

Exact boundary controllability of semilinear wave equations

Sue Claret

Laboratoire de Mathématiques Blaise Pascal
Université Clermont-Auvergne

Control of PDEs and related topics
Toulouse, July, 3, 2025

with Jérôme Lemoine and Arnaud Münch

Framework and objective

Framework. Let $\Omega \subset \mathbb{R}^d$, $d \geq 1$, a bounded domain sufficiently smooth and $T > 0$. We denote

$$Q_T := \Omega \times (0, T), \quad \Sigma_T := \partial\Omega \times (0, T).$$

We consider

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega, \end{cases} \quad (*)$$

where $v \in L^2(\Sigma_T)$, $\Gamma_0 \subset \partial\Omega$ non-empty and $f \in \mathcal{C}(\mathbb{R})$ is a **non-linear function**.

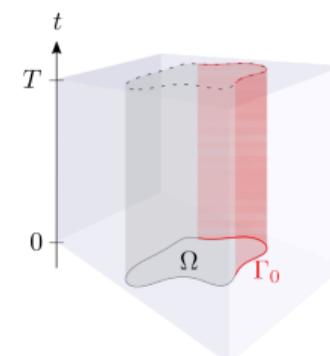


Figure – Control zone Γ_0 ,
 $d = 2$

Framework and objective

Framework. Let $\Omega \subset \mathbb{R}^d$, $d \geq 1$, a bounded domain sufficiently smooth and $T > 0$. We denote

$$Q_T := \Omega \times (0, T), \quad \Sigma_T := \partial\Omega \times (0, T).$$

We consider

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega, \end{cases} \quad (*)$$

where $v \in L^2(\Sigma_T)$, $\Gamma_0 \subset \partial\Omega$ non-empty and $f \in \mathcal{C}(\mathbb{R})$ is a **non-linear function**.

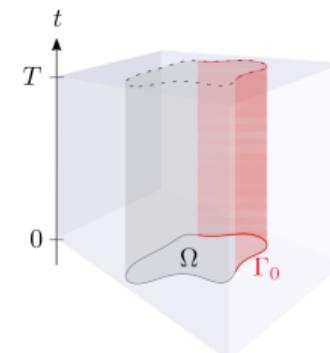


Figure – Control zone Γ_0 ,
 $d = 2$

Exact controllability problem.

Given $T > 0$, $\Gamma_0 \subset \partial\Omega$ and $(u_0, u_1), (z_0, z_1)$ in an appropriate space, find (if possible) a pair (y, v) solution of $(*)$ such that

$$(y(\cdot, T), \partial_t y(\cdot, T)) = (z_0, z_1)? \quad (1)$$

Framework and objective

Framework. Let $\Omega \subset \mathbb{R}^d$, $d \geq 1$, a bounded domain sufficiently smooth and $T > 0$. We denote

$$Q_T := \Omega \times (0, T), \quad \Sigma_T := \partial\Omega \times (0, T).$$

We consider

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega, \end{cases} \quad (*)$$

where $v \in L^2(\Sigma_T)$, $\Gamma_0 \subset \partial\Omega$ non-empty and $f \in \mathcal{C}(\mathbb{R})$ is a **non-linear function**.

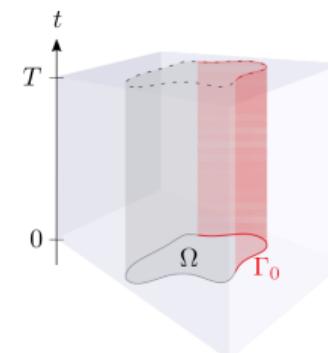


Figure – Control zone Γ_0 ,
 $d = 2$

Exact controllability problem.

Given $T > 0$, $\Gamma_0 \subset \partial\Omega$ and $(u_0, u_1), (z_0, z_1)$ in an appropriate space, find (if possible) a pair (y, v) solution of $(*)$ such that

$$(y(\cdot, T), \partial_t y(\cdot, T)) = (z_0, