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Introduction

Notation
Q smooth bounded domain of R?, d = 2,3,

w C ) nonempty open set, 1 > 0.

Motivation: local exact controllability of the Navier-Stokes system

0w —Av+ (v-V)o+Vp=ul, in (0,T)x Q,
dive =0 in (0,7) x Q,
v=0 on (0,7T) x 09,
9(0,-) =0 in Q.
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Controllability to the trajectories

Motivation

Let us consider a trajectory

v —Av+ (- V)u+Vp=0 in (0,T) x Q,

divo =0 in (0,7) x €,
v=0 on (0,7) x 09,
2(0,-) =° in Q.

We want to find u € L?((0,T) x w) such that

W(T, ) =o(T,").
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Null-controllability

We set

The new system is

ov—Av+ (- Vo+ (v-V)i+ (v-V)o+ Vp=ul, in (0,T) x £,

dive =0 in (0,7) x £,
v=20 on (0,7") x 09,
v(0,-) =" —° in Q.

Null-controllability
For Hﬁo — EOH “small”, find u € L?((0,7) x w) such that

v(T,-) =0.
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Linearization

Linear system

Null-controllability of the Oseen system

ov—Av+ (0-V)v+ (v-V)i+Vp=F +ul, in (0,7) x Q,

dive =0 in (0,7) x €,
v=20 on (0,7) x 00
v(0,-) =0 in Q.

Then a fixed-point argument with the map
F— —(v-V)v

shows the local controllability of the nonlinear system.

)
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The adjoint system

Definition
The adjoint system of the previous system is

—W — AW — (DW) D + Vmw =G in (0,T) x Q,

diviV =0 in (0,7) x Q,
W =0 on (0,7") x 09,
W(T,-) = W° in Q.

DW': symmetric gradient.
Change of variables t — T — t:

Our system
O — AW+ V7= f+ (Dw)a in (0,T) x Q,
divas = 0 in (0,T) x ©Q,
w=0 on (0,7) x 09,
w(0,-) = w° in Q.
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Final state observability

To prove the null-controllability of the Oseen system, we can consider
the adjoint system with f = 0:

Ow — Aw+ V7 = (Dw)a in (0,T) x Q,

divw =0 in (0,7) x Q,
w=0 on (0,7) x 01,
w(0,-) = w in Q.

Hypotheses on a
a € L®(0,T; L>())%.

2 7O d g o>1 ifd=2,
dra € L*(0,T; L7())*  with {0—>6/5 if d = 3.
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Final state observability

ow — Aw+ V7 = (Dw)a in (0,T) x Q,

divw =0 in (0,7) x Q,
& =0 on (0,T) x 9,
w(0,-) = w° in Q.

Theorem

There exists C > 0 such that for any T > 0,

/\wTy dy<CeC/T// 2 dy dt.
0,7)x
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Some references

o E. Ferndandez-Cara, S. Guerrero, O. Y. Imanuvilov, and J.-P. Puel.
“Local exact controllability of the Navier-Stokes system”. J. Math.
Pures Appl. (9) (2004).

Remark

Cost of the control of the form CeC/T",
Method : Carleman estimates but with different weights.

o F. W. Chaves-Silva and G. Lebeau. “Spectral inequality and
optimal cost of controllability for the Stokes system”. FESAIM
Control Optim. Calc. Var. (2016).

Remark

Cost of the control of the form Ce®/T on the Stokes system (a = 0).
Method : spectral inequality.
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Our main result: the weight functions

wo C w.
Y e C®RY, $=00ndQ, e(0,1)in
Vi(y) =0 = y € wp.
Lt):=t(T—t) (te[0,T]).

First parameter: X > Ag.

Definition
We set
- MW W) _ 2X . 0
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Our main result: the weight functions

Remark

o These are the “classical” weight functions for the Carleman
estimates of the heat equation.

e In FGIP2004, they use

Lt) :=tHT —t)* (telo,T).

Second parameter: s > so(T + T2).

