

Controlled flow of geometric maps

Shengquan Xiang

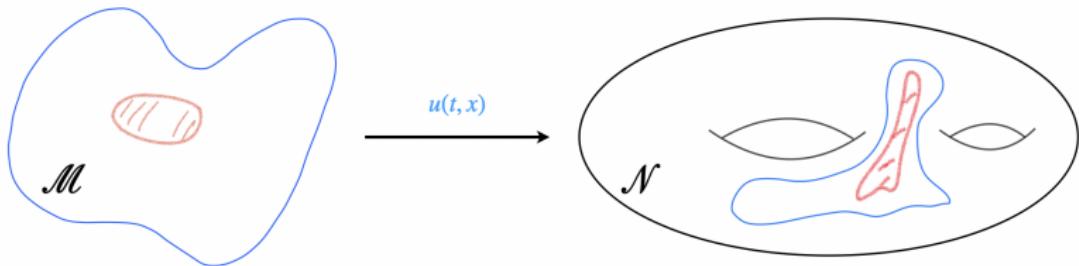
Peking University

joint with J.-M. Coron (Paris) and J. Krieger (Lausanne)

Control of PDEs and related topics, 2025 Toulouse

北京大学

Controlled maps between manifolds/domains:



- Motivation: control of singularity formation, cosmology, SPDE and ergodicity, liquid crystal
- Methodology: Analysis, Dynamics, **Geometry**

Outline of the presentation

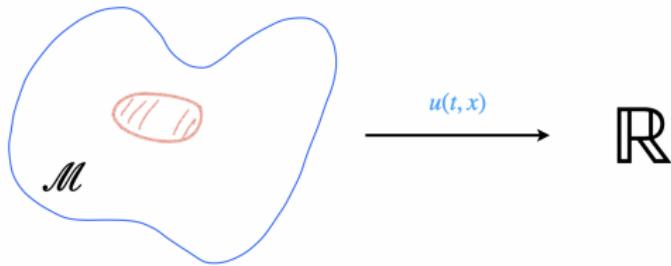
1 Control of geometric flows

2 Heat flow

3 Wave maps

Control of the heat equation

$$\partial_t u - \Delta u = \chi_\omega f, \quad (t, x) \in (0, T) \times \mathcal{M}$$



Null controllability: for any u_0 , find control f such that $u(0) = u_0, u(T) = 0$?

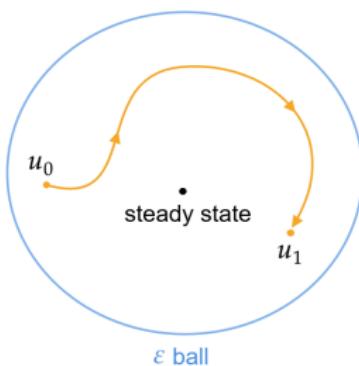
- Fattorini–Russell (1971, 1D case), Lebeau–Robbiano (1995)
Fursikov–Imanuvilov (1996) etc.
- Rough control: Burq's talk

Control of nonlinear equations

$$\partial_t u - \Delta u + g(u) = \chi_\omega f$$

Natural property: **local controllability** via linearization

- around steady states
- around given trajectories



$$\partial_t u - \Delta u + g(u) = \chi_\omega f$$

Things become completely nonlinear:

global controllability,

1d case: Coron-Trélat (2004)

small-time global controllability

Two open problems

1) (Coron, 2007) Consider nonlinear heat equation

$$u_t - u_{xx} - u^3 = \chi_\omega f, \quad x \in \mathbb{T}$$

Does the small-time global controllability between steady states hold?

2) (Dehman–Lebeau–Zuazua, 2003) Consider NLW

$$\partial_t^2 u - \Delta u + u^3 = \chi_\omega f$$

Does the “uniform-time” global controllability hold?

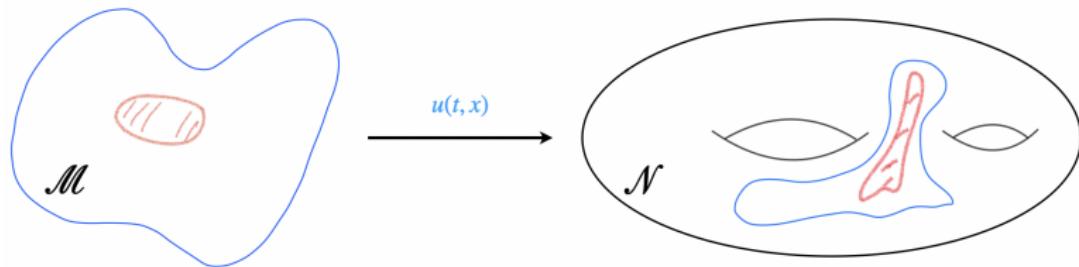
Heat flow

Let u be a map from $\mathbb{R} \times \mathcal{M}$ to \mathcal{N} .

$$\partial_t u - \Delta u \perp T_u \mathcal{N}$$

$$\text{or } \partial_t u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = 0$$

If $\mathcal{N} = \mathbb{S}^n$, then $\partial_t u - \Delta u - u |\nabla u|^2 = 0$ with $u \in \mathbb{R}^{n+1}$.



- Harmonic maps (HM): steady states
- Well-posedness, Singularity formation
- Evolution with extra forces (control)?

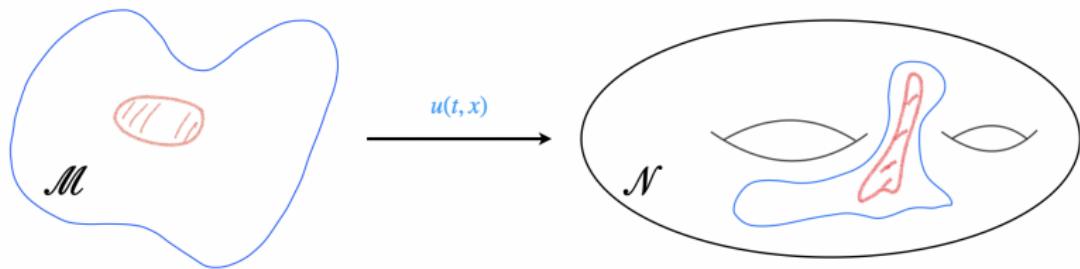
Wave maps

Let u be a map from $\mathbb{R} \times \mathcal{M}$ to \mathcal{N} .

$$\partial_t^2 u - \Delta u \perp T_u \mathcal{N},$$

$$\text{or } \partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = 0,$$

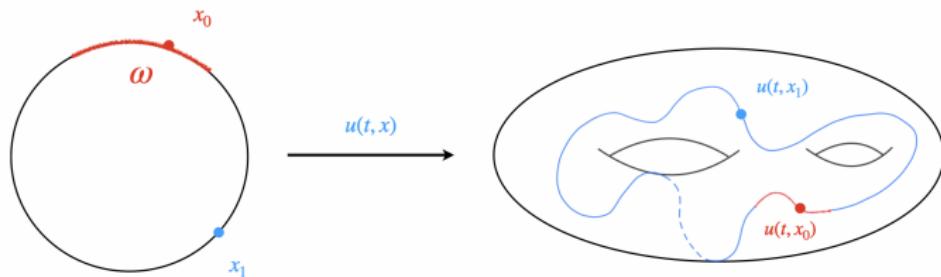
where $(u, u_t)(t, x) \in T\mathcal{N}$.



