus \Omega_c^- \to \Omega_c^+ \oplus \Omega_c^- \to$ is essentially self-adjoint
- in the non-Witt case $d : \Omega_c^k \to \Omega_c^{k+1}$ has various closed extensions (between d_{min} and d_{max})
- similarly $\tilde{\partial}_{\text{sign}}$ is NOT essentially self-adjoint
Resolution

- we resolve the pseudomanifold \hat{X} to a manifold with corners \tilde{X} (Verona + Brasselet-Hector-Saralegi + ALMP). \tilde{X} has an additional structure: it has an an iterated fibration structure on the boundary (boundary hypersurfaces are fibrations + compatibility relations at the corners between these fibrations).

Example: if \hat{X} is a depth-one space

then \tilde{X} is a manifold with boundary and the boundary is our fibration $H \to Y$ (thus with base equal to the singular stratum (the bottom circle) and fiber the links (the green circles)).
Expansions

We first consider $\partial_{dR} := d + d^*$. Recall that a tubular neighborhood T of the singular set Y looks like

$$C(Z) \to T \to Y$$

Consider the resolved manifold \tilde{X}; a manifold with boundary with boundary equal to the fibration $Z \to H \to Y$.

If Z is even-dimensional and has cohomology in middle degree then we are NOT in the Witt case.

Fundamental Lemma Any $u \in D_{\text{max}}(\partial_{dR})$ has an asymptotic expansion at Y,

$$u \sim x^{1/2}(\alpha_1(u) + dx \wedge \beta_1(u)) + \tilde{u}$$

with the terms in this expansion distributional:

$$\alpha_1(u), \beta_1(u) \in H^{-1/2}(Y; \bigwedge^* T^* Y \otimes \mathcal{H}^{f/2}(H/Y)), \quad \tilde{u} \in xH^{-1}(X, \bigwedge^* X)$$

Here $\mathcal{H}^{f/2}(H/Y)$ is the flat Hodge bundle over Y (with typical fiber $\mathcal{H}^{f/2}(Z_y)$) and $f = \dim Z$.
Cheeger boundary condition

The distributional differential forms $\alpha(u), \beta(u)$ serve as ‘Cauchy data’ at Y which we use to define Cheeger ideal boundary conditions. Here is what we do: for any subbundle

$$W \rightarrow \mathcal{H}^{f/2}(H/Y) \rightarrow Y$$

that is parallel with respect to the flat connection, we define

$$D_W(\tilde{\partial}_{dR}) = \{ u \in D_{\max}(\tilde{\partial}_{dR}) : \alpha_1(u) \in H^{-1/2}(Y; \Lambda^*T^*Y \otimes W), \beta_1(u) \in H^{-1/2}(Y; \Lambda^*T^*Y \otimes (W)^\perp) \}.$$

We call W a (Hodge) mezzoperversity adapted to g.
Every mezzoperversity induces a closed self-adjoint domain $\mathcal{D}_\mathcal{W}(\bar{\partial}_{dR})$;

$(\bar{\partial}_{dR}, \mathcal{D}_\mathcal{W}(\bar{\partial}_{dR}))$ is Fredholm with discrete spectrum;

We can define a domain for the exterior derivative as an unbounded operator on L^2 differential forms: $\mathcal{D}_\mathcal{W}(d)$;

the corresponding de Rham cohomology groups, $H^*_\mathcal{W}(\tilde{X})$, are finite dimensional and metric independent;

there is a Hodge decomposition theorem.
ANALYTIC RESULTS. Part 2

▶ given a mezzoperversity \mathcal{W} there is a dual mezzoperversity $\mathcal{D}\mathcal{W}$ defined in terms of the vertical Hodge-$*$

▶ there is a natural non-degenerate pairing

$$H^\ell_\mathcal{W}(\hat{X}) \times H^{n-\ell}_{\mathcal{D}\mathcal{W}}(\hat{X}) \to \mathbb{R}$$

▶ if $\mathcal{W} = \mathcal{D}\mathcal{W}$ then we say that \mathcal{W} is self-dual (might not \exists)

▶ \hat{X} admitting a self-dual mezzoperversity is a **Cheeger space**;