We estimate

0@ [ e[ (4) (ot o 207)
+sC [Va? + (55)3 W} dy dt.

11/49




Our main result: the weight functions

We estimate

L (@) = //(O,T)XQGM {(SZ)_1 (19 + |a@f?)

+sC Va2 + (55)3 W} dy dt.

Remark
We have

with
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Our main result: the weight functions

We estimate

N(@) = //m,nmem {(@1 (|atm2 + \A{D|2)

+sC |V + (SZ)S |w|2] dy dt

I(7) = //(OT)XQ&S%’E [|V%|2+(SE>2|%|2] dy dt.

and
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Our main result: statement

Theorem
Let a € L*((0,T) x Q)<
o 2 1+ llall poo 0,1y x )4 VA 2 Ao,

3C, 5o > 0,YT > 0,Vs > so(T + T?)

wosmorse(jf,, o
@] )

v

ﬂ dy dt
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From our result to the observability

e To get rid of the pressure term in the observation, we need to
impose that

o>1 if d =2,

2 .TO d i
dra € L*(0,T; L7(2))?  with {U>6/5 if d = 3.

— This follows completely from FGIP2004.

e To obtain the observability of the Oseen system, we cut the
integrals in [;(w) and use energy estimates for the Oseen system.
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First step: global Carleman estimates

The Oseen system as a heat equation
We write

B — A= —Vi+ f+ (Dd)a in (0,T) x Q,
w =0 on (0,7) x 99.

Carleman estimate for the heat equation

_ ~ 2
I(@) 5// 2% |V dy dt+// emm dy dt
(0,T)x2 (0,T)x2
+// e*? (D) af® dy dt
(0,T)x2

—i—// AP |w|* dy dt.
(O,T)XUJQ
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First step: global Carleman estimates

Equation for the pressure

Using that divw = 0, we have that 7 satisfies
A% = div (}*+ (D) a) in (0,T) x Q.

Difficulty: there is no boundary condition!

We apply a Carleman estimate obtained in
O. Y. Imanuvilov and J.-P. Puel. “Global Carleman estimates for weak

solutions of elliptic nonhomogeneous Dirichlet problems”. Int. Math.
Res. Not. (2003).
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First step: global Carleman estimates

A7 = div (f+ (D@) a> in (0,T) x €.

We set B
©0 = Plaas  Co = (jan-

Carleman estimate for the Laplace equation:

2 .o~
I(7) < // sCe?s? ﬂ dy dt + // sCe2® |(Dw) al* dy dt
(0,T)xQ (0,T)xQ

+// SN2 72 dy dt
(O,T)le

T
+ /0 (560)/2 €290 7212 5t
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First step: global Carleman estimates

Gathering the two Carleman inequalities (heat equation and Laplace
equation), we find

Proposition

L(w) + Ix(7 //OTXQsCeQS‘pﬂ dy dt

+// e25? [33A4g3 @[% + s2N2C2 |7 2| dy dt
(OT)le

T
+/O (SCO)l/Z 628@0 ‘%‘?{1/2(0&)) dt

— we need to get rid of the boundary term with the pressure.
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Truncation and change of variables

T4
Kk(O) N R
1)
Y 0 @'

We set
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Truncation and change of variables

Truncation in space

0 e Cgo(Rd), suppf C O.

We set
w = 0w, 7:=06T.
A7 = div (ﬂ (D) a) in (0,7) x Q.
becomes
—A7 = Hy+divH,
where

v

Ho = [0, A7 + V6 - (f+ (D) a) - g (f+ (D) a) .
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Truncation and change of variables

Change of variables

Ti=FoKr

~A%t=Ho+divH — Mr=Hy+divH in (0,T) x RL.