- Harmonic maps (HM): steady states
- Well-posedness, Singularity formation
- Evolution with extra forces (control)?

Control problems on geometric equations?

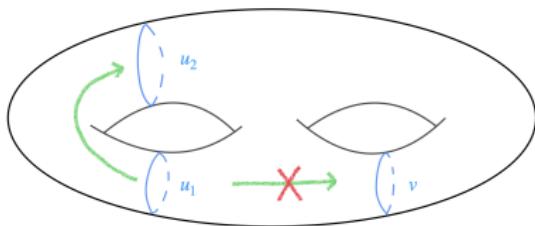
First investigate the case $\mathcal{M} = \mathbb{T}$. Let $\mathcal{N} \subset \mathbb{R}^N$ of dimension d .



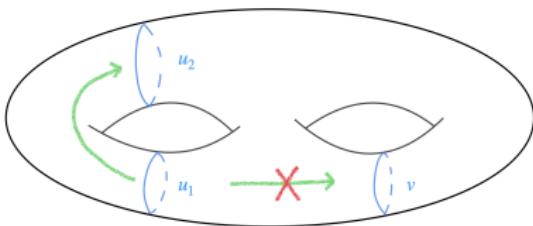
$$\partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f^\perp \text{ where } u \in \mathcal{N} \subset \mathbb{R}^N$$

- Coupled system: N components, d controls (tangent space)
- Goal: global controllability and stabilization

Main result 1: global controllability equals homotopy



Main result 1: global controllability equals homotopy



$$\partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f^\perp$$

Theorem (Coron–Krieger–X., to appear soon thus = 2025)

For wave maps: $\mathbb{T} \rightarrow \mathcal{N}$,

Global controllability \Leftrightarrow Homotopy

- wave maps $\mathbb{T} \rightarrow \mathbb{S}^n$: Krieger–X. (2022), case energy $< 2\pi$
Coron–Krieger–X. (2023), global controllability
- heat flow $\mathbb{T} \rightarrow \mathbb{S}^n$: Coron–X. (2024)

Main result 2: small-time global control between steady states

Open problem (Coron, 2007)

Consider the nonlinear heat equation

$$u_t - u_{xx} - u^3 = \chi_\omega f.$$

The small-time global controllability between steady states?

Theorem (Coron-X. 2024: a positive answer)

Consider heat flow: $\mathbb{T} \rightarrow \mathcal{N}$

$$\partial_t u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f$$

For any steady states (including HM) u_0 and u_1 ,

small-time global controllability $\iff u_0$ is homotopic to u_1

Main result 2: small-time global control between steady states

Open problem (Dehman–Lebeau–Zuazua, 2003)

Consider the controlled NLW

$$\partial_t^2 u - \Delta u + g(u) = \chi_\omega f.$$

The “uniform-time” global controllability?

Theorem (Coron–Krieger–X. 2025)

Let $T = 6\pi$. Consider wave maps: $\mathbb{T} \rightarrow \mathcal{N}$

$$\partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f$$

For any steady states (including HM) u_0 and u_1 ,

“uniform-time” global controllability $\iff u_0$ is homotopic to u_1

Outline of the presentation

1 Control of geometric flows

2 Heat flow

3 Wave maps

Theorem (Coron–X. 2024)

Consider the heat flow $\mathbb{T} \rightarrow \mathbb{S}^n$.

For any initial state $u_0 \in H^1$ and any point $p \in \mathbb{S}^n$, there exists a control $f \in L^\infty(0, T; L^2)$ such that $u(T) = p$.

Since $\mathcal{M} = \mathbb{T}, \mathcal{N} = \mathbb{S}^k$:

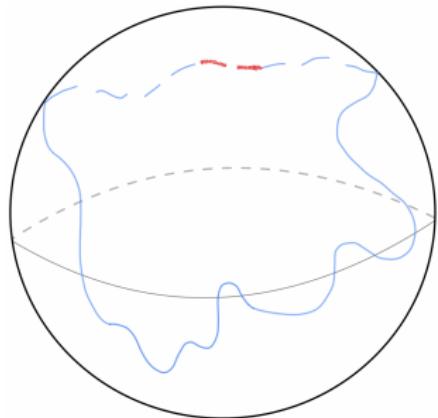
$$\partial_t u - \Delta u - u |\partial_x u|^2 = \chi_\omega f^\perp$$

$$E(u) := \int_{\mathbb{T}} |\partial_x u|^2 dx$$

Steady states Φ : HM

$$\Delta \Phi + \Phi |\Phi_x|^2 = 0$$

with energy $2\pi n^2$



Define " ε -approximate HM":

$$\mathcal{Q}_\varepsilon := \bigcup_{\Phi: \text{HM}} \left\{ u \in H^1(\mathbb{T}; \mathbb{S}^k) : \|u - \Phi\|_{H_x^1} \leq \varepsilon \right\}$$

Idea: play with energy and HM

Step 1 convergence towards HM

E-S type argument

Step 2 cross HM

nonlinear control

Step 3 local control around p

linearization

Step 1: converge towards HM

Energy dissipates: let control $f = 0$,

$$\frac{1}{2} \frac{d}{dt} E(u(t)) = - \int_{\mathbb{T}^1} |u_t|^2(t, x) dx$$

Eells–Sampson type argument:

- the flow converges to HM
- introduced to study the homotopy problem

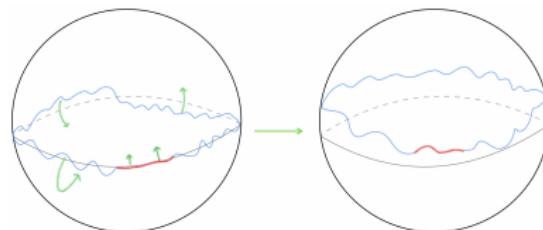
Proposition (Coron–X., 2024)

Let $M, \varepsilon > 0$. There exists T such that, for any initial state with energy smaller than M , the solution becomes a ε -approx. HM at some time $t \in (0, T)$.

Step 2: cross HM

Now the state is close to a HM. Thus $E(u) = 2\pi N^2 + \varepsilon$.

Question: construct control to decrease the energy; $E(u) = 2\pi N^2 - \varepsilon$



$$\partial_t u - \Delta u - |u_x|^2 u = \chi_\omega f^\perp$$

Linearization does not work:

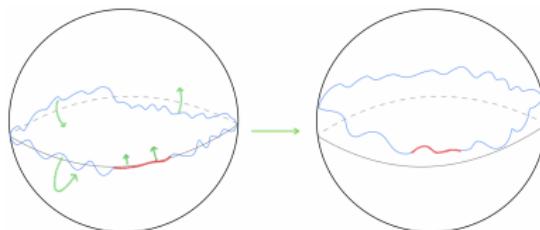
$$\partial_t v - \Delta v = 2(\Phi_x \cdot v_x)\Phi + |\Phi_x|^2 v + f - (f \cdot \Phi)\Phi$$

exist uncontrollable directions

Step 2: cross HM

Now the state is close to a HM. Thus $E(u) = 2\pi N^2 + \varepsilon$.

