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Framework and objective

Framework. Let Ω ⊂ Rd , d ≥ 1, a bounded domain su�ciently smooth and
T > 0. We denote

QT := Ω× (0,T ), ΣT := ∂Ω× (0,T ).

We consider 
∂tty −∆y + f (y) = 0, QT ,

y = v|Γ0 , ΣT ,(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω,

(⋆)

where v ∈ L2(ΣT ), Γ0 ⊂ ∂Ω non-empty and f ∈ C(R) is a non-linear function.
Figure � Control zone Γ0,
d = 2

Exact controllability problem.

Given T > 0, Γ0 ⊂ ∂Ω and (u0, u1), (z0, z1) in an appropriate space, �nd (if possible) a pair (y , v) solution of
(⋆) such that (

y(·,T ), ∂ty(·,T )
)
= (z0, z1)? (1)

2 / 21



Literature First main result (existence of a control) Idea of the proof Second main result (construction of a control)

Framework and objective

Framework. Let Ω ⊂ Rd , d ≥ 1, a bounded domain su�ciently smooth and
T > 0. We denote

QT := Ω× (0,T ), ΣT := ∂Ω× (0,T ).

We consider 
∂tty −∆y + f (y) = 0, QT ,

y = v|Γ0 , ΣT ,(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω,

(⋆)

where v ∈ L2(ΣT ), Γ0 ⊂ ∂Ω non-empty and f ∈ C(R) is a non-linear function.
Figure � Control zone Γ0,
d = 2

Exact controllability problem.

Given T > 0, Γ0 ⊂ ∂Ω and (u0, u1), (z0, z1) in an appropriate space, �nd (if possible) a pair (y , v) solution of
(⋆) such that (

y(·,T ), ∂ty(·,T )
)
= (z0, z1)? (1)

2 / 21



Literature First main result (existence of a control) Idea of the proof Second main result (construction of a control)

Framework and objective

Framework. Let Ω ⊂ Rd , d ≥ 1, a bounded domain su�ciently smooth and
T > 0. We denote

QT := Ω× (0,T ), ΣT := ∂Ω× (0,T ).

We consider 
∂tty −∆y + f (y) = 0, QT ,

y = v|Γ0 , ΣT ,(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω,

(⋆)

where v ∈ L2(ΣT ), Γ0 ⊂ ∂Ω non-empty and f ∈ C(R) is a non-linear function.
Figure � Control zone Γ0,
d = 2

Exact controllability problem.

Given T > 0, Γ0 ⊂ ∂Ω and (u0, u1), (z0, z1) in an appropriate space, �nd (if possible) a pair (y , v) solution of
(⋆) such that (
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For (u0, u1) and (z0, z1) �xed, we call state-control pair of (⋆) any pair (y , v) solution of (⋆) satisfying (1).
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First controllability result

Controllability result [Zua91, Theorem 2.1] 1

Assume that f is globally lipschitz and T large enough. The system (⋆) is exactly controllable in
L2(Ω)× H−1(Ω).

Linearization 
∂tty −∆y +

f (z)− f (0)

z
y = −f (0), QT ,

y = v|Γ0 , ΣT(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω.

(2)

Fixed point operator

Λ := L2(QT ) → L2(QT )

z 7→ y

where (y , v) is a state-control pair of (2) such that v := argmin
v

∥v∥2L2(ΣT ).

1. E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Di�erential Equations and Their
Applications, Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser. 220, Longman, Harlow, UK,
1991,pp. 357-391.
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Controllability result d = 1, distributed control case [Zua93, Theorem 1] 2

Let T large enough. Assume that f ∈ C1(R) such that

∃β > 0, lim sup
|r|→∞

|f (r)|
|r | ln2 |r |

≤ β.

If β is small enough then, the system (⋆) is exactly controllable at time T in H1
0 (Ω)× L2(Ω).

2. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire,
10 (1993), pp. 109-129.
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Most general result known - distributed control case - Carleman setting

Let x0 ∈ Rd\Ω and ε > 0. We denote

Γ0 := {x ∈ ∂Ω; (x − x0) · ν(x) > 0},

Oε(Γ0) := {x ∈ Rd ; dist(x , Γ0) < ε}.