▶ on a Cheeger space we have a non-degenerate pairing

$$H^\ell_\mathcal{W}(\hat{X}) \times H^{n-\ell}_\mathcal{W}(\hat{X}) \to \mathbb{R}$$

and thus a signature $\sigma_\mathcal{W}(\hat{X})$;

▶ a self-dual mezzoperversity defines a Fredholm signature operator $(\partial_{\text{sign}}, \mathcal{D}\mathcal{W}(\partial_{\text{sign}}))$;

▶ the index is equal to the signature :

$$\sigma_\mathcal{W}(\hat{X}) = \text{ind}(\partial_{\text{sign}}, \mathcal{D}\mathcal{W}(\partial_{\text{sign}})) \equiv \text{ind}(\partial_{\text{sign}}, \mathcal{W})$$

▶ there is a well defined K-homology class $[\partial_{\text{sign}}, \mathcal{W}]$ in $K_*(\hat{X})$

▶ if $\pi_1(\hat{X}) = \Gamma$ and \hat{X}_Γ is the universal cover of \hat{X} then we also have a higher index class

$$\text{Ind}(\partial_{\text{sign}}^\Gamma, \mathcal{W}) \in K_*(C^*(\hat{X}_\Gamma)^\Gamma)$$
Summary + Crucial Questions

Given a Cheeger space \hat{X} with a fixed self-dual mezzoperversity \mathcal{V} and a classifying map r we have defined

- $H^\mathcal{V}_*(\hat{X})$
- $\sigma^\mathcal{V}(\hat{X}) \in \mathbb{Z}$
- $[\partial_{\text{sign}}^\mathcal{V}]$ in $K_*(\hat{X})$
- $\text{Ind}(\partial_{\text{sign}}^\mathcal{V}) \in K_*(C^*(\hat{X}_\Gamma)^\Gamma) = K_*(C^*_{\Gamma})$

Question 1: what happens to these invariants if $F : \hat{X} \to \hat{M}$ is a stratified homotopy equivalence ??

Question 2: is there a Hilsum-Skandalis perturbation ??

Question 3: can we define the rho class of a **stratified** homotopy equivalence ??

Question 4: how does all this depend on the choice of \mathcal{V} ??
Stratified maps

Let $F : \hat{X} \to \hat{M}$ be a smoothly stratified map between depth-1 stratified spaces. We denote by Y_X and Y_M the singular strata and by T_X and T_Y the corresponding tubular neighbourhoods. Then

$$F|_{Y_X} : Y_X \to Y_M \quad F|_{T_X} : T_X \to T_Y$$

moreover $F|_{T_X}$ is a bundle map.

F is transverse if T_X is the pull-back of T_Y and $F|_{T_X}$ is a pull-back map.

Pull-back of forms is not L^2-bounded but we can consider the Hilsum-Skandalis replacement for the pull-back map. We work on the resolved manifold.

Proposition

Let \mathcal{W} be a mezzoperversity for \hat{M}. Then we can define the pull-back mezzoperversity $F^\#(\mathcal{W})$. If \mathcal{W} is self-dual, so is $F^\#(\mathcal{W})$.
Theorem

If \(F : \hat{M}' \to \hat{M} \) is a stratified homotopy equivalence and \(\mathcal{W} \) is a mezzoperversity for \(\hat{M} \) then

\[
H^*_{\mathcal{W}}(\hat{M}) \cong H^*_{F^\#\mathcal{W}}(\hat{M}') .
\]

If \(\mathcal{W} \) is self-dual

\[
\sigma_{\mathcal{W}}(\hat{M}) = \sigma_{F^\#\mathcal{W}}(\hat{M}')
\]

\[
\text{Ind}(\bar{\partial}_{\text{sign},\mathcal{W}}) = \text{Ind}(\bar{\partial}_{\text{sign},F^\#\mathcal{W}}) \in K_*(C^*_\Gamma)
\]

proved via a Hilsum-Skandalis perturbation.
Bordism invariance

Theorem
Both \(\sigma_W(\hat{M}) \) and \(\text{Ind}(\partial_{\text{sign}}^\Gamma, \mathcal{W}) \) are Cheeger-bordism-invariant: if \((\hat{M}, \mathcal{W})\) is bordant to \((\hat{M}', \mathcal{W}')\) through \((\hat{Z}, \mathcal{W}_{\hat{Z}})\) then the signature and the index class are the same.