Question: construct control to decrease the energy; $E(u) = 2\pi N^2 - \varepsilon$



$$\partial_t u - \Delta u - |u_x|^2 u = \chi_\omega f^\perp$$

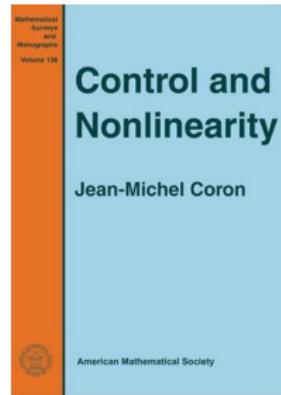
Linearization does not work:

$$\partial_t v - \Delta v = 2(\Phi_x \cdot v_x)\Phi + |\Phi_x|^2 v + f - (f \cdot \Phi)\Phi$$

exist uncontrollable directions

Nonlinearity helps

Power series expansion: Coron-Crépeau (2004)



Power series expansion

Consider

$$\partial_t \bar{u} - \Delta \bar{u} = |\partial_x \bar{u}|^2 \bar{u} + \chi_\omega f^\perp$$

and decompose

$$\bar{u} := \bar{u}_0 + \varepsilon \bar{u}_1 + \varepsilon^2 \bar{u}_2 + \dots$$

$$f := \varepsilon f_1 + \varepsilon^2 f_2 + \dots$$

Cascade nonlinear systems

$$\begin{cases} \partial_t \bar{u}_0 - \Delta \bar{u}_0 = |\partial_x \bar{u}_0|^2 \bar{u}_0, \\ \partial_t \bar{u}_1 - \Delta \bar{u}_1 = 2(\bar{u}_{0x} \cdot \bar{u}_{1x}) \bar{u}_0 + |\bar{u}_{0x}|^2 \bar{u}_1 + f_1 - (f_1 \cdot \bar{u}_0) \bar{u}_0 \\ \partial_t \bar{u}_2 - \Delta \bar{u}_2 = \dots \end{cases}$$

go to second order we obtain:

$$E(T) - E(0) = -2\pi N^2 \varepsilon^2 + O(\varepsilon^3)$$

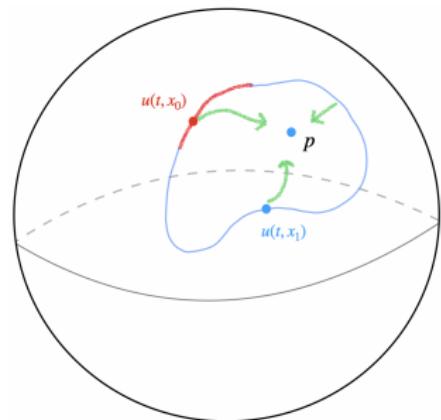
Step 3: local control around a point

A local control problem with geometric constraint

$$\partial_t u - \Delta u = |\partial_x u|^2 u + \chi_\omega f^\perp$$

via stereographic projection:

$$\partial_t v - \Delta v + \frac{2v \cdot \partial_x v}{4 + |v|^2} \partial_x v - \frac{2|\partial_x v|^2}{4 + |v|^2} v = \chi_\omega g$$



- a nonlinear control problem without constraint
- nonlinear heat: Liu–Takahashi–Tucsnak, Liu (2018)
- we use quantitative rapid stabilization approach

Quantitative rapid stabilization

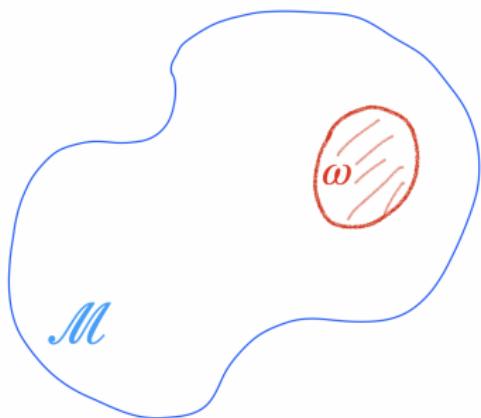
Theorem (X., 2020)

For $\lambda > 0$ the heat equation

$$u_t - \Delta u = -\gamma_\lambda \mathbf{1}_\omega P_\lambda u$$

satisfies

$$\|u(t)\|_{L^2} \leq e^{C\sqrt{\lambda}} e^{-\lambda t} \|u(0)\|_{L^2}$$



- Combines Lebeau–Robbiano spectral inequality and constructive feedback control
- Apply to Navier–Stokes (X. 2023), heat flow (Coron–X. 2024)
- $e^{C\sqrt{\lambda}}$ estimate is essential to obtain finite time stabilization (for iteration)

Proposition (Coron–X., 2024)

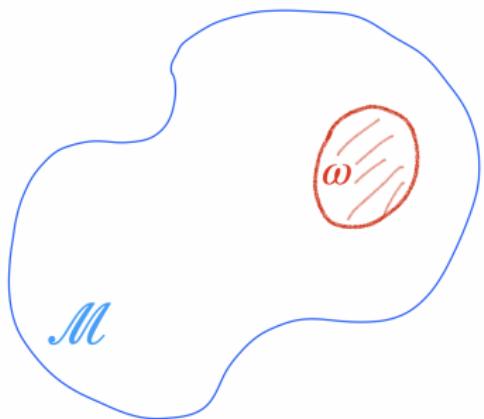
There exists $C > 0$ s.t. for any $\lambda > 0$

$$\begin{aligned}\partial_t v - \Delta v + \frac{2v \cdot v_x}{4 + |v|^2} v_x - \frac{2|v_x|^2}{4 + |v|^2} v \\ = -\lambda e^{C_0 \sqrt{\lambda}} \mathbf{1}_\omega P_\lambda v\end{aligned}$$

satisfies

$$\|u(t)\|_{H^1} \leq e^{C\sqrt{\lambda}} e^{-\lambda t} \|u(0)\|_{H^1}$$

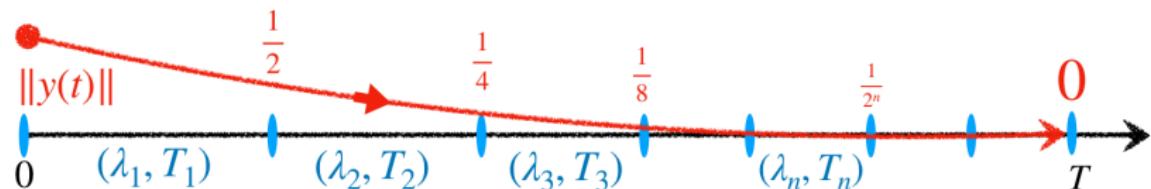
provided $\|u(0)\|_{H^1} \leq (e^{C\sqrt{\lambda}})^{-1}$



- Combines Lebeau–Robbiano spectral inequality and constructive feedback control
- Apply to Navier–Stokes (X. 2023), heat flow (Coron–X. 2024)
- $e^{C\sqrt{\lambda}}$ estimate is essential to obtain finite time stabilization (for iteration)