We suppose that ω = Oε(Γ0) ∩ Ω and

T > max

{
8max

x∈Ω
|x − x0|2, 1+ 24

√
d max

x∈Ω
{2(x − x0) · ν(x)} (2+ d)

}
If, moreover, the function f ∈ C1(R) satis�es

∃β > 0, lim sup
|r|→∞

|f (r)|
|r | lnp |r |

≤ β, 0 ≤ p < 3/2.

Controllability result [FLZ19, Theorem 4.5] 3

Under the above conditions, if β is small enough, the system (⋆) is exactly controllable in H1
0 (Ω)× L2(Ω).

3. X. Fu, Q. Lü, X. Zhang, Carleman Estimates for Second Order Partial Di�erential Operators and Applications : A Uni�ed
Approach, Springer Briefs in Math., Springer, Cham, 2019.
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First main result (existence of a control)

For any x0 ∈ Rd\Ω, let
Γ1 := {x ∈ ∂Ω : (x − x0) · ν(x) > 0}
Γ0 ⊂ ∂Ω such that dist(Γ1, ∂Ω \ Γ0) > 0

T > 2maxx∈Ω |x − x0|.

Assume that f ∈ C0(R) satis�es

∃β > 0, lim sup
|r|→∞

|f (r)|
|r | lnp |r |

≤ β, 0 ≤ p < 3/2.

Theorem [CLM24] 4

If β is small enough then, the system (⋆) is exactly controllable in L2(Ω)× H−1(Ω).

4. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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First main result (existence of a control)

Extends and generalizes to any dimension [BLM23] 5devoted to the case d = 1.

Improve [FLZ19, Theorem 4.5] 6

[FLZ19] [CLM24]

Regularity of f C1(R) C0(R)

Regularity of (u0, u1) H1
0 (Ω)× L2(Ω) L2(Ω)× H−1(Ω)

Lower bound of T max
{
8max
x∈Ω

|x − x0|2, 2maxx∈Ω |x − x0|

1 + 24
√
d max

x∈Ω
{2(x − x0) · ν(x)} (2 + d)

}

The conditions on Γ0, T and (u0, u1) are those of the linear case, which are optimal.

5. K. Bhandari, J. Lemoine, A. Münch, Exact boundary controllability of 1d semilinear wave equations through a constructive
approach, Math. Control Signals Systems, 1 (2023).

6. X. Fu, Q. Lü, X. Zhang, Carleman Estimates for Second Order Partial Di�erential Operators and Applications : A Uni�ed
Approach, Springer Briefs in Math., Springer, Cham, 2019.
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Linearize the system by introducing an operator Λs

Linearization + Fixed point

Zero order linearization. 
∂tty −∆y = −f (z), QT ,

y = v|Γ0 , ΣT ,(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω.

(⋆⋆)

Fixed point operator.

Λs := C(s) ⊂ L∞(0,T ; L2(Ω)) → C(s)
z 7→ y

where (y , v) is an optimal state-control pair of (⋆⋆) with (z0, z1) = (0, 0) for the cost

Js(y , v) := s

∫
QT

ρ2|y |2 dx dt+
∫
ΣT

η−2Ψ−1ρ2|v |2 dx dt,

involving Carleman weight ρ(s; x , t) and parameter s > 0.

Goal. Prove the existence of a �xed-point for Λs for at least one s.

12 / 21
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Outline of the proof

Verify assumptions for the Schauder theorem.

A priori estimate of the linear optimal state-control pair (with respect to the initial data (u0, u1), the
second member f (z) and the parameter s).

Carleman inequality (depending of s).

13 / 21



Literature First main result (existence of a control) Idea of the proof Second main result (construction of a control)

Outline of the proof

Verify assumptions for the Schauder theorem.

A priori estimate of the linear optimal state-control pair (with respect to the initial data (u0, u1), the
second member f (z) and the parameter s).

Carleman inequality (depending of s).

13 / 21



Literature First main result (existence of a control) Idea of the proof Second main result (construction of a control)

Outline of the proof

Verify assumptions for the Schauder theorem.

A priori estimate of the linear optimal state-control pair (with respect to the initial data (u0, u1), the
second member f (z) and the parameter s).

Carleman inequality (depending of s).

