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Controlled maps between manifolds/domains:

Motivation: control of singularity formation, cosmology, SPDE and ergodicity,
liquid crystal

Methodology: Analysis, Dynamics, Geometry
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Outline of the presentation

1 Control of geometric flows

2 Heat flow

3 Wave maps
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Control of the heat equation

∂tu−∆u = χωf, (t, x) ∈ (0, T )×M

Null controllability: for any u0, find control f such that u(0) = u0, u(T ) = 0?

Fattorini–Russell (1971, 1D case), Lebeau–Robbiano (1995)
Fursikov–Imanuvilov (1996) etc.

Rough control: Burq’s talk

Shengquan Xiang Controlled flow of geometric maps 2025 Toulouse 4 / 39



Control of nonlinear equations

∂tu−∆u+ g(u) = χωf

Natural property: local controllability via linearization

around steady states

around given trajectories
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∂tu−∆u+ g(u) = χωf

Things become completely nonlinear:
global controllability,

1d case: Coron-Trélat (2004)

small-time global controllability

Two open problems
1) (Coron, 2007) Consider nonlinear heat equation

ut − uxx − u3 = χωf, x ∈ T

Does the small-time global controllability between steady states hold?

2) (Dehman–Lebeau–Zuazua, 2003) Consider NLW

∂2
t u−∆u+ u3 = χωf

Does the “uniform-time" global controllability hold?
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Heat flow

Let u be a map from R×M to N .

∂tu−∆u ⊥ TuN

or ∂tu−∆u+ Sjk(u)∂
αuj∂αu

k = 0

If N = Sn, then ∂tu−∆u− u|∇u|2 = 0 with u ∈ Rn+1.

Harmonic maps (HM): steady states

Well-posedness, Singularity formation

Evolution with extra forces (control)?
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Wave maps

Let u be a map from R×M to N .

∂2
t u−∆u ⊥ TuN ,

or ∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = 0,

where (u, ut)(t, x) ∈ TN .

Harmonic maps (HM): steady states

Well-posedness, Singularity formation

Evolution with extra forces (control)?
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Control problems on geometric equations?

First investigate the case M = T. Let N ⊂ RN of dimension d.

∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = χωf

⊥ where u ∈ N ⊂ RN

Coupled system: N components, d controls (tangent space)

Goal: global controllability and stabilization
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Main result 1: global controllability equals homotopy

∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = χωf

⊥

Theorem (Coron–Krieger–X., to appear soon thus = 2025 )

For wave maps: T → N ,

Global controllability ⇔ Homotopy

wave maps T → Sn: Krieger–X. (2022), case energy < 2π
Coron–Krieger–X. (2023), global controllability

heat flow T → Sn: Coron–X. (2024)
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Main result 2: small-time global control between
steady states

Open problem (Coron, 2007)

Consider the nonlinear heat equation

ut − uxx − u3 = χωf.

The small-time global controllability between steady states?

Theorem (Coron-X. 2024: a positive answer)

Consider heat flow: T → N

∂tu−∆u+ Sjk(u)∂
αuj∂αu

k = χωf

For any steady states (including HM) u0 and u1,

small-time global controllability ⇐⇒ u0 is homotopic to u1
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Main result 2: small-time global control between
steady states

Open problem (Dehman–Lebeau–Zuazua, 2003)

Consider the controlled NLW

∂2
t u−∆u+ g(u) = χωf.

The “uniform-time" global controllability?

Theorem (Coron–Krieger–X. 2025)

Let T = 6π. Consider wave maps: T → N

∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = χωf

For any steady states (including HM) u0 and u1,

“uniform-time" global controllability ⇐⇒ u0 is homotopic to u1
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Outline of the presentation

1 Control of geometric flows

2 Heat flow

3 Wave maps
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Theorem (Coron–X. 2024)

Consider the heat flow T → Sn.
For any initial state u0 ∈ H1 and any point p ∈ Sn, there exists a control
f ∈ L∞(0, T ;L2) such that u(T ) = p.
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Since M = T,N = Sk:

∂tu−∆u− u|∂xu|2 = χωf
⊥

E(u) :=

∫
T
|∂xu|2dx

Steady states Φ: HM

∆Φ+Φ|Φx|2 = 0

with energy 2πn2

Define “ε-approximate HM":

Qε :=
⋃

Φ: HM

{
u ∈ H1(T; Sk) : ∥u− Φ∥H1

x
≤ ε

}
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Idea: play with energy and HM

Step 1 convergence towards HM
E-S type argument

Step 2 cross HM
nonlinear control

Step 3 local control around p

linearization
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Step 1: converge towards HM

Energy dissipates: let control f = 0,

1

2

d

dt
E(u(t)) = −

∫
T1

|ut|2(t, x)dx

Eells–Sampson type argument:

the flow converges to HM

introduced to study the homotopy problem

Proposition (Coron–X., 2024)
Let M, ε > 0. There exists T such that, for any initial state with energy smaller than
M , the solution becomes a ε-approx. HM at some time t ∈ (0, T ).
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Step 2: cross HM

Now the state is close to a HM. Thus E(u) = 2πN2 + ε.
Question: construct control to decrease the energy; E(u) = 2πN2 − ε

∂tu−∆u− |ux|2u = χωf
⊥

Linearization does not work:

∂tv −∆v = 2(Φx · vx)Φ + |Φx|2v + f − (f · Φ)Φ

exist uncontrollable directions

Nonlinearity helps
Power series expansion: Coron-Crépeau (2004)
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Power series expansion

Consider
∂tū−∆ū = |∂xū|2ū+ χωf

⊥

and decompose

ū := ū0 + εū1 + ε2ū2 + . . .

f := εf1 + ε2f2 + . . .