Finite time stabilization

Find a sequence $\{(\lambda_k, T_k)\}$, on each interval we perform quantitative rapid stabilization



Proposition (Coron–X., 2024)

There exists C such that for any T , any initial state $u_0 \in H^1(\mathbb{T})$, and any $p \in \mathbb{S}^k$ with

$$\|u_0 - p\|_{H^1(\mathbb{T}^1)} \leq e^{-\frac{C}{T}}$$

there is a control f satisfying

$$\|f\|_{L^\infty(0, T; L^2)} \leq e^{\frac{C}{T}} \|u_0 - p\|_{H^1}$$

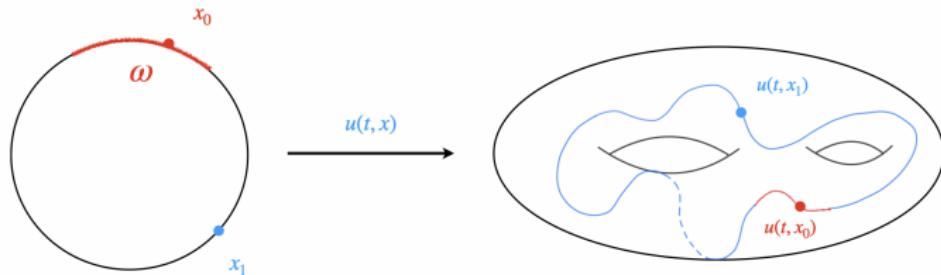
such that the solution of the heat flow satisfies $u(T, \cdot) = p$.

Outline of the presentation

1 Control of geometric flows

2 Heat flow

3 Wave maps



$$\partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f^\perp$$

Theorem (Coron–Krieger–X. 2025)

Wave maps: $\mathbb{T} \rightarrow \mathcal{N}$. Global controllability equals homotopy.

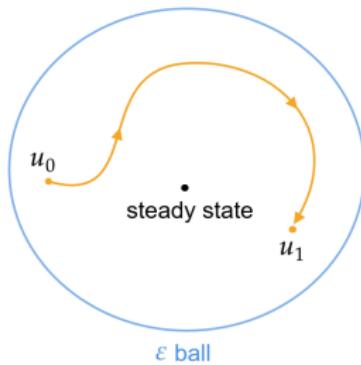
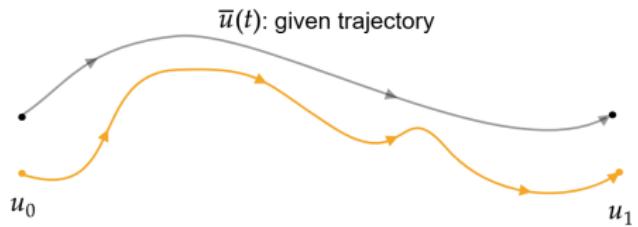
Case $\mathcal{N} = \mathbb{S}^n$: Krieger–X. (2022), Coron–Krieger–X. (2023)

Compared to \mathbb{S}^n cases:

- topology is more complex
- intrinsic geometric constraint: N components, d controls
- no explicit formula (HM, solutions etc.)

Two reductions

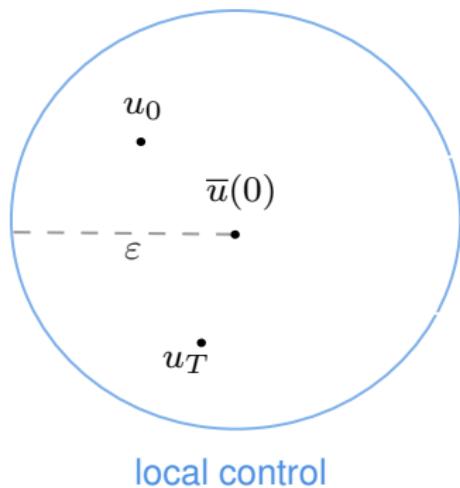
(1) global controllability \Leftarrow local controllability



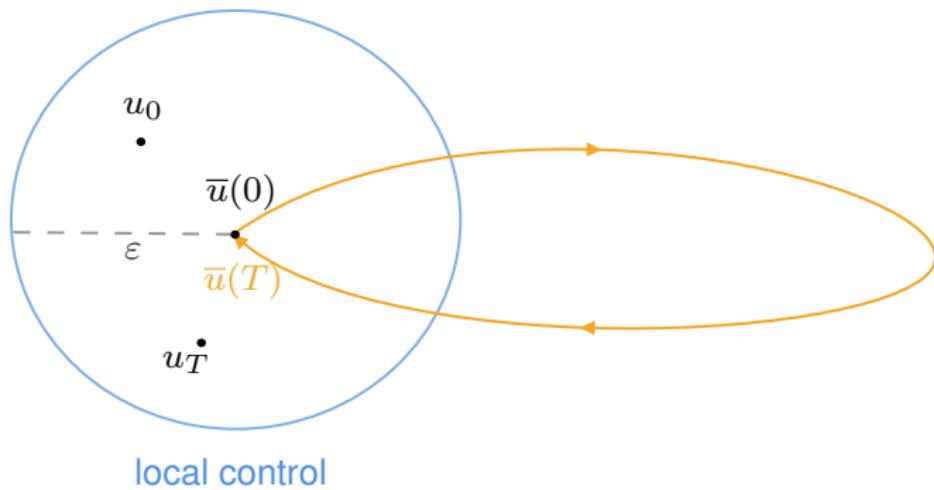
However, the trajectory is not characterizable

(2) local controllability \Leftarrow the return method

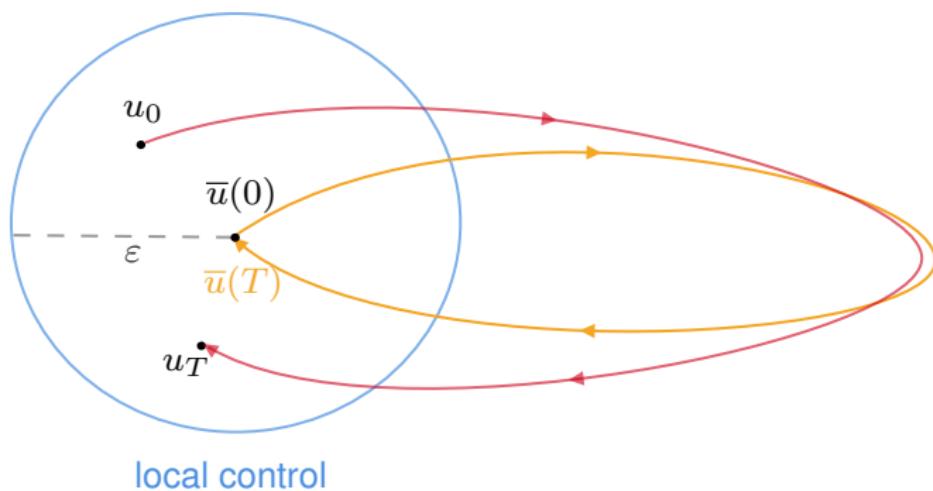
The return method (Coron)



The return method (Coron)



The return method (Coron)



How to construct the return trajectory?

Two intuitions:

- (1) Can we make the solution converge to HM?

