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If you want to learn more about epidemic models and analysis:
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A simple epidemic model

Focus on human populations: epidemics among plants or animals are
similar, but usually space is more important

Consider a fixed population of size n (assumed large)

The Markovian stochastic SIR epidemic model:

Individuals are classified as Susceptible, Infectious and Recovered

S(t), I (t),R(t) denote correspondning numbers at time t

(S(0), I (0),R(0)) = (n − 1, 1, 0). S(t) + I (t) + R(t) ≡ n for all t

An infective has ”infectious contacts” at rate β, each time with a
uniformly at random selected individual (rate β/n to each)

Infectious contacts with susceptibles imply infection – other contacts
have no effect

Infectious individuals recover (and become immune) at rate γ

Model parameters: β and γ (n = population size)
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Large population asymptotics

Model properties (proven 20-50 years ago):

a) Final size: As n→∞: R(∞)/n (= final fraction getting infected)
converges to a 2-point distribution: 0 or, if R0 = β/γ > 1,

τ = the positive solution to the equation 1− x = e−R0x

b) Time dynamics: If instead I (0)/n = ε > 0 fixed, then
(S(·)/n, I (·)/n, R(·)/n) converges in probability to the deterministic
ODE-system (”the deterministic SIR epidemic”)

s ′(t) = −βs(t)i(t)

i ′(t) = βs(t)i(t)− γi(t)

r ′(t) = γi(t)
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Illustration of a): R0 = 0.8

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When R0 < 1 no positive solution
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Illustration of a): R0 = 1.5

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When R0 = 1.5 positive solution of 1− x = e−R0x equals 0.583
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Illustration of b) Plots of deterministic and simulated
stochastic curve
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Vaccination and herd immunity

Suppose a perfect vacine is available and a fraction v are vaccinated
(=immunized) prior to outbreak

Then (initial) infection rate β → β(1− v), so
Rv = β(1− v)/γ = R0(1− v)

And if Rv ≤ 1 no outbreak will occur

But Rv ≤ 1 equivalent to v ≥ 1− 1/R0

Critical vaccination coverage: vc = 1− 1/R0

If at least this fraction is immune we have herd immunity
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Extensions

Many solved as well as open problems for various extentions

Considering different types of individual (Multitype epidemic)

Including vaccination and other preventive measures

Including social structures: network epidemics, household epidemics,
...

SEIR, SIRS, ,,,

Dynamic population and dynamic behaviour

Spatial aspects and mobility

Effects of individual preventive measures

Estimation!!!

...
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1. A natural optimizing problem (with Lasse Leskelä)

The determinstic SIR epidemic with intervention

Assume no vaccine is available (or expected to arrive) + no seasonality

Introduce a (non-pharmaceutical) prevention strategy
P = {p(t); 0 ≤ t <∞}: contacts reduced by fraction p(t) at t:

s ′P(t) = −β(1− p(t))sP(t)iP(t)

i ′P(t) = β(1− p(t))sP(t)iP(t)− γiP(t)

r ′P(t) = γiP(t)

Final size: zP = rP(∞) = 1− sP(∞)

Total cost of prevention strategy:
∫∞
0

p(t)dt

Optimization problem: Which preventive strategy P, with cost
satisfying

∫∞
0

p(t)dt ≤ c , minimizes final size zP?
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Comments on model

Of course many simplifications. Most crucial for conclusions:

– No vaccine available (or expected to arrive in near future)

– No immunity waning

– No seasonality

– Linear cost function
∫∞
0

p(t)dt

Here Aim is to minimize total number of infeced.

Alternative: minimize peak prevalence (see later)
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Uncontrolled incidence (top), some preventions (bottom)
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Optimizing prevention in time and size

Which preventive strategy P (when and how much lockdown) minimizes
final size

Solution is presented at end of talk - think of solution during the talk!!
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2. Herd immunity in a heterogeneous community

(Britton, Ball, Trapman, 2020)

Consider an epidemic where individuals have different social activity,
susceptibility and infectivity: multitype epidemic

R0 = average # infections caused by a ”typical” infected in beginning of
outbreak (= largest eigenvalue to ”next generation matrix”)

If a uniformly selected fraction v of individuals are vaccinated with a
perfect vaccine: new reproduction number Rv = R0(1− v)

Rv ≤ 1⇐⇒ v ≥ 1− 1/R0

Critical vaccination coverage: vc = 1− 1/R0 (Classical result)

If more than vc vaccinated: Herd immunity

First wave in Sweden: R0 ≈ 2.5 ”Herd immunity when 60% infected”
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Herd immunity cont’d

Optimal vaccination: vaccinate socially active and highly susceptible
(n.b. not elderly – varying severity is a different problem not considered
here)

=⇒ We can reach herd immunity by vaccinating less than 1− 1/R0!!
(also known result)

So: Uniform vaccination has vc = 1− 1/R0, but if vaccinating socially
active and highly susceptible then vc < 1− 1/R0

Without vaccination: Suppose an ongoing epidemic is stopped with
preventive measures. What fraction infected is required for Herd
immunity? A question never addressed before!

How is immunity distributed when immunity comes from infection in an
epidemic outbreak?

Answer: Highly susceptible and socially active are over-represented!

So immunity level to reach herd immunity is smaller than 1− 1/R0!!
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Herd immunity from disease-induced immunity

How much smaller than 1− 1/R0 is disease-induced herd immunity
level?