Cascade nonlinear systems
∂tū0 −∆ū0 = |∂xū0|2ū0,

∂tū1 −∆ū1 = 2(ū0x · ū1x)ū0 + |ū0x|2ū1 + f1 − (f1 · ū0)ū0

∂tū2 −∆ū2 = . . .

go to second order we obtain:

E(T )− E(0) = −2πN2ε2 +O(ε3)
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Step 3: local control around a point

A local control problem with geometric constraint

∂tu−∆u = |∂xu|2u+ χωf
⊥

via stereographic projection:

∂tv −∆v +
2v · ∂xv

4 + |v2|∂xv − 2|∂xv|2

4 + |v|2 v = χωg

a nonlinear control problem without constraint

nonlinear heat: Liu–Takahashi–Tucsnak, Liu (2018)

we use quantitative rapid stabilization approach
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Quantitative rapid stabilization

Theorem (X., 2020)
For λ > 0 the heat equation

ut −∆u = −γλ1ωPλu

satisfies

∥u(t)∥L2≤ eC
√
λe−λt∥u(0)∥L2

➣ Combines Lebeau–Robbiano spectral inequality and constructive feedback
control

➣ Apply to Navier–Stokes (X. 2023), heat flow (Coron–X. 2024)

➣ eC
√
λ estimate is essential to obtain finite time stabilization (for iteration)
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Proposition (Coron–X., 2024)
There exists C > 0 s.t. for any λ > 0

∂tv −∆v +
2v · vx
4 + |v2|vx − 2|vx|2

4 + |v|2 v

= −λeC0

√
λ1ωPλv

satisfies

∥u(t)∥H1≤ eC
√

λe−λt∥u(0)∥H1

provided ∥u(0)∥H1≤ (eC
√
λ)−1

➣ Combines Lebeau–Robbiano spectral inequality and constructive feedback
control

➣ Apply to Navier–Stokes (X. 2023), heat flow (Coron–X. 2024)

➣ eC
√
λ estimate is essential to obtain finite time stabilization (for iteration)
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Finite time stabilization

Find a sequence {(λk, Tk)}, on each interval we perform quantitative rapid
stabilization

Proposition (Coron–X., 2024)

There exists C such that for any T , any initial state u0 ∈ H1(T), and any p ∈ Sk with

∥u0 − p∥H1(T1) ≤ e−
C
T

there is a control f satisfying

∥f∥L∞(0,T ;L2) ≤ e
C
T ∥u0 − p∥H1

such that the solution of the heat flow satisfies u(T, ·) = p.
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1 Control of geometric flows
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∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = χωf

⊥

Theorem (Coron–Krieger–X. 2025)

Wave maps: T → N . Global controllability equals homotopy.

Case N = Sn: Krieger–X. (2022), Coron–Krieger–X. (2023)

Compared to Sn cases:

topology is more complex

intrinsic geometric constraint: N components, d controls

no explicite formula (HM, solutions etc.)
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Two reductions

(1) global controllability ⇐= local controllability

However, the trajectory is not characterizable

(2) local controllability ⇐= the return method
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The return method (Coron)

local control

u(0)

ε

u0

uT
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The return method (Coron)

local control

u(0)

ε
u(T )

u0

uT
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The return method (Coron)

local control

u(0)

ε
u(T )

u0

uT
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How to construct the return trajectory?

Two intuitions:

(1) Can we make the solution converge to HM?
Inspired by Eells-Sampson argument for heat flow

(2) One can expect local controllability around HM
Though the analysis ought to be more delicate
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Construct the return trajectory

(u0, u0t)

damping
time reversal

local control
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Construct the return trajectory
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time reversal
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Construct the return trajectory
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Construct the return trajectory

(u0, u0t)

damping

(u0,−u0t)

time reversal

local control

HM
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Construct the return trajectory

(u0, u0t)

damping

(u0,−u0t)

damping

time reversal

local control

HM
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local control
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Construct the return trajectory

(u0, u0t)

damping

(u0,−u0t)

damping

time reversal

time reversal

local control

HM

HM

local control
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Sketch of the proof

global control ⇐= local control ⇐= return method

Construct the return trajectory:

Part 1 Stabilize to HM via damping

Part 2 Local controllability around HM (omitted)

Part 3 “Small-time" global controllability between HM (Main result 2)
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Part 1. global stabilization to HM

First consider N = Sk:

∂2
t u−∆u+ (|∂tu|2 − |∂xu|2)u = χωf

⊥

Question: how to stabilize this system?