Inspired by Eells-Sampson argument for heat flow

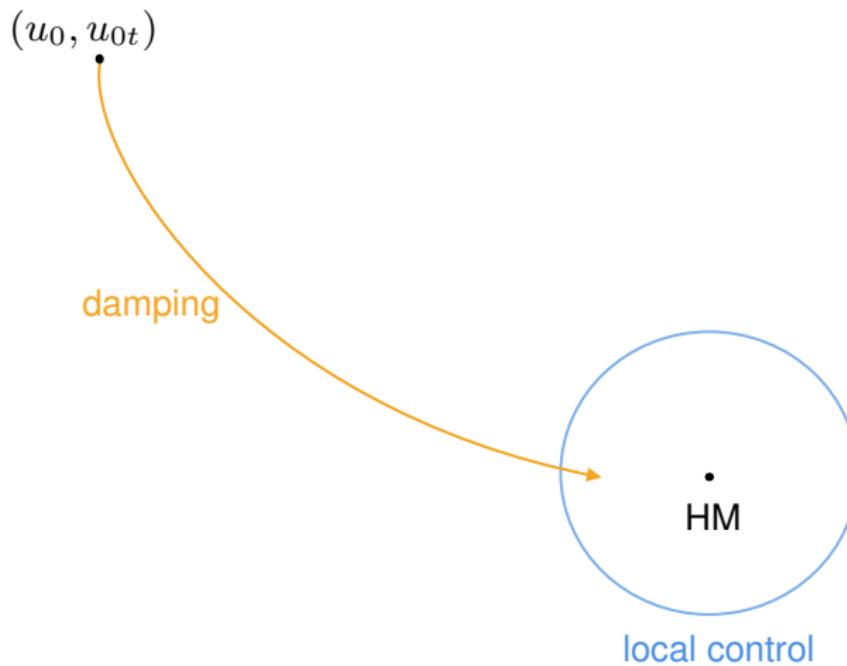
- (2) One can expect local controllability around HM

