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Introduction

Notation

Ω smooth bounded domain of Rd, d = 2, 3,

ω ⊂ Ω nonempty open set, T > 0.

Motivation: local exact controllability of the Navier-Stokes system
∂tṽ −∆ṽ + (ṽ · ∇)ṽ +∇p̃ = u1ω in (0, T )× Ω,
div ṽ = 0 in (0, T )× Ω,
ṽ = 0 on (0, T )× ∂Ω,
ṽ(0, ·) = ṽ0 in Ω.
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Controllability to the trajectories

Motivation

Let us consider a trajectory
∂tv −∆v + (v · ∇)v +∇p = 0 in (0, T )× Ω,
div v = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,
v(0, ·) = v0 in Ω.

We want to find u ∈ L2((0, T )× ω) such that

ṽ(T, ·) = v(T, ·).
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Null-controllability

We set
v := ṽ − v, p := p̃− p.

The new system is
∂tv −∆v + (v · ∇)v + (v · ∇)v + (v · ∇)v +∇p = u1ω in (0, T )× Ω,
div v = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,
v(0, ·) = ṽ0 − v0 in Ω.

Null-controllability

For
∥∥ṽ0 − v0

∥∥ “small”, find u ∈ L2((0, T )× ω) such that

v(T, ·) = 0.
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Linearization

Linear system

Null-controllability of the Oseen system
∂tv −∆v + (v · ∇)v + (v · ∇)v +∇p = F + u1ω in (0, T )× Ω,
div v = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,
v(0, ·) = v0 in Ω.

Then a fixed-point argument with the map

F 7→ −(v · ∇)v

shows the local controllability of the nonlinear system.
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The adjoint system

Definition

The adjoint system of the previous system is
−∂tW −∆W − (DW ) v +∇πW = G in (0, T )× Ω,
divW = 0 in (0, T )× Ω,
W = 0 on (0, T )× ∂Ω,
W (T, ·) =W 0 in Ω.

DW : symmetric gradient.
Change of variables t 7→ T − t:

Our system
∂tw̃ −∆w̃ +∇π̃ = f̃ + (Dw̃) a in (0, T )× Ω,
div w̃ = 0 in (0, T )× Ω,
w̃ = 0 on (0, T )× ∂Ω,
w̃(0, ·) = w̃0 in Ω.
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Final state observability

To prove the null-controllability of the Oseen system, we can consider
the adjoint system with f̃ = 0:

∂tw̃ −∆w̃ +∇π̃ = (Dw̃) a in (0, T )× Ω,
div w̃ = 0 in (0, T )× Ω,
w̃ = 0 on (0, T )× ∂Ω,
w̃(0, ·) = w̃0 in Ω.

Hypotheses on a

a ∈ L∞(0, T ;L∞(Ω))d.

∂ta ∈ L2(0, T ;Lσ(Ω))d with

{
σ > 1 if d = 2,
σ > 6/5 if d = 3.
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Final state observability


∂tw̃ −∆w̃ +∇π̃ = (Dw̃) a in (0, T )× Ω,
div w̃ = 0 in (0, T )× Ω,
w̃ = 0 on (0, T )× ∂Ω,
w̃(0, ·) = w̃0 in Ω.

Theorem

There exists C > 0 such that for any T > 0,∫
Ω
|w̃(T, y)|2 dy ⩽ CeC/T

∫∫
(0,T )×ω

|w̃|2 dy dt.
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Some references

E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov, and J.-P. Puel.
“Local exact controllability of the Navier-Stokes system”. J. Math.
Pures Appl. (9) (2004).

Remark

Cost of the control of the form CeC/T
4
.

Method : Carleman estimates but with different weights.

F. W. Chaves-Silva and G. Lebeau. “Spectral inequality and
optimal cost of controllability for the Stokes system”. ESAIM
Control Optim. Calc. Var. (2016).

Remark

Cost of the control of the form CeC/T on the Stokes system (a = 0).
Method : spectral inequality.
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Our main result: the weight functions

ω0 ⊂ ω.

ψ̃ ∈ C∞(Rd), ψ̃ = 0 on ∂Ω, ψ̃ ∈ (0, 1) in Ω,

∇ψ̃(y) = 0 =⇒ y ∈ ω0.