Idea: localized damping

∂2
t u−∆u+ (|∂tu|2 − |∂xu|2)u = −a(x)∂tu, x ∈ T1,

where a(x) supp ω.
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Damping stabilization

Consider the wave equation, it is known that damping dissipates the energy:

∂2
t u−∆u = −a(x)∂tu

then

E(T ) +

∫ T

0

∫
Ω

a(x)|ut|2dxdt = E(0)
(???)−−−→ E(t) ≲ e−εtE(0)

Multiplier/Carleman method:
Lions, Komornik, Zuazua, Ervedoza, Puel,
Zhang et. al.

Microlocal analysis:
Bardos, Lebeau, Rauch, Burq, Gérard,
Dehman, Trélat, Zworski, Laurent et. al.

Some defocusing equations
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Stabilization towards harmonic maps

∂2
t u−∆u+ (|∂tu|2 − |∂xu|2)u = −a(x)∂tu, x ∈ T

➣ (Krieger–X. 2022) exponential stabilization below 2π energy level set
Let ν > 0.

E(t) ≲ e−ctE(0), ∀u[0] ∈ H(2π − ν)

This is sharp: because HM are steady states.

➣ (Coron–Krieger–X. 2023) for Sk target, stabilization towards HM

➣ (Coron–Krieger–X. 2025) for general N target, stabilization towards HM
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Quantitative propagation of smallness

Proposition
Consider the damped WM from T into Sn (or general N ), and assume E(0) ≤ M .
For any ε > 0, we have either∫ 32π

0

∫
T
a(x)|ut|2dxdt ≥ Cεq

or
∃t ∈ [0, 32π] s.t. is ε-approx. HM

Two ingredients:

➣ A quantitative “propagation of smallness” result

➣ An averaging technique to extract the approximate HM
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Obstruction to global stabilization

Theorem (Coron–Krieger–X., 2023)

Consider the damped WM from T to Sn, there is no feedback control such that

E(u[t]) ≤ h(t)E(u[0]), ∀u[0] ∈ H(2π)

for any h satisfying h(+∞) = 0.

Key: homology group H2(S2;Z) and Π1(C0(T1; S2)) are non-trivial
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Topological obstruction

Define A : T1
s × T1

x → S2 as

A(s, x) :=

{
(sin s cosx, sin s sinx, cos s)T , ∀s ∈ [0, π],

(− sin s cosx, sin s sinx, cos s)T , ∀s ∈ (π, 2π).

This is a closed curve of initial states with energy ≤ 2π: γ(s) = A(s, ·)

E((γ(s), 0)) = 2π(sin s)2 ≤ 2π

Lemma. deg (A) = 2
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Topological obstruction

If uniform asymptotic stabilization holds,

E(u(t)) ≤ p(t)E(u(0)), ∀u[0] ∈ H(2π)

then ∃T > 0, the flow with initial state (γ(s), 0) satisfies

|Φ(T ; (γ(s), 0))(x)− Φ(T ; (γ(s), 0))(0)| ≤ 1/2 ∀s ∈ Ss ∀x ∈ Sx

One can further deform the map (s, x) 7→ Φ(T ; (γ(s), 0))(x) to a one
dimensional closed curve. Thus

deg Φ(T ; (γ(s), 0))(x) = 0.

This contradicts the fact that

deg Φ(0; (γ(s), 0))(x) = deg A = 2.
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Curvature and stabilization around HM

Exponential stabilization around HM?

∂2
t u−∆u+ Sjk(u)∂

αuj∂αu
k = −a(x)∂tu, a(x) supp ω

Theorem (Coron–Krieger–X. 2025)
Let N has trivial normal bundle. Let γ be HM: T → N .

If the sectional curvature is negative on γ, then expo. stabilization

Otherwise, not stable.
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Part 3. Small-time global control between steady
states (Main result 2)

Theorem (Coron–Krieger–X. 2025: a positive answer)

Let T = 6π. Consider wave maps: T → N . For any steady states (including HM) u0

and u1,
“uniform-time" global controllability ⇐⇒ u0 is homotopic to u1
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Deformation on geodesics

□u+ Sjk(u)∂
αuj∂αu

k = χωf
⊥

Let Γ ⊂ N be a geodesic.

Γ = {ū(x) : x ∈ T}

If both initial state u0 ∈ Γ and f ∈ TΓ, then u stays in Γ.

Let u(t, x) = ū(φ(t, x)). Then □φ = χωg.

Gluing: inner part by linear heat equatin on geodescis
outer part by control to ensure homotopy
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Deformation on geodesics
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Conclusion:

➣ Global controllability equals homotopy

➣ Small-time global controllability between steady states

➣ Interplay between: Analysis, Dynamics, Geometry

Further perspectives:

➣ Schrödinger maps, Yang-Mills etc.

➣ Small-time global controllability

➣ Higher dimensional M
➣ Control and singularity formation

➣ Random and stochastic equations
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Thank you!
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