13 / 21



Literature First main result (existence of a control) Idea of the proof Second main result (construction of a control)

Carleman inequality

Weight function

For any µ ∈ (0, 1), λ > 0 and for some M0 > 0 large enough so that

ψ(x , t) := |x − x0|2 − µ
(
t − T

2

)
+M0 > 1 in QT ,

ϕ(x , t) := eλψ(x,t), e−sc ≤ ρ(s; x , t) := e−sϕ(x,t) ≤ e−s , ∀(x , t) ∈ QT , c = ∥ϕ∥L∞(QT )

Carleman estimate [BdBE2013] 7

Under the geometric condition, there exists s0 > 0, λ > 0 and C > 0 such that for any s ≥ s0,

s

∫
QT

ρ−2(s)
(
|∂tw |2 + |∇w |2

)
dx dt+s3

∫
QT

ρ−2(s) |w |2 dx dt+s

∫
Ω
ρ−2(s; x , 0)

(
|∂tw(x , 0)|2 + |∇w(x , 0)|2

)
dx︸ ︷︷ ︸

initial energy

+ s3
∫
Ω
ρ−2(s; x , 0) |w(x , 0)|2 dx≤ C

(∫
QT

ρ−2(s) |∂ttw −∆w |2 dx dt︸ ︷︷ ︸
source

+ s

∫
ΣT

η2(t)Ψ(x)ρ−2(s) |∂νw |2 dx dt︸ ︷︷ ︸
observation

)
,

for any w ∈ H :=
{
w ∈ C0

(
[0,T ];H1

0 (Ω)
)
∩ C1

(
[0,T ]; L2(Ω)

)
; ∂ttw −∆w ∈ L2(QT )

}
.

7. L. Baudouin, M. de Buhan, S. Ervedoza, Global Carleman Estimates for Waves and Applications, Communications in Partial
Di�erential Equation, 38(5), 823-859.
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Estimate of the linear optimal state-control pair

Λs : C(s) → C(s)
z 7→ y

where (y , v) is the optimal state-control pair of
∂tty −∆y = −f (z), QT ,

y = v|Γ0 , ΣT ,(
y(·, 0), ∂ty(·, 0)

)
= (u0, u1), Ω,

(⋆⋆)

for the cost

Js(y , v) =
s

2

∫
QT

ρ2(s)|y |2 dx dt+
1

2

∫
ΣT

η−2(t)Ψ−1(x)ρ2(s)|v |2 dx dt .

A priori estimate on (y , v)

For any r ∈ [0, 1]\{1/2}. The following estimate holds

∥ρ(s)y∥L2(QT ) + s−2 ∥ρ(s)y∥L∞(0,T ;L2(Ω)) + s−1/2
∥∥∥ρ(s)η−1Ψ−1/2v

∥∥∥
L2(ΣT )

≤ Cr

(
sr−3/2 ∥ρ(s)f (z)∥L2(0,T ;H−r (Ω)) + s−1/2 ∥ρ(0)(u0, u1)∥L2(Ω)×H−1(Ω)

)
.

(E1)
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Existence of a �xed-point for Λs

Goal : Prove the existence of s and of a �xed-point for

Λs : C(s) → C(s)
z 7→ y .

→ Employ the Schauder theorem

De�ne C(s) to have a stability property
(
i.e. z ∈ C(s) ⇒ Λs(z) = y ∈ C(s)

)
:

C(s) :=
{
y ∈ L∞

(
0,T ; L2(Ω)

)
; ∥ρy∥L2(QT ) ≤ s, ∥ρy∥L∞(0,T ;L2(Ω)) ≤ s3

}
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Existence of a �xed-point for Λs

Goal : Prove the existence of s and of a �xed-point for

Λs : C(s) → C(s)
z 7→ y .