In Britton, Ball, Trapman (2020) we analysed an epidemic model fitted
to Covid-19 and allowing for heterogeneity due to

1) age (using empirical contact matrix from social studies),

2) varying social activity by assuming 50% ”normal” and 25% twice/half
as social

3) varying susceptibility by assuming 50% ”normal” and 25% twice/half
as susceptible

Suppose preventive measures (reducing all contacts equally) are put in
place during the outbreak, when will herd immunity be reached if
R0 = 2.5?

Answer (for our model!): between 40-45% rather than 60%
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Disease induced immunity is more effectively distributed

Left: Vaccine-induced immunity (assuming uniform vaccination)
Right: Disease-induced immunity in a heterogeneous community
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3. Definition of generation time

The generation time G describes the time between getting infected and
infecting others

G is a random variable, affected by: latent period, incubation period,
length of infectious period, infectivity over time, ...

Given an epidemic model, then the generation time distribution (GTD)
pG (k) = P(G = k) can often be computed

GTD is important because it is used when estimating the current
reproduction number Rt from recent (reported) incidence
I (tobs − s), . . . , I (tobs) (typically exponentially growing) using Euler-Lotka
equation:

I (t) = Rt

∑
k

I (t − k)pG (k), t = tobs − s, . . . , tobs

Take home message: estimating pG (·) is hard and a biased estimate
will make R̂t biased
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Estimating the generation time distribution (GTD)

Britton and Scalia Tomba (2019)

Given an epidemic model, the generation time distribution (GTD)
pG (t) = P(G = t) can often be computed

But how to estimate GTD?

Contact tracing (during early stage of outbreak)

Potential problems:

1. In a growing epidemic, short generation times will be over-represented
when sampling backwards in time

2. Times of infections not observed, but onset of symptoms. Both end
points of generation time shifted by random times, so observed gen-times
will have correct mean but larger variance

3. Often there are multiple possible infectors. If these are discarded
remaining gen-times will be systematically shorter
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Toy example

Suppose that R0 = 2, and each infected infects one individual after 1
week and one individual after 2 weeks (g(1) = g(2) = 0.5)

What is E (G )?

1.5 weeks, and st.d .(G )? 0.5 weeks (below plot of #
infections each week)
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Looking backwards: contact tracing

Fibonacci numbers and the Golden ratio ...

=⇒ The mean generation time when contact tracing will be < 1.5

So if you estimate E (G ) (or all of G ) from contact tracing you will
under-estimate E (G )
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Generation times vs Serial intervals

Serial intervals instead of generation times

(We now ”forget” problem of looking backwards)

Infection times are hardly ever observed, but onset of symptoms are

G = time between infection times (unobserved)

S = time between onset of symptoms (observed)
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Generation times vs Serial intervals, cont’d

Generaton times vs Serial intervals
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Generation times vs Serial intervals, cont’d

=⇒ S = G + (D2 − D1) (D1 and D2 = incubation periods of
infector and infectee)

So, if incubation times are independent and independent of G, then

E (S) = E (G ), and V (S) ≥ V (G )

(The relation holds true for all (?) epidemic models)

So, if we estimate G ∼ {g(s)} from observations on Serial intervals we
will over-predict variance of G
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Multiple exposures

Another problem when contact tracing is that sometimes there are
several potential infectors (see illustration on next slide)
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Multiple exposures

If observations with more than one infected are neglected, remaining
intervals are biased from below.

This will also lead to under-estimation of E (G )

Conclusions: looking backwards and neglecting multiple exposures lead
to under-estimation of E (G ) and observing serial intervals rather than
generation intervals lead to over-estimation of V (G )

We now see how this can affect estimates of R0
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We analyse the biasing effects of these inference problems

Conclusions:

1 & 3 give shorter mean, and 2) larger variance of GTD

All three lead to Rt being under-estimated in the Euler-Lotka equation

For Ebola outbreak we think R was under-estimated by ≈ 25%
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GTD also changes when preventive measures are adopted

Favero, Scalia Tomba and Britton (2022)

During covid-19 pandemic preventive measure have been enforced and we
have changed behaviour:

1. Social distancing in general

2. Self-isolation upon symptoms

3. Screening - testing

4. Contact tracing diagnosed cases

All of these reduce the daily reproduction number Rt (the average
number of infections made by an infected now)

But some also change the timing when infections happen, so changes the
GTD

We included various preventive measures in an epidemic model and
analyse its effect on the GTD
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Covid example and effect on bias

Combining preventions (added isolation, screening and CT) where we
have ”guessed” the amount of preventions

R = 3.9 → R = 1.45 (reduction by 62%)

E (G ) = 7.4 → E (G ) = 5.8 days (reduction by 22%)

Inferring Rt

Suppose we observe (increasing) incidence {I (t)} for this situation
(Rt = 1.45 and mean gen-time E (G ) = 5.8)

If we use this new correct GTD and apply Euler-Lotka estimating
equations we get R̂t ≈ 1.45 as it should

However, if we instead used the original/old GTD with mean 7.4 days (as
most countries do!!!) we would get R̂t ≈ 1.75, so biased from above by
more than 20%

Rt-estimates that use early GTD-estimates are biased from above (or
more accurately ”biased away from 1”)
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Back to: Optimizing preventions (with Lasse Leskelä)

i(t) when no interventions
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Which prevention strategy (with
∫
p(t)dt ≤ c) minimizes final epidemic

size?
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Best strategy: complete lockdown starting at peak
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Minimizing final size vs minimizing maximum peak
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Adding prevention before optimal may increase final size!
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Thanks for your attention!
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