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Controlled maps between manifolds/domains:

u(t, x)

@ Motivation: control of singularity formation, cosmology, SPDE and ergodicity,
liquid crystal

@ Methodology: Analysis, Dynamics, Geometry
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Outline of the presentation

0 Control of geometric flows
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Control of the heat equation

Ou—Au=xof, (t,z)e€ (0,T)x M

~ |
R

Null controllability: for any wg, find control f such that «(0) = o, u(T") = 0?

@ Fattorini—-Russell (1971, 1D case), Lebeau—Robbiano (1995)
Fursikov—Imanuvilov (1996) etc.

@ Rough control: Burg’s talk
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Control of nonlinear equations

Ou— Au+ g(u) = xu f
Natural property: local controllability via linearization
@ around steady states
@ around given trajectories

U(t): given trajectory

steady state

!
iy o Uy

€ ball
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Ou—Au+ g(u) = xuf

Things become completely nonlinear:
global controllability,

1d case: Coron-Trélat (2004)
small-time global controllability

Two open problems
1) (Coron, 2007) Consider nonlinear heat equation

Ut — Ugg —U° = Xof, €T
Does the small-time global controllability between steady states hold?

2) (Dehman—Lebeau—Zuazua, 2003) Consider NLW

Ofu— Au+u’® =xof

Does the “uniform-time" global controllability hold?
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Heat flow

Let u be a map from R x M to V.

atu — A’U, 1 TuN
or dyu — Au + Sjx(u)0™u au® =0
If N =S", then du— Au —u|Vul> =0 withu € R™*.

u(t, x)
-
~ N

@ Harmonic maps (HM): steady states
@ Well-posedness, Singularity formation

@ Evolution with extra forces (control)?
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MEVCRYET

Let u be a map from R x M to V.

2u— Au L TN,
or d7u — Au+ Sjx(u)d™u’ au” =0,

where (u,u:)(t,z) € TN.

~ g -

@ Harmonic maps (HM): steady states
@ Well-posedness, Singularity formation

@ Evolution with extra forces (control)?
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Control problems on geometric equations?

First investigate the case M = T. Let ' C RY of dimension d.

Xo

u(t, x)

Otu — Au+ Sjr(u)d*u dou” = xo f where u € N C RY

@ Coupled system: N components, d controls (tangent space)
@ Goal: global controllability and stabilization
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Main result 1: global controllability equals homotopy
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Main result 1: global controllability equals homotopy

< > >

OFu — Au+ S (u)0ul dou® = Yo f+

Theorem (Coron—Krieger—X., to appear soon thus = 2025 )
For wave maps: T — N,

Global controllability < Homotopy

@ wave maps T — S™: Krieger—X. (2022), case energy < 2w
Coron—Krieger—X. (2023), global controllability

@ heat flow T — S™: Coron-X. (2024)
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Main result 2: small-time global control between
steady states

Open problem (Coron, 2007)
Consider the nonlinear heat equation

3
Ut — Ugy — U = Yo f-

The small-time global controllability between steady states?

Theorem (Coron-X. 2024: a positive answer)

Consider heat flow: T — N

Oru — Au + Sjk(u)aaujaauk =Xuf
For any steady states (including HM) wo and u1,

small-time global controllability <= g is homotopic to u,
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Main result 2: small-time global control between
steady states

Open problem (Dehman-Lebeau—Zuazua, 2003)
Consider the controlled NLW

8t2u—Au—|—g(u):wa.

The “uniform-time" global controllability?

Theorem (Coron—Krieger—X. 2025)
LetT = 6. Consider wave maps: T — N

Otu — Au~+ Sk (u)d*u dau” = xu f

For any steady states (including HM) wo and u1,

“uniform-time" global controllability <= g is homotopic to w1
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Outline of the presentation

e Heat flow
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Theorem (Coron—X. 2024)

Consider the heat flow T — S™.