Though the analysis ought to be more delicate

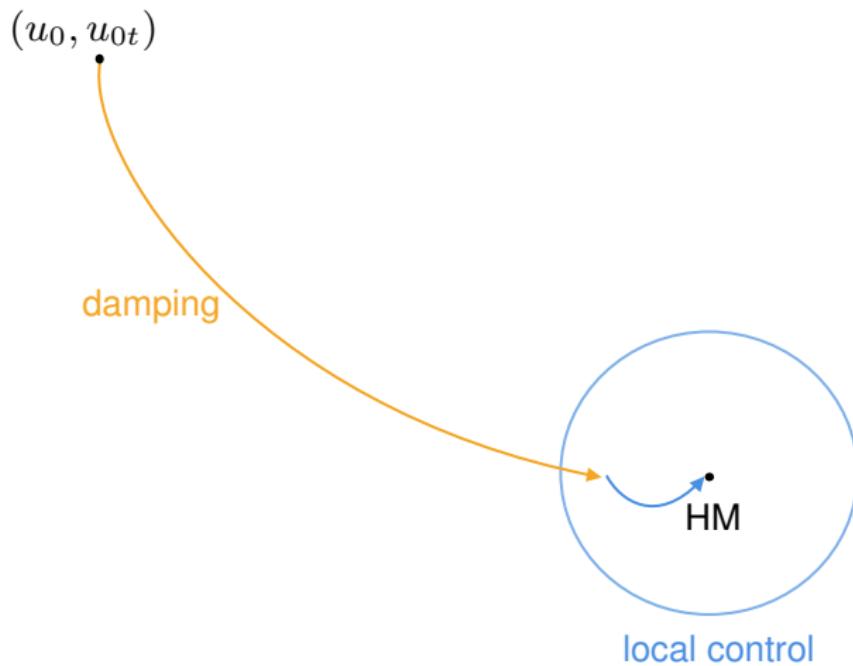
Construct the return trajectory

$$(u_0, \dot{u}_{0t})$$

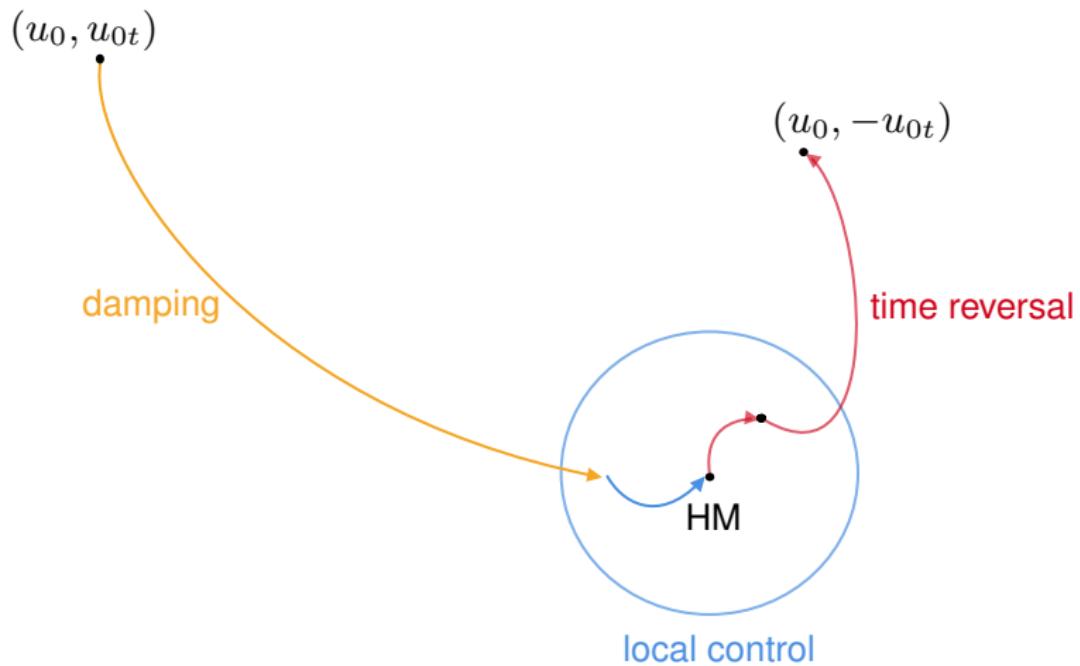
Construct the return trajectory



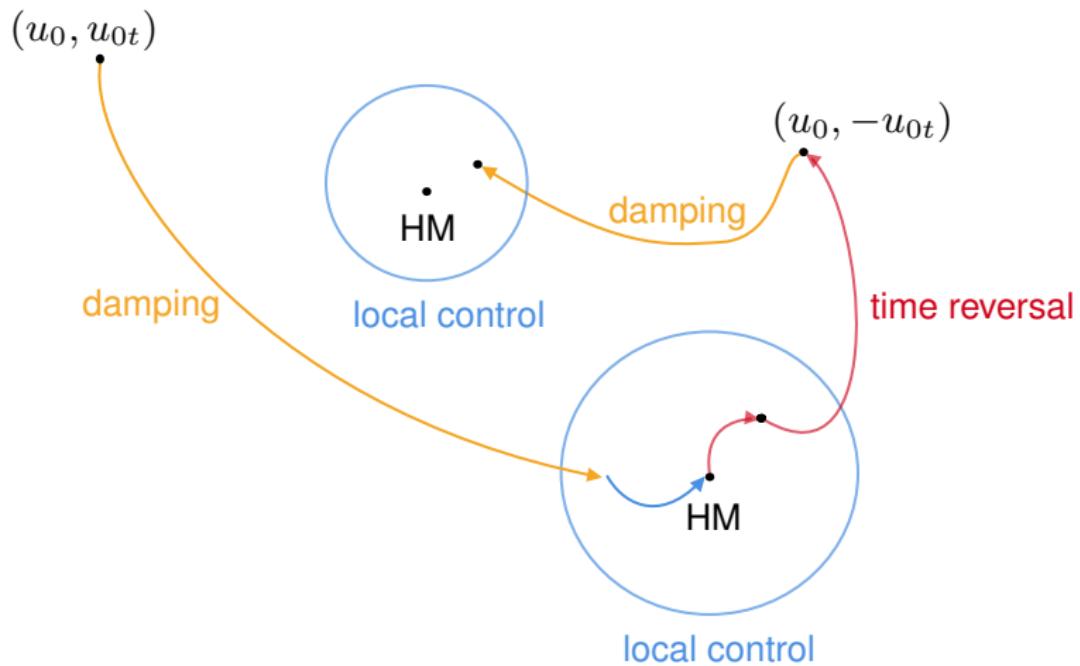
Construct the return trajectory



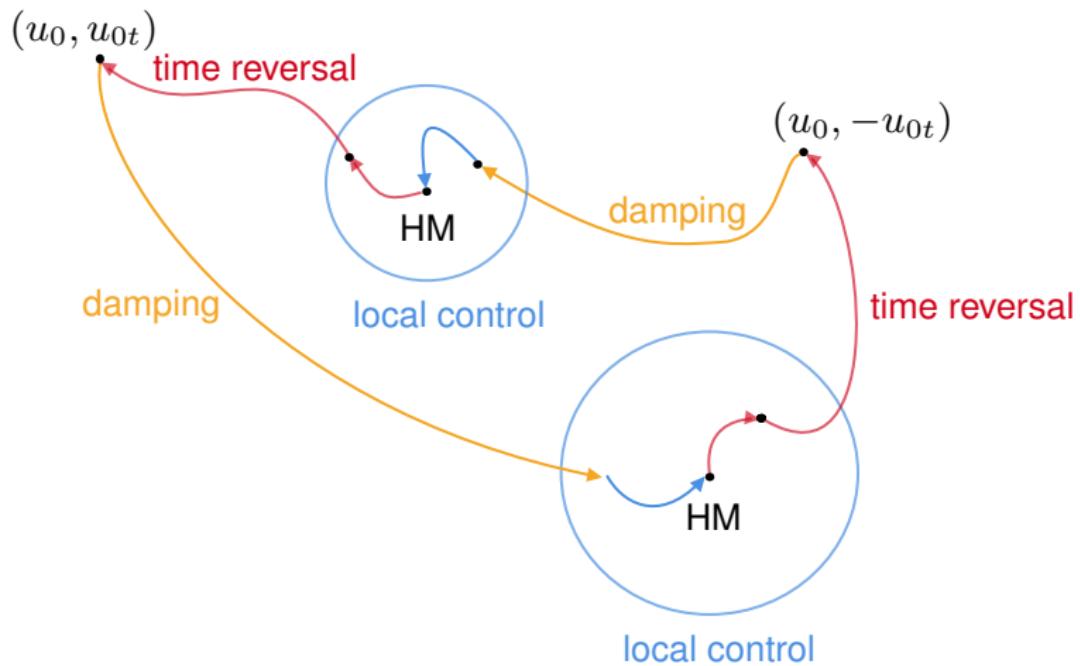
Construct the return trajectory



Construct the return trajectory



Construct the return trajectory



Sketch of the proof

global control \Leftarrow local control \Leftarrow return method

Construct the return trajectory:

Part 1 Stabilize to HM via damping

Part 2 Local controllability around HM (omitted)

Part 3 "Small-time" global controllability between HM (Main result 2)

Part 1. global stabilization to HM

First consider $\mathcal{N} = \mathbb{S}^k$:

$$\partial_t^2 u - \Delta u + (|\partial_t u|^2 - |\partial_x u|^2)u = \chi_\omega f^\perp$$

Question: how to stabilize this system?

Idea: localized damping

$$\partial_t^2 u - \Delta u + (|\partial_t u|^2 - |\partial_x u|^2)u = -a(x)\partial_t u, x \in \mathbb{T}^1,$$

where $a(x) \text{ supp } \omega$.

Damping stabilization

Consider the wave equation, it is known that damping dissipates the energy:

$$\partial_t^2 u - \Delta u = -a(x)\partial_t u$$

then

$$E(T) + \int_0^T \int_{\Omega} a(x)|u_t|^2 dx dt = E(0) \xrightarrow{\text{????}} E(t) \lesssim e^{-\varepsilon t} E(0)$$

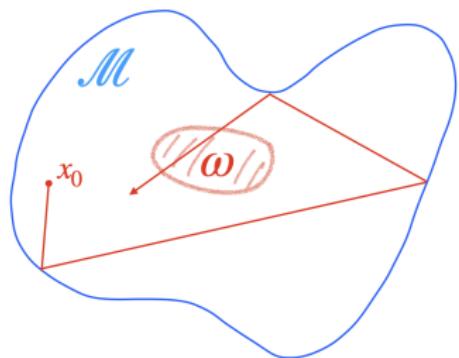
- Multiplier/Carleman method:

Lions, Komornik, Zuazua, Ervedoza, Puel,
Zhang et. al.

- Microlocal analysis:

Bardos, Lebeau, Rauch, Burq, Gérard,
Dehman, Trélat, Zworski, Laurent et. al.

- Some defocusing equations



Stabilization towards harmonic maps

$$\partial_t^2 u - \Delta u + (|\partial_t u|^2 - |\partial_x u|^2)u = -a(x)\partial_t u, x \in \mathbb{T}$$

➤ (Krieger–X. 2022) exponential stabilization below 2π energy level set
Let $\nu > 0$.

$$E(t) \lesssim e^{-ct} E(0), \forall u[0] \in \mathbf{H}(2\pi - \nu)$$

This is **sharp**: because HM are steady states.

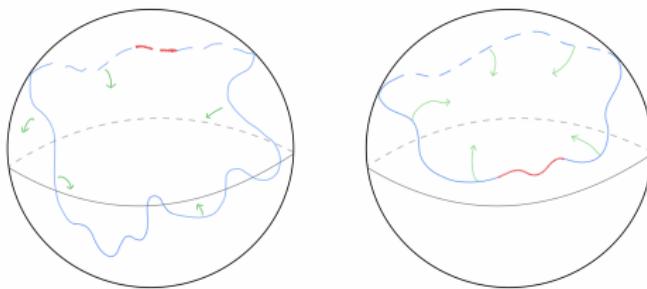
Stabilization towards harmonic maps

$$\partial_t^2 u - \Delta u + (|\partial_t u|^2 - |\partial_x u|^2)u = -a(x)\partial_t u, x \in \mathbb{T}$$

- (Krieger–X. 2022) exponential stabilization below 2π energy level set
Let $\nu > 0$.

$$E(t) \lesssim e^{-ct} E(0), \forall u[0] \in \mathbf{H}(2\pi - \nu)$$

This is **sharp**: because HM are steady states.