Lemma

One can choose (O, k) such that

#r L. 9
" Ik —p-
M : o2 jz 5 0z ;0xy, h- v,
with
-1 )
Z g et > C || (5/ =(&1,...,8-1) € Rd_l) :
k=1
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Elliptic estimate

Objective

Estimate .
1/2 2 ~ 2
/0 (SCO) / @ s¥0 ’7T|H1/2(aﬂ) dt

We thus need to consider

with B
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Change of variables

Weights on (2

Y € C®(RY), 4 =0on 0,
V@Z(y):O — Y € wp.
~ 1 Mo 2
s, go.—z[e e }

e T

Weights on Ri

pi=tpor,
inf 0, 0.
8 Oz >
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Conjugaison

Before conjugaison

Mr =Hy+divH in (0,T) x R%,
with

M S
- &rd =1 g aCCJaSCk ’

After conjugaison

q:=¢"n

Myq = Gy +div(G) in (0,T) x R,
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Conjugaison

Myg = Go +div(G) in (0,T) x RL.

where
94 d—
Mg — k
$4= Z Oznjaxk
7,k=1
d—1
g.j,kaﬁaﬁ ’
8xd ,} — Oxj Oxy,

06 09 < ;100 Oq

o7 gk ¥ 4

+ Gxd 31}1 +j;19 Oz Oxy, +
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Ideas of the proof

Simplifications
Assume 86

k=g = —— =1>0

g 7.k ¢ Qs(xd)’ 6$d >0,
so that

02 =g dq
Mypg=——5 — —— 2r—— + ...
W &U?l — ax? Tat T@wd +

Important property of

Recall that
= eV inf 0,1 > 0.
0] e, nl(% ) U

Thus P
inf —¢ > 0.
x(0) Oxq
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Ideas of the proof

Fourier transform

9T a2 o dq

— — or L

Mg axgﬂﬁl G-+ g
0
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Ideas of the proof

We need to obtain estimates for the equations

o~

9 o

and

with a(&',x4) =0 and 9(¢', z4) = 0 for x4 > R(O).
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Ideas of the proof

First equation J
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Ideas of the proof

First equation

0 . =

Ra-1
2 1~12 Lr~|2 a ~
+/ 7 [l + |igq] +‘u
RA-1xR ({_)Q?d

2
< / ‘ﬂ ¢’ day
RI-1 xR

Remark J

2
¢’ dzg

We don’t need any boundary condition !
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Ideas of the proof

In order to the same for

9 POt
o, T 1€) =7
77

we need to assume

|¢'| < Cr — LOW FREQUENCY
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Pseudo-differential operators

Elliptic Carleman Elliptic Carleman
Estimates and Applications Estimates and

to Stabilization Applications to
and Controllability, Stabilization and
Volume | Controllability, Volume Il

To justify the above ideas in the case without simplifications, we need
to use pseudo-differential operators

Decomposition

g~ Opt (x7) g+ Opt (x7) ¢
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Splitting Low and High frequencies

Decomposition

q¢~Opt (x7)a+Opt (x") ¢

Lemma

There exist x—,x+ € SQ—J such that

(z,&,7) €supp(xt) = |¢/| = C1 High Frequency

(x,&,7) €supp(x~) = |¢| < C1 Low Frequency
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Semiclassical norms

Definition

Semiclassical norms: in Ri

1/2
e WD DR -
|Bl+i<n
At the boundary,
o n2 ., 2\¢/2
|ule,r == }OPT (|f "+ 7 ) @ L2(Ri-1)
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Estimates of the low frequency part

We assume
Myq = Gy +div(G) in (0,T) x RY.

Theorem
There exist 7* > 0 and C > 0 such that for any 7 > 7%,
N\ 12 2
7 [|0pr (x7) dll,, + 7 [Opr (x7) a5,

2 2 2
<O (G0l + 72 IGIR . +llal ) -

v
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History

(w, ) solution of the Oseen system

Truncation in space

Local chart (O, V

-1

TI=TOK

Conjugaison

qg:=er

Low frequency arguments
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Estimates of the low frequency part

A% = div (}*+ (D) a) in (0,T) x Q.