For any initial state vy € H' and any point p € S™, there exists a control
f € L>(0,T; L?) such that u(T) = p.
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Since M =T, N = S*:

Ou — Au — u|8zu\2 = waj‘
E(u) := / |0z ) da:
T

Steady states ®: HM

Ad + 3|, > =0

with energy 27wn?
Define “c-approximate HM":

Q. := U {uGHl('H‘;Sk):Hu—@HHéSa}

®: HM
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Idea: play with energy and HM

Step 1 convergence towards HM
E-S type argument

Step 2 cross HM
nonlinear control

Step 3 local control around p
linearization
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Step 1: converge towards HM

Energy dissipates: let control f = 0,

N | =

GE®) == [ ult.2)ds

Eells—Sampson type argument:
@ the flow converges to HM
@ introduced to study the homotopy problem

Proposition (Coron—X., 2024)

Let M,e > 0. There exists T such that, for any initial state with energy smaller than
M, the solution becomes a -approx. HM at some time t € (0,7T).
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Step 2: cross HM

Now the state is close to a HM. Thus E(u) = 2rN? + ¢.
Question: construct control to decrease the energy; E(u) = 2nN? — ¢

Ou — Au — |um|2u = xwa‘
Linearization does not work:
O — Av = 2(By - v,)® + | BP0+ f — (f - B)

exist uncontrollable directions
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Step 2: cross HM

Now the state is close to a HM. Thus E(u) = 2rN? + €.
Question: construct control to decrease the energy; E(u) = 2nN? — ¢

Ou — Au — |um|2u = xwa‘

Control and
Nonlinearity

Linearization does not work:

v — Av =2(D, - v,)D + |20+ f — (f- D)

Jean-Michel Coron

exist uncontrollable directions

Nonlinearity helps
Power series expansion: Coron-Crépeau (2004)
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Power series expansion

Consider
Ot — At = |8,u* 0+ Xo f
and decompose

U:= o + ety + €°Ua + . ...
f=c¢f1 +E2f2+...
Cascade nonlinear systems
Oy — Atig = |90 Tio,

Ovtin — AUy = 2(Uog - U1a)Uo + |ﬂ0z|2ﬁ1 + f1— (f1 - @o)to
Orla — Ao = . ..

go to second order we obtain:

E(T) — E(0) = —2xN?c* + O(e%)
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Step 3: local control around a point

A local control problem with geometric constraint

O — Au = |8wu|2u +xef T

ult.x) 7
~

/[ ___a |
, [ pa / -
\ / u(t, x;)

via stereographic projection:

2V - Ozv
_A 8z - = Xw
Opv U+4—|—|v2| v 4+|U|21) Xwd

@ a nonlinear control problem without constraint
@ nonlinear heat: Liu—Takahashi—Tucsnak, Liu (2018)
@ we use quantitative rapid stabilization approach
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Quantitative rapid stabilization

Theorem (X., 2020)
For \ > 0 the heat equation

Ut — Au = —’y)\leAu
satisfies

u(®)||z2< eV e |u(0)| L2 M

> Combines Lebeau—Robbiano spectral inequality and constructive feedback
control

> Apply to Navier-Stokes (X. 2023), heat flow (Coron—X. 2024)

> PV estimate is essential to obtain finite time stabilization (for iteration)
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Proposition (Coron—X., 2024)
There exists C > 0 s.t. forany A > 0

20 - Vg 2|, |?
Vg — v
4+ |v?| 4+ |v|?

= —)\ec"ﬁlexU

o — Av +

satisfies

a1 < e e [u(0)]| 1 /A

provided |[u(0)|| g1 < (<) !