→ Employ the Schauder theorem

De�ne C(s) to have a stability property
(
i.e. z ∈ C(s) ⇒ Λs(z) = y ∈ C(s)

)
:

C(s) :=
{
y ∈ L∞

(
0,T ; L2(Ω)

)
; ∥ρy∥L2(QT ) ≤ s, ∥ρy∥L∞(0,T ;L2(Ω)) ≤ s3

}

A priori estimate on on y := Λs(z), z ∈ C(s)

For any p ∈ (1, 3/2). The following estimate holds

∥ρ(s)y∥L2(QT ) + s−2 ∥ρ(s)y∥L∞(0,T ;L2(Ω))

≤ sC
(
s−pα2 + βcp + e−s

(
s−p−1α1T

1/2 |Ω|1/2 + s−1/2
(
∥u0∥L2(Ω) + ∥u1∥H−1(Ω)

)))
.
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y ∈ L∞

(
0,T ; L2(Ω)

)
; ∥ρy∥L2(QT ) ≤ s, ∥ρy∥L∞(0,T ;L2(Ω)) ≤ s3

}
→ For β small enough, there exists s large enough such that C(s) is stable under the map Λs .
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Existence of a �xed-point for Λs
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De�ne C(s) to have a stability property
(
i.e. z ∈ C(s) ⇒ Λs(z) = y ∈ C(s)

)
:

C(s) :=
{
y ∈ L∞

(
0,T ; L2(Ω)

)
; ∥ρy∥L2(QT ) ≤ s, ∥ρy∥L∞(0,T ;L2(Ω)) ≤ s3

}
Continuity. The map Λs : C(s) → C(s) is continuous for the L∞(0,T ; L2(Ω))-norm.

Relative compactness. Λs(C(s)) is a relatively compact subset of C(s) relative to the
L∞(0,T ; L2(Ω))-norm.
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Existence of a �xed-point for Λs

Relative compactness : Any sequence (yn)n of Λs (C(s)) admits a subsequence (ynk )k that converges in C(s)
for the L∞(0,T ; L2(Ω))-norm.

yn ∈ C0([0,T ]; L2(Ω)) ∩ C1([0,T ];H−1(Ω))

Key point - Additional regularity property on the optimal controlled pair.

Assume that (u0, u1, f (z)) ∈ H1−r
0 (Ω)× H−r (Ω)× L2(0,T ;H−r (Ω)), r ∈ (0, 1) ̸= { 1

2
}. The controlled pair

(y , v), which minimize Js , belongs to the space(
C0([0,T ];H1−r (Ω)) ∩ C1([0,T ];H−r (Ω))

)
× H1−r (0,T ; L2(∂Ω)),

and satis�es

∥(ρy)t∥L∞(0,T ;H−r (Ω)) + ∥ρy∥L∞(0,T ;H1−r (Ω))

≤C
(
∥ρf (z)∥L2(0,T ;H−r (Ω)) + ∥ρ(0)u0∥H1−r (Ω) + ∥ρ(0)u1∥H−r (Ω)

)
.

→ work with (yn − y0)n which is solution of linear wave equation associated with the data (0, 0, f (zn)− f (z0)).
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Existence of a �xed-point for Λs

Recall of the result

For any x0 ∈ Rd\Ω, let
Γ1 := {x ∈ ∂Ω : (x − x0) · ν(x) > 0}
Γ0 ⊂ ∂Ω such that dist(Γ1, ∂Ω \ Γ0) > 0

T > 2maxx∈Ω |x − x0|.

Assume that f ∈ C0(R) satis�es

∃β > 0, lim sup
|r|→∞

|f (r)|
|r | lnp |r |

≤ β, 0 ≤ p < 3/2.

Theorem [CLM24] 8

If β is small enough then, the system (⋆) is exactly controllable in L2(Ω)× H−1(Ω).

8. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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Assume that f ∈ C1(R) and that there exists 0 ≤ p < 3/2 such that f satis�es

∃α, β > 0, |f ′(r)| ≤ α+ β lnp(r), ∀r ∈ R.

Proposition [CLM24] 9

For any s large enough and β small enough (s.t. β < 1
Ccp

). Then,

∥ρ(s) (Λs(z1)− Λs(z2))∥L2(QT ) ≤ C
(
s−pα+ βcp

)
∥ρ(s)(z1 − z2)∥L2(QT ) .

Theorem [CLM24] 9

For any (u0, u1) ∈ L2(Ω)× H−1(Ω), there exists of a non trivial sequence (yk , vk )k that strongly converges to a
state-control pair (y , v) for system (⋆). Moreover, the convergence is at least linear for the norm
∥ρ(s)·∥L2(QT ) + ∥ρ(s)·∥L2(ΣT ) where s is chosen su�ciently large.

9. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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Thank you for your attention !
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