ℓ(t) := t(T − t) (t ∈ [0, T ]).

First parameter: λ ⩾ λ0.

Definition

We set

ζ̃(t, y) :=
eλψ̃(y)

ℓ(t)
, φ̃(t, y) :=

eλψ̃(y) − e2λ

ℓ(t)
(t ∈ (0, T ), y ∈ Ω).
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Our main result: the weight functions

Remark

These are the “classical” weight functions for the Carleman
estimates of the heat equation.

In FGIP2004, they use

ℓ(t) := t4(T − t)4 (t ∈ [0, T ]).

Second parameter: s ⩾ s0(T + T 2).

We estimate

I1(w̃) :=

∫∫
(0,T )×Ω

e2sφ̃
[(
sζ̃
)−1 (

|∂tw̃|2 + |∆w̃|2
)

+sζ̃ |∇w̃|2 +
(
sζ̃
)3

|w̃|2
]
dy dt.
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Our main result: the weight functions

We estimate

I1(w̃) :=

∫∫
(0,T )×Ω

e2sφ̃
[(
sζ̃
)−1 (

|∂tw̃|2 + |∆w̃|2
)

+sζ̃ |∇w̃|2 +
(
sζ̃
)3

|w̃|2
]
dy dt.

Remark

We have

(
sζ̃
)3
e2sφ̃ =

(
seλψ̃(y)

t(T − t)

)3

exp

(
2s
eλψ̃(y) − e2λ

t(T − t)

)
,

with
λ ⩾ λ0, s ⩾ s0(T + T 2).

12 / 49



Our main result: the weight functions

We estimate

I1(w̃) :=

∫∫
(0,T )×Ω

e2sφ̃
[(
sζ̃
)−1 (

|∂tw̃|2 + |∆w̃|2
)

+sζ̃ |∇w̃|2 +
(
sζ̃
)3

|w̃|2
]
dy dt

and

I2(π̃) :=

∫∫
(0,T )×Ω

e2sφ̃
[
|∇π̃|2 +

(
sζ̃
)2

|π̃|2
]
dy dt.
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Our main result: statement

Theorem

Let a ∈ L∞((0, T )× Ω)d.

∃λ0 ≳ 1 + ∥a∥L∞((0,T )×Ω)d ,∀λ ⩾ λ0,

∃C, s0 > 0, ∀T > 0,∀s ⩾ s0(T + T 2)

I1(w̃) + I2(π̃) ⩽ C

(∫∫
(0,T )×Ω

sζ̃e2sφ̃
∣∣∣f̃ ∣∣∣2 dy dt

+

∫∫
(0,T )×ω1

e2sφ̃
[(
sζ̃
)3

|w̃|2 +
(
sζ̃
)2

|π̃|2
]
dy dt

)
.
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From our result to the observability

To get rid of the pressure term in the observation, we need to
impose that

∂ta ∈ L2(0, T ;Lσ(Ω))d with

{
σ > 1 if d = 2,
σ > 6/5 if d = 3.

−→ This follows completely from FGIP2004.

To obtain the observability of the Oseen system, we cut the
integrals in I1(w̃) and use energy estimates for the Oseen system.
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First step: global Carleman estimates

The Oseen system as a heat equation

We write{
∂tw̃ −∆w̃ = −∇π̃ + f̃ + (Dw̃) a in (0, T )× Ω,
w̃ = 0 on (0, T )× ∂Ω.

Carleman estimate for the heat equation

I1(w̃) ≲
∫∫

(0,T )×Ω
e2sφ̃ |∇π̃|2 dy dt+

∫∫
(0,T )×Ω

e2sφ̃
∣∣∣f̃ ∣∣∣2 dy dt

+

∫∫
(0,T )×Ω

e2sφ̃ |(Dw̃) a|2 dy dt

+

∫∫
(0,T )×ω0

s3λ4ζ̃3e2sφ̃ |w̃|2 dy dt.
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First step: global Carleman estimates

Equation for the pressure

Using that div w̃ = 0, we have that π̃ satisfies

∆π̃ = div
(
f̃ + (Dw̃) a

)
in (0, T )× Ω.

Difficulty: there is no boundary condition!