> Combines Lebeau—Robbiano spectral inequality and constructive feedback
control

> Apply to Navier-Stokes (X. 2023), heat flow (Coron—X. 2024)

> PV estimate is essential to obtain finite time stabilization (for iteration)
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Finite time stabilization

Find a sequence {(\x, T%)}, on each interval we perform quantitative rapid
stabilization

el
0 GuT) ' (T

" (A5, Ty) A, T,) T

Proposition (Coron-X., 2024)

There exists C such that for any T, any initial state uo € H*(T), and any p € S* with

_c
luo — pllar(ry <e™ 7T

there is a control f satisfying

C
1flloe 0,122y < €T |luo — pll g

such that the solution of the heat flow satisfies u(T,-) = p.
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Outline of the presentation

9 Wave maps
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u(t, x)

02u — Au+ Sk (w)u dau® = v f -

Theorem (Coron-Krieger—X. 2025)
Wave maps: T — N. Global controllability equals homotopy.

Case N =S": Krieger—X. (2022), Coron—Krieger—X. (2023)

Compared to S™ cases:
@ topology is more complex
@ intrinsic geometric constraint: N components, d controls
@ no explicite formula (HM, solutions etc.)
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Two reductions

(1) global controllability < local controllability

U(t): given trajectory

steady state

iy Uy Uy

€ ball

However, the trajectory is not characterizable

(2) local controllability <= the return method
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The return method (Coron)

local control
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The return method (Coron)

local control
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The return method (Coron)

oo~
e

local control

Shengquan Xiang Controlled flow of geometric maps 2025 Toulouse 25/39



How to construct the return trajectory?

Two intuitions:

(1) Can we make the solution converge to HM?
Inspired by Eells-Sampson argument for heat flow

(2) One can expect local controllability around HM
Though the analysis ought to be more delicate
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Construct the return trajectory

(uoa 1.1'01‘»)
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Construct the return trajectory

(uoa uOt)

damping

local control
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Construct the return trajectory

(uoa uOt)

damping

local control
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Construct the return trajectory

(u07 uOt)

(uo, —uot)

damping time reversal

local control
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Construct the return trajectory

(’LLO, uOt)

(uo, —uot)

damping local control time reversal

local control
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Construct the return trajectory

(UO ) uOt) .
time reversal

(uo, —uot)

damping local control time reversal

local control
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Sketch of the proof

global control <= local control <= return method

Construct the return trajectory:
Part 1 Stabilize to HM via damping
Part 2 Local controllability around HM (omitted)

Part 3 “Small-time" global controllability between HM (Main result 2)
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Part 1. global stabilization to HM

First consider A" = S*:

OFu — Au+ (|9uf® — |9ul*)u = xu
Question: how to stabilize this system?
Idea: localized damping

0t — Au+ (|0ul® — |0pu>)u = —a(z)du, € T,

where a(z) supp w.
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Damping stabilization

Consider the wave equation, it is known that damping dissipates the energy:
Ofu — Au = —a(x)du

then
777)

E(T)-l-/OT/Qa(:c)Iudexdt: E(0) Y,

E(t) <e *E(0)

@ Multiplier/Carleman method:

Lions, Komornik, Zuazua, Ervedoza, Puel,
Zhang et. al.

@ Microlocal analysis:

Bardos, Lebeau, Rauch, Burq, Gérard,
Dehman, Trélat, Zworski, Laurent et. al.

@ Some defocusing equations
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Stabilization towards harmonic maps

Otu — Au+ (|0wu)® — |0.ul*)u = —a(z)du,z € T

> (Krieger—X. 2022) exponential stabilization below 27 energy level set

Letv > 0.
E(t) < e “E(0), Yu[0] € H(2m —v)

This is sharp: because HM are steady states.
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Stabilization towards harmonic maps

Otu — Au+ (|0wu)® — |0.ul*)u = —a(z)du,z € T

> (Krieger—X. 2022) exponential stabilization below 27 energy level set
Letv > 0.
E(t) < e “E(0), Yul0] € H(2m —v)
This is sharp: because HM are steady states.