- (Coron–Krieger–X. 2023) for \mathbb{S}^k target, stabilization towards HM
- (Coron–Krieger–X. 2025) for general \mathcal{N} target, stabilization towards HM

Proposition

Consider the damped WM from \mathbb{T} into \mathbb{S}^n (or general \mathcal{N}), and assume $E(0) \leq M$. For any $\varepsilon > 0$, we have either

$$\int_0^{32\pi} \int_{\mathbb{T}} a(x) |u_t|^2 dx dt \geq C\varepsilon^q$$

or

$$\exists t \in [0, 32\pi] \text{ s.t. is } \varepsilon\text{-approx. HM}$$

Two ingredients:

- A quantitative “propagation of smallness” result
- An averaging technique to extract the approximate HM

Obstruction to global stabilization

Theorem (Coron–Krieger–X., 2023)

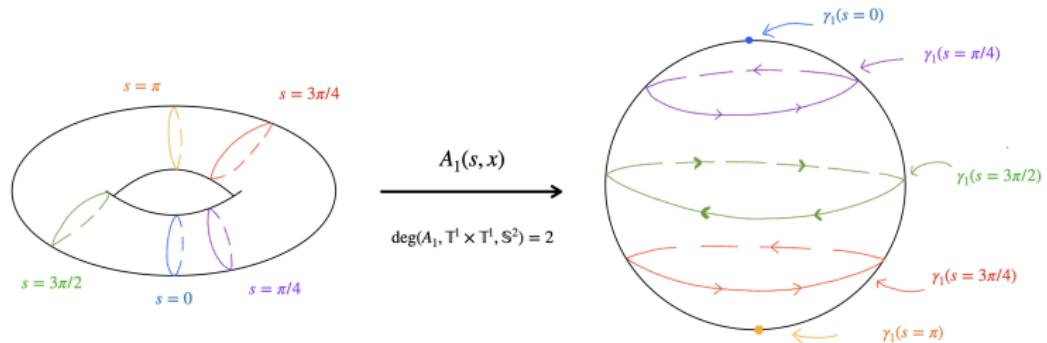
Consider the damped WM from \mathbb{T} to \mathbb{S}^n , there is **no** feedback control such that

$$E(u[t]) \leq h(t)E(u[0]), \quad \forall u[0] \in \mathbf{H}(2\pi)$$

for any h satisfying $h(+\infty) = 0$.

Key: homology group $H_2(\mathbb{S}^2; \mathbb{Z})$ and $\Pi^1(C^0(\mathbb{T}^1; \mathbb{S}^2))$ are non-trivial

Topological obstruction



Define $A : \mathbb{T}_s^1 \times \mathbb{T}_x^1 \rightarrow \mathbb{S}^2$ as

$$A(s, x) := \begin{cases} (\sin s \cos x, \sin s \sin x, \cos s)^T, & \forall s \in [0, \pi], \\ (-\sin s \cos x, \sin s \sin x, \cos s)^T, & \forall s \in (\pi, 2\pi). \end{cases}$$

This is a closed curve of initial states with energy $\leq 2\pi$: $\gamma(s) = A(s, \cdot)$

$$E((\gamma(s), 0)) = 2\pi(\sin s)^2 \leq 2\pi$$

Lemma. $\deg(A) = 2$

Topological obstruction

- If uniform asymptotic stabilization holds,

$$E(u(t)) \leq p(t)E(u(0)), \quad \forall u[0] \in \mathbf{H}(2\pi)$$

then $\exists T > 0$, the flow with initial state $(\gamma(s), 0)$ satisfies

$$|\Phi(T; (\gamma(s), 0))(x) - \Phi(T; (\gamma(s), 0))(0)| \leq 1/2 \quad \forall s \in \mathbb{S}_s \quad \forall x \in \mathbb{S}_x$$

- One can further deform the map $(s, x) \mapsto \Phi(T; (\gamma(s), 0))(x)$ to a one dimensional closed curve. Thus

$$\deg \Phi(T; (\gamma(s), 0))(x) = 0.$$

- This contradicts the fact that

$$\deg \Phi(0; (\gamma(s), 0))(x) = \deg A = 2.$$

Curvature and stabilization around HM

Exponential stabilization around HM?

$$\partial_t^2 u - \Delta u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = -a(x) \partial_t u, \quad a(x) \text{ supp } \omega$$

Theorem (Coron–Krieger–X. 2025)

Let \mathcal{N} has trivial normal bundle. Let γ be HM: $\mathbb{T} \rightarrow \mathcal{N}$.

- If the sectional curvature is negative on γ , then expo. stabilization
- Otherwise, not stable.

Part 3. Small-time global control between steady states (Main result 2)

Theorem (Coron–Krieger–X. 2025: a positive answer)

Let $T = 6\pi$. Consider wave maps: $\mathbb{T} \rightarrow \mathcal{N}$. For any steady states (including HM) u_0 and u_1 ,

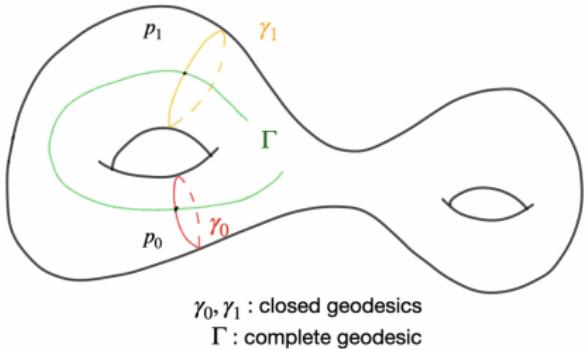
“uniform-time” global controllability $\iff u_0$ is homotopic to u_1

Deformation on geodesics

$$\square u + S_{jk}(u) \partial^\alpha u^j \partial_\alpha u^k = \chi_\omega f^\perp$$