We apply a Carleman estimate obtained in
O. Y. Imanuvilov and J.-P. Puel. “Global Carleman estimates for weak
solutions of elliptic nonhomogeneous Dirichlet problems”. Int. Math.
Res. Not. (2003).
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First step: global Carleman estimates

∆π̃ = div
(
f̃ + (Dw̃) a

)
in (0, T )× Ω.

We set
φ0 := φ̃|∂Ω, ζ0 := ζ̃|∂Ω.

Carleman estimate for the Laplace equation:

I2(π̃) ≲
∫∫

(0,T )×Ω
sζ̃e2sφ̃

∣∣∣f̃ ∣∣∣2 dy dt+

∫∫
(0,T )×Ω

sζ̃e2sφ̃ |(Dw̃) a|2 dy dt

+

∫∫
(0,T )×ω1

s2λ2ζ̃2e2sφ̃ |π̃|2 dy dt

+

∫ T

0
(sζ0)

1/2 e2sφ0 |π̃|2H1/2(∂Ω) dt.
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First step: global Carleman estimates

Gathering the two Carleman inequalities (heat equation and Laplace
equation), we find

Proposition

I1(w̃) + I2(π̃) ≲
∫∫

(0,T )×Ω
sζ̃e2sφ̃

∣∣∣f̃ ∣∣∣2 dy dt

+

∫∫
(0,T )×ω1

e2sφ̃
[
s3λ4ζ̃3 |w̃|2 + s2λ2ζ̃2 |π̃|2

]
dy dt

+

∫ T

0
(sζ0)

1/2 e2sφ0 |π̃|2H1/2(∂Ω) dt.

−→ we need to get rid of the boundary term with the pressure.
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Truncation and change of variables

•
y0

O ∩ Ω

xd

x′

κ(O) ∩ Rd+

κ

0
•

Figure: Local chart (O, κ) in a neighborhood of y0 ∈ ∂Ω.

We set
Rd+ :=

{
(x′, xd) ∈ Rd : xd > 0

}
.
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Truncation and change of variables

Truncation in space

θ ∈ C∞
0 (Rd), supp θ ⊂ O.

We set
w̆ := θw̃, π̆ := θπ̃.

∆π̃ = div
(
f̃ + (Dw̃) a

)
in (0, T )× Ω.

becomes
−∆π̆ = H̆0 + div H̆,

where

H̆0 := [θ,∆]π̃ +∇θ ·
(
f̃ + (Dw̃) a

)
, H̆ := −θ

(
f̃ + (Dw̃) a

)
.
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Truncation and change of variables

Change of variables

π := π̆ ◦ κ−1

−∆π̆ = H̆0 + div H̆ −→ Mπ = H0 + divH in (0, T )× Rd+.

Lemma

One can choose (O, κ) such that

Mπ := −∂
2π

∂x2d
−

d−1∑
j,k=1

gj,k
∂2π

∂xj∂xk
− h · ∇π,

with
d−1∑
j,k=1

gj,kξjξk ⩾ C
∣∣ξ′∣∣2 (

ξ′ = (ξ1, . . . , ξd−1) ∈ Rd−1
)
.
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Elliptic estimate

Objective

Estimate ∫ T

0
(sζ0)

1/2 e2sφ0 |π̃|2H1/2(∂Ω) dt.

We thus need to consider

esφ̃π̃ = e
s
ℓ

[
eλψ̃−e2λ

]
π̃ = eτϕ̃π̃e−τe

2λ
,

with
τ :=

s

ℓ
, ϕ̃ := eλψ̃.
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Change of variables

Weights on Ω

ψ̃ ∈ C∞(Rd), ψ̃ = 0 on ∂Ω,

∇ψ̃(y) = 0 =⇒ y ∈ ω0.

s, φ̃ :=
1

ℓ

[
eλψ̃ − e2λ

]
.

esφ̃π̃

Weights on Rd
+

ψ := ψ̃ ◦ κ−1,

inf
κ(O)

∂xdψ > 0.