> (Coron—Krieger-X. 2023) for S* target, stabilization towards HM
> (Coron—Krieger—X. 2025) for general N\ target, stabilization towards HM
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Quantitative propagation of smallness

Proposition

Consider the damped WM from T into S™ (or general N'), and assume E(0) < M.
For any e > 0, we have either

327
/ /a(a:)|ut|2dxdt > Ce?
0 T

3t € [0, 327] s.1. is e-approx. HM

Two ingredients:
> A quantitative “propagation of smallness” result
> An averaging technique to extract the approximate HM
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Obstruction to global stabilization

Theorem (Coron—Krieger—X., 2023)

Consider the damped WM from T to S™, there is no feedback control such that
E(u[t]) < h(t)E(u]0]), Yu[0] € H(2T)

for any h satisfying h(+oo) = 0.

Key: homology group H»(S?;Z) and IT*(C°(T*;S?)) are non-trivial
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Topological obstruction

— nis=0)

D

e ——

— n=ah

I
N

s =3n/4

As,0)
S _—
l deg(A,, T'x T',8%) =2

s =3n/2 =
=0 s=nl4

T — ) =3

o s =3nl)

nis=n)

Define A: T! x T — S% as

A(s, 2) (sin s cos x, sin s sinz, cos s) 7, Vs € [0, 7],
8,x) =
’ (—sin scosz,sin ssinz, cos s)T, Vs € (m, 2m).

This is a closed curve of initial states with energy < 27 ~(s) = A(s,-)
E((7(s),0)) = 2n(sins)® < 27

Lemma. deg (A) =2
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Topological obstruction

@ If uniform asymptotic stabilization holds,
E(u(t)) < p(t)E(u(0)), Yu[0] € H(2)
then 3T > 0, the flow with initial state (v(s), 0) satisfies
(T (7(s),0))(z) — (T (7(s),0))(0)| < 1/2 Vs €S, Vo €S,

@ One can further deform the map (s, z) — ®(T; (v(s),0))(z) to a one
dimensional closed curve. Thus

deg ®(T’; (v(s),0))(z) = 0.
@ This contradicts the fact that

deg ®(0; (v(s),0))(x) = deg A = 2.
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Curvature and stabilization around HM

Exponential stabilization around HM?

Otu — Au + S5 (w)d* ! Bau” = —a(2)d;u, a(z) supp w

Theorem (Coron—Krieger—X. 2025)
Let N has trivial normal bundle. Lety be HM: T — N .
@ [f the sectional curvature is negative on v, then expo. stabilization

@ Otherwise, not stable.
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Part 3. Small-time global control between steady
states (Main result 2)

Theorem (Coron—Krieger—X. 2025: a positive answer)

LetT = 6r. Consider wave maps: T — N. For any steady states (including HM) u
anduy,

“uniform-time" global controllability <= g is homotopic to u1
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Deformation on geodesics

Ou + Sy (u)d*u? au® = yu -

Let "' C NV be a geodesic.
I'={u(z) : 2 €T}

Yo0» 71 : closed geodesics
I': complete geodesic

@ If both initial state up € T"'and f € TT, then u stays in T".
@ Letu(t,z) = u(p(t,x)). Then Op = xwg.

@ Gluing: inner part by linear heat equatin on geodescis
outer part by control to ensure homotopy
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Deformation on geodesics
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-

Y0, 71 : closed geodesics
I : complete geodesic 0<b<b <by<n

u(x) = 7(x) Vx € S!

blue: uncontrolled part
X € (by, 27 = by)

red: controlled part

uQ@r-b)=p,

-
u(@) = py Vx € [b, 27~ by]
u(x) = po Vx € [b, 27— by)
u(x) €T Vx € [b, 27— b]
u(x) =p, Vx € [b), 21— b)] u(x) =p, Vx € (b, 21— b))
u(x) €T Vx € [b, 27— b)
—
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Conclusion:
> Global controllability equals homotopy
> Small-time global controllability between steady states
> Interplay between: Analysis, Dynamics, Geometry

Further perspectives:
> Schrédinger maps, Yang-Mills etc.
> Small-time global controllability
> Higher dimensional M
> Control and singularity formation
> Random and stochastic equations
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Thank you!
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