Corollary
There exists sy > 0 such that for any s > soT?,

2

L2(0,T;HY/2(Re-1))

<85> Y B i

L2(0,T;L2(%))**¢

(SZ) R :

‘(sgo)l/‘l e*®0p+ (x) ([67] 0 k1)
]

<

~

L2(0,T;L2 (€))% ‘

(sC) o i

L2(0,T;L2(2)) ‘

L2052 ()"
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High frequency estimates

Objective
Estimate

T
/0 (Sg())l/Q 628%0 ’%ﬁ;ll/Z(aQ) dt.

Truncation in space

0 € C(RY), supph C O.
We set

= 0.

¢

w = Ow,

Weak conjugaison
We set

U}h 0= (3(0)1/4 eS(PO'lI}, ﬂ'h e (SCO)1/4 estpo,ﬁ_.
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High frequency estimates

Zq
k(0) NRE
onQ (\ (O) RS
. )
y° 0 @’

Definition
For f: QN O — R, we set

Ot f:= [Op—r (X+) (f o Ii_l)] oK.
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High frequency estimates

With this operator, we define

wh = (D)"'wh, 7t = Ot xb

so that
ot — Awt + Vvt = £ in (0,7) x Q,
divw? = gt in (0,7) x €,
wf =0 on (0,T) x 98,
wh(0,-) =0 in Q.
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High frequency estimates

Lemma

We have the estimate

o],

L2(0,T;H2())4 H ‘

<17,

+[
L2(0,T;L2(Q))? L2(0,T;H(Q))

L2(0,T;L2(Q )d-l-Hg‘

L2(0,T;H())
+fas

Vil

L2(0,T;L2(Q) L2(0,T;L2(Q))

Question: semiclassical norms?
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High frequency estimates

Property of x*

(z,&,7) € supp(xt) = |¢/| = Cr High Frequency

00T () Fl7: gty = 100 () A2y a1 (o) -
Consequently,
l0p7 (™) 117 et

2 <OpT <1 + \5'!2> Opr (xT) f,0pr (xT) f) Le(a)
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High frequency estimates

Property of x*

(2,6, 7) € supp(x*) = 1+[¢'* > C(r* +1¢'|*) High Frequency

We have obtained

1007 (") s et
2 (OPT (1 + ’€'|2> Opr (x*) £, Op7 (x7) f)L2(Rd) '

Garding inequality:

[0nr (¢ £, S 10 () £ qag) + 17 Bagas) -
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High frequency estimates

We thus deduce

Lemma

There exist C' > 0 and sg > 0 such that for any T > 0, for any
s> so(T +T?)

HOPT () (55 s 007 60 (o)
<c(|le],

2

L2(0,T;HY)
2

—14 4
|
L2(0,T5L2(Q))¢ Hg ’ L2 OTHl(Q)) + HT 4

],

L2(0,T;L2(2))

1,
L2(0,T;L2(2))¢ H

L2(0,T; L?(sz)))

v
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High frequency estimates

Semiclassical trace lemma

(5C0)1/4 esapoop_r (X+) (0% ® 5_1) 2

L2(0,T5H/2(RA-1))

< Jopr (1) (o)

L2(0,T;HY)’
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History

(w, ) solution of the Oseen system

Truncation in space

(w, %) = 0(@, 7)

Local chart (O, V \\Qfeak conjugaison

mi=fok! (wh, ) = (sGo)/* e5%0 (w, )
Conjugaison Localization in|high-frequency
q:=e"%n (wh, ) = OF (wh, )
Low frequency arguments High frequency arguments
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End of the proof

o We estimate all the “commutator” terms.
@ We add the estimates in low and high frequency modes.

e We consider a finite family (O;,x;), j =1,...,J such that

J
oo c o

=1

o We consider {6; };.]:1 a partition of unity associated with this
covering:

J
0; € C™ (]Rd> . 0;,>0, ZOJ- =1on0f), suppb; C O;.
j=1
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Our main result: statement

Theorem
Let a € L>=((0,T) x Q)4.

o 2 1+ llall poo 0,1y x2)25 YA 2 Ao,

3C, 5o > 0,YT > 0,Vs > so(T + T?)

woesmec(f] o
o 0 3] )

v

ﬂ dy dt
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