τ :=
s

ℓ
, ϕ := eλψ.

q := eτϕπ
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Conjugaison

Before conjugaison

Mπ = H0 + divH in (0, T )× Rd+,

with

Mπ := −∂
2π

∂x2d
−

d−1∑
j,k=1

gj,k
∂2π

∂xj∂xk
− h · ∇π,

After conjugaison

q := eτϕπ

Mϕq = G0 + div(G) in (0, T )× Rd+.
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Conjugaison

Mϕq = G0 + div(G) in (0, T )× Rd+.

where

Mϕq = − ∂
2q

∂x2d
−

d−1∑
j,k=1

gj,k
∂2q

∂xj∂xk

−τ2
( ∂ϕ

∂xd

)2

+
d−1∑
j,k=1

gj,k
∂ϕ

∂xj

∂ϕ

∂xk

 q
+2τ

 ∂ϕ
∂xd

∂q

∂xd
+

d−1∑
j,k=1

gj,k
∂ϕ

∂xj

∂q

∂xk

+ . . .
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Ideas of the proof

Simplifications

Assume

gj,k = δj,k, ϕ = ϕ(xd),
∂ϕ

∂xd
= 1> 0,

so that

Mϕq = − ∂
2q

∂x2d
−

d−1∑
j=1

∂2q

∂x2j
−τ2q+2τ

∂q

∂xd
+ . . .

Important property of ψ

Recall that
ϕ := eλψ, inf

κ(O)
∂xdψ > 0.

Thus

inf
κ(O)

∂ϕ

∂xd
> 0.
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Ideas of the proof

Fourier transform

q(x′, xd) −→ q̂(ξ′, xd).

M̂ϕq = − ∂
2q̂

∂x2d
+
∣∣ξ′∣∣2 q̂ − τ2q̂ + 2τ

∂q̂

∂xd

= −
(

∂

∂xd
−
(
τ +

∣∣ξ′∣∣))( ∂

∂xd
−
(
τ −

∣∣ξ′∣∣))q̂.
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Ideas of the proof

We need to obtain estimates for the equations

∂

∂xd
û−

(
τ +

∣∣ξ′∣∣) û = f̂

and
∂

∂xd
v̂ −

(
τ −

∣∣ξ′∣∣) v̂ = ĝ

with û(ξ′, xd) = 0 and v̂(ξ′, xd) = 0 for xd ⩾ R(O).
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Ideas of the proof

First equation

∂

∂xd
û−

(
τ +

∣∣ξ′∣∣) û = f̂

We multiply by (τ + |ξ′|) û:

−
∫
Rd−1

(
τ +

∣∣ξ′∣∣) ∫ ∞

0

1

2

∂

∂xd
|û|2 dxd dξ

′

+
1

2

∫
Rd+

(
τ +

∣∣ξ′∣∣)2 |û|2 dξ′ dxd ⩽
1

2

∫
Rd+

∣∣∣f̂ ∣∣∣2 dξ′ dxd
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Ideas of the proof

First equation

∂

∂xd
û−

(
τ +

∣∣ξ′∣∣) û = f̂

∫
Rd−1

(
τ +

∣∣ξ′∣∣) ∣∣û (ξ′, 0)∣∣2 dξ′

+

∫
Rd−1×R

τ2 |û|2 +
∣∣iξ′û∣∣2 + ∣∣∣∣ ∂∂xd û

∣∣∣∣2 dξ′ dxd

≲
∫
Rd−1×R

∣∣∣f̂ ∣∣∣2 dξ′ dxd

Remark

We don’t need any boundary condition !
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Ideas of the proof

In order to the same for

∂

∂xd
v̂ −

(
τ −

∣∣ξ′∣∣)︸ ︷︷ ︸
???

v̂ = ĝ

we need to assume∣∣ξ′∣∣ < Cτ −→ LOW FREQUENCY
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Pseudo-differential operators

To justify the above ideas in the case without simplifications, we need
to use pseudo-differential operators

Decomposition

q ≈ Op⊤
(
χ−) q +Op⊤

(
χ+
)
q.
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Splitting Low and High frequencies

Decomposition

q ≈ Op⊤
(
χ−) q +Op⊤

(
χ+
)
q.

Lemma

There exist χ−, χ+ ∈ S0
⊤,τ such that

(x, ξ′, τ) ∈ supp(χ+) =⇒ |ξ′| ⩾ Cτ High Frequency

(x, ξ′, τ) ∈ supp(χ−) =⇒ |ξ′| ⩽ Cτ Low Frequency
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Semiclassical norms

Definition

Semiclassical norms: in Rd+

∥u∥n,τ :=

 ∑
|β|+j⩽n

τ2j
∥∥∥∂βxu∥∥∥2

L2(Rd+)

1/2

.