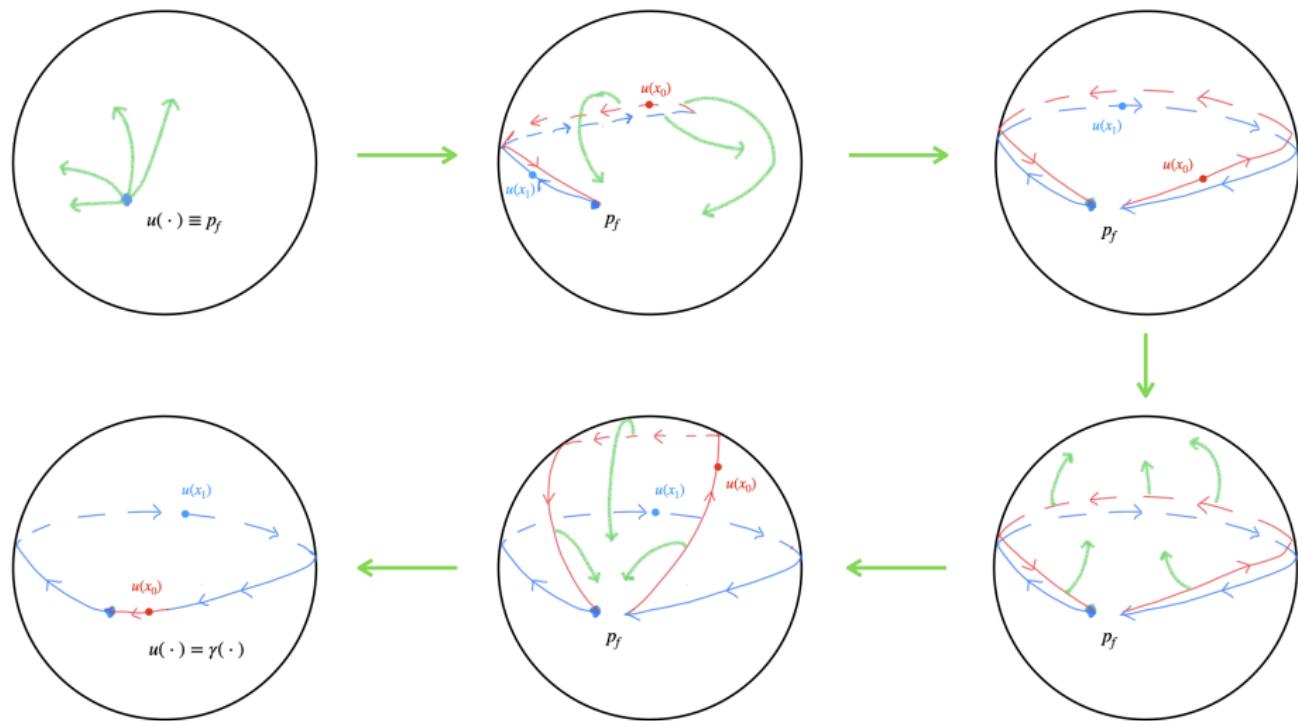
Let $\Gamma \subset \mathcal{N}$ be a **geodesic**.

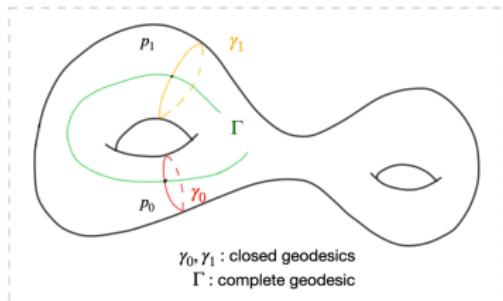
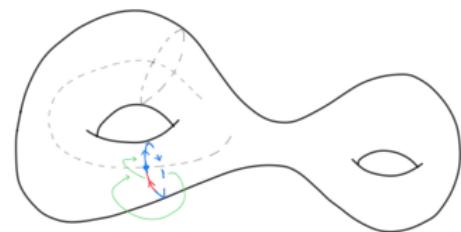
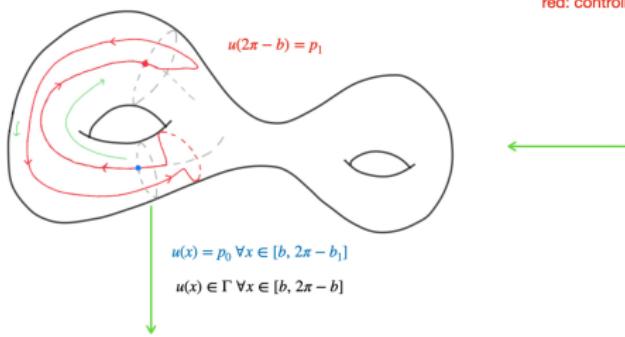
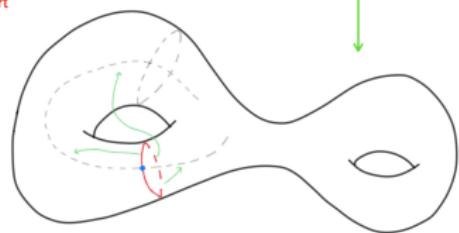
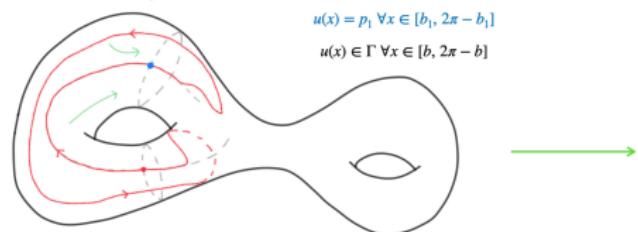
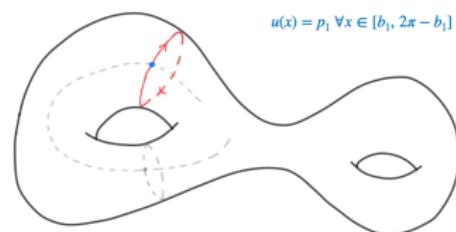
$$\Gamma = \{\bar{u}(x) : x \in \mathbb{T}\}$$



- If both initial state $u_0 \in \Gamma$ and $f \in T\Gamma$, then u stays in Γ .
- Let $u(t, x) = \bar{u}(\varphi(t, x))$. Then $\square \varphi = \chi_\omega g$.
- Gluing: inner part by linear heat equation on geodesics
outer part by control to ensure homotopy

Deformation on geodesics



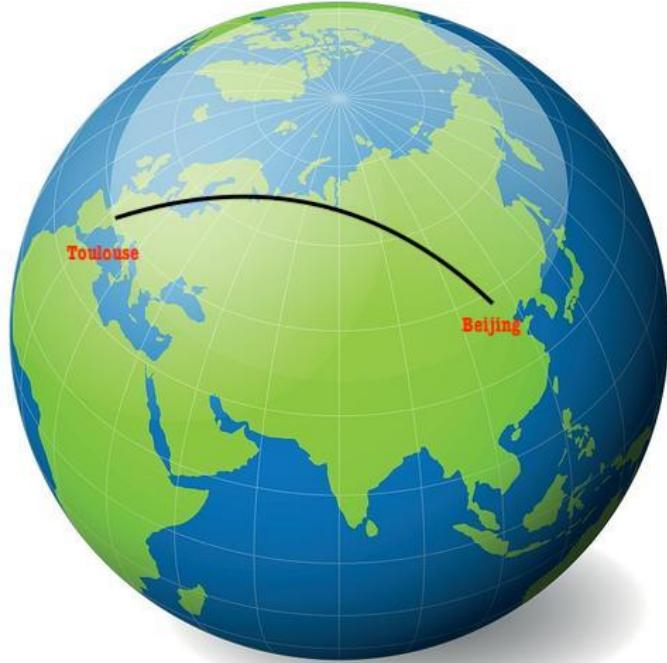


Conclusion:

- Global controllability equals homotopy
- Small-time global controllability between steady states
- Interplay between: Analysis, Dynamics, **Geometry**

Further perspectives:

- Schrödinger maps, Yang-Mills etc.
- Small-time global controllability
- Higher dimensional \mathcal{M}
- Control and singularity formation
- Random and stochastic equations



Thank you!