Theorem
(from an idea of Markus Banagl)
Let \(\mathcal{W} \) and \(\mathcal{W}' \) be two mezzoperversity for \(\hat{M} \). Then \((\hat{M}, \mathcal{W})\) is Cheeger-bordant to \((\hat{M}, \mathcal{W}')\)
Independence on \mathcal{W}. The L-class

Corollary

$\sigma_{\mathcal{W}}(\hat{M})$ and $\text{Ind}(\bar{\partial}_{\text{sign},\mathcal{W}}^{G(r)})$ are stratified homotopy invariant and independent of \mathcal{W} !!

Consequently: for a Cheeger space \hat{M} we have a signature and a homology L-class $L_*(\hat{M}) \in H_*(\hat{M}, \mathbb{Q})$ defined à la Thom. First defined by Banagl using topology. By our Hodge theorem we prove they are equal. Having $L_*(\hat{M})$ we can define the higher signatures on a Cheeger space

$$\{\langle \alpha, r_*(L_*(\hat{M})) \rangle, \alpha \in H^*(B\Gamma, \mathbb{Q})\}$$

and formulate the Novikov Conjecture (stratified homotopy invariance)

Theorem

(Albin-Leichtnam-Mazzeo-P.)

If SNC holds for Γ then the Novikov conjecture holds for a Cheeger space \hat{M} with $\pi_1(\hat{M}) = \Gamma$. In particular it holds for a Witt space.
we have seen that on a Cheeger space \hat{X} with mezzoperversity \mathcal{W} there exists a K-homology class $[\partial_{\text{sign}}, \mathcal{W}] \in K_\ast(\hat{X})$

if $f : \hat{M} \to \hat{X}$ is a stratified homotopy equivalence then there is an associated Hilsum-Skandalis perturbation for the signature operator on $M \sqcup X$ with mezzoperversity $f^\# \mathcal{W} \sqcup \mathcal{W}$

hence (modulo showing that the operators are in the right algebras) there is a well defined rho class

$\rho(f, \mathcal{W}) \in K_\ast(D^\ast(\hat{X}_\Gamma)^\Gamma)$

Finally let B be a Cheeger space with boundary and $B \xrightarrow{F} \hat{X} \times [0, 1]$ a degree one transverse map. The mezzoperversity \mathcal{W} on \hat{X}, extends trivially to $\hat{X} \times [0, 1]$ (call it again \mathcal{W}) and pulling it back on B via $F^\#$ we obtain a mezzoperversity $F^\# \mathcal{W} \sqcup \mathcal{W}$ on $B \cup (\hat{X} \times [0, 1])$. If F_∂ is a stratified homotopy equivalence then there is a well defined APS-index class

$\text{Ind}_{\text{APS}, \mathcal{W}}(B \xrightarrow{F} \hat{X} \times [0, 1]) \in K_\ast(C^\ast(\hat{X}_\Gamma)^\Gamma)$
Let \hat{X} be a Cheeger space. Choose a mezzoperversity \mathcal{W}.
Consider the Browder-Quinn surgery sequence
\[L_{n+1}^{\text{BQ}}(\hat{X}) \to S^{\text{BQ}}(\hat{X}) \to N^{\text{BQ}}(\hat{X}) \to L_n^{\text{BQ}}(\hat{X}) \]
Define $\text{Ind} : L_*(\hat{X})$ on a refined cycle via $\text{Ind}_{\text{APS},\mathcal{W}}$
Define $\rho : S^{\text{BQ}}(\hat{X}) \to K_*(D^*(\hat{X}_\Gamma)^\Gamma)$ as $\rho[\hat{Y} \to \hat{X}] = \rho(f, \mathcal{W})$.
Define $\beta : N^{\text{BQ}}(\hat{X}) \to K_*(\hat{X})$ as
$\beta[\hat{Y} \to \hat{X}] = f_*[\partial_{\text{sign}, f^\#\mathcal{W}}] - [\partial_{\text{sign}, \mathcal{W}}]$.

Theorem

These maps are well defined and they are independent of \mathcal{W}. Moreover, the following diagram is commutative.
THANK YOU