At the boundary,

|u|e,τ :=
∣∣∣Op⊤

(
|ξ′|2 + τ2

)e/2
u
∣∣∣
L2(Rd−1)

.
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Estimates of the low frequency part

We assume
Mϕq = G0 + div(G) in (0, T )× Rd+.

Theorem

There exist τ∗ > 0 and C > 0 such that for any τ ⩾ τ∗,

τ2
∥∥Op⊤

(
χ−) q∥∥2

1,τ
+ τ2

∣∣Op⊤
(
χ−) q∣∣2

1/2,τ

⩽ C
(
∥G0∥20,τ + τ2 ∥G∥20,τ + ∥q∥21,τ

)
.
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History

(w̃, π̃) solution of the Oseen system

Truncation in space

(w̆, π̆) = θ(w̃, π̃)

Local chart (O, κ)

π := π̆ ◦ κ−1

Conjugaison

q := eτϕπ

Low frequency arguments
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Estimates of the low frequency part

∆π̃ = div
(
f̃ + (Dw̃) a

)
in (0, T )× Ω.

Corollary

There exists s0 > 0 such that for any s ⩾ s0T
2,∣∣∣(sζ0)1/4 esφ0Op⊤

(
χ−) ([θπ̃] ◦ κ−1

)∣∣∣2
L2(0,T ;H1/2(Rd−1))

≲

∥∥∥∥(sζ̃)1/4 esφ̃f̃∥∥∥∥2
L2(0,T ;L2(Ω))d

+

∥∥∥∥(sζ̃)1/4 esφ̃∇w̃∥∥∥∥2
L2(0,T ;L2(Ω))d×d

+

∥∥∥∥(sζ̃)1/4 esφ̃π̃∥∥∥∥2
L2(0,T ;L2(Ω))

+

∥∥∥∥(sζ̃)−3/4
esφ̃∇π̃

∥∥∥∥2
L2(0,T ;L2(Ω))d

.
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High frequency estimates

Objective

Estimate ∫ T

0
(sζ0)

1/2 e2sφ0 |π̃|2H1/2(∂Ω) dt.

Truncation in space

θ ∈ C∞
0 (Rd), supp θ ⊂ O.

We set
w̆ := θw̃, π̆ := θπ̃.

Weak conjugaison

We set
w♮ := (sζ0)

1/4 esφ0w̆, π♮ := (sζ0)
1/4 esφ0 π̆.
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High frequency estimates

•
y0

O ∩ Ω

xd

x′

κ(O) ∩ Rd+

κ

0
•

Definition

For f : Ω ∩ O → R, we set

O+f :=
[
Op⊤

(
χ+
) (
f ◦ κ−1

)]
◦ κ.
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High frequency estimates

With this operator, we define

w♯ := O+w♮, π♯ := O+π♮

so that 
∂tw

♯ −∆w♯ +∇π♯ = f ♯ in (0, T )× Ω,
divw♯ = g♯ in (0, T )× Ω,
w♯ = 0 on (0, T )× ∂Ω,
w♯(0, ·) = 0 in Ω.
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High frequency estimates

Lemma

We have the estimate∥∥∥w♯∥∥∥2
L2(0,T ;H2(Ω))d

+
∥∥∥∂tw♯∥∥∥2

L2(0,T ;L2(Ω))d
+
∥∥∥π♯∥∥∥2

L2(0,T ;H1(Ω))

≲
∥∥∥f ♯∥∥∥2

L2(0,T ;L2(Ω))d
+
∥∥∥g♯∥∥∥2

L2(0,T ;H1(Ω))

+
∥∥∥τ−1∂tg

♯
∥∥∥
L2(0,T ;L2(Ω))

∥∥∥τπ♯∥∥∥
L2(0,T ;L2(Ω))

.

Question: semiclassical norms?
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High frequency estimates

Property of χ+

(x, ξ′, τ) ∈ supp(χ+) =⇒ |ξ′| ⩾ Cτ High Frequency

∥∥Op⊤
(
χ+
)
f
∥∥2
H1(Rd+)

⩾
∥∥Op⊤

(
χ+
)
f
∥∥2
L2(R+;H1(Rd−1)) .

Consequently,∥∥Op⊤
(
χ+
)
f
∥∥2
H1(Rd+)

≳
(
Op⊤

(
1 +

∣∣ξ′∣∣2)Op⊤
(
χ+
)
f,Op⊤

(
χ+
)
f
)
L2(Rd+)

.
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High frequency estimates

Property of χ+

(x, ξ′, τ) ∈ supp(χ+) =⇒ 1 + |ξ′|2 ⩾ C(τ2 + |ξ′|2) High Frequency

We have obtained∥∥Op⊤
(
χ+
)
f
∥∥2
H1(Rd+)

≳
(
Op⊤

(
1 +

∣∣ξ′∣∣2)Op⊤
(
χ+
)
f,Op⊤

(
χ+
)
f
)
L2(Rd+)

.

G̊arding inequality:∥∥Op⊤
(
χ+
)
f
∥∥2
1,τ

≲
∥∥Op⊤

(
χ+
)
f
∥∥2
H1(Rd+)

+ ∥f∥2
L2(Rd+)

.
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High frequency estimates

We thus deduce

Lemma

There exist C > 0 and s0 > 0 such that for any T > 0, for any
s ⩾ s0(T + T 2)∥∥∥Op⊤

(
χ+
) (
w♮ ◦ κ−1

)∥∥∥2
L2(0,T ;H2

τ )
+
∥∥∥Op⊤

(
χ+
) (
π♮ ◦ κ−1

)∥∥∥2
L2(0,T ;H1

τ )

⩽ C
(∥∥∥f ♯∥∥∥2

L2(0,T ;L2(Ω))d
+
∥∥∥g♯∥∥∥2

L2(0,T ;H1(Ω))
+
∥∥∥τ−1∂tg

♯
∥∥∥2
L2(0,T ;L2(Ω))

+
∥∥∥w♮∥∥∥2

L2(0,T ;L2(Ω))d
+
∥∥∥π♮∥∥∥2

L2(0,T ;L2(Ω))

)
.
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High frequency estimates

Semiclassical trace lemma

∣∣∣(sζ0)1/4 esφ0Op⊤
(
χ+
) (
θπ̃ ◦ κ−1

)∣∣∣2
L2(0,T ;H1/2(Rd−1))

≲
∥∥∥Op⊤

(
χ+
) (
π♮ ◦ κ−1

)∥∥∥2
L2(0,T ;H1

τ )
.
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History

(w̃, π̃) solution of the Oseen system

Truncation in space

(w̆, π̆) = θ(w̃, π̃)

Local chart (O, κ)

π := π̆ ◦ κ−1

Conjugaison

q := eτϕπ

Low frequency arguments

Weak conjugaison

(w♮, π♮) = (sζ0)
1/4 esφ0 (w̆, π̆)

Localization in high-frequency

(w♯, π♯) = O+
(
w♮, π♮

)
High frequency arguments
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End of the proof

We estimate all the “commutator” terms.

We add the estimates in low and high frequency modes.

We consider a finite family (Oj , κj), j = 1, . . . , J such that

∂Ω ⊂
J⋃
j=1

Oj .

We consider {θj}Jj=1 a partition of unity associated with this
covering:

θj ∈ C∞
(
Rd
)
, θj ⩾ 0,

J∑
j=1

θj ≡ 1 on ∂Ω, supp θj ⊂ Oj .
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Our main result: statement

Theorem

Let a ∈ L∞((0, T )× Ω)d.

∃λ0 ≳ 1 + ∥a∥L∞((0,T )×Ω)d ,∀λ ⩾ λ0,

∃C, s0 > 0, ∀T > 0,∀s ⩾ s0(T + T 2)

I1(w̃) + I2(π̃) ⩽ C

(∫∫
(0,T )×Ω

sζ̃e2sφ̃
∣∣∣f̃ ∣∣∣2 dy dt

+

∫∫
(0,T )×ω1

e2sφ̃
[(
sζ̃
)3

|w̃|2 +
(
sζ̃
)2

|π̃|2
]
dy dt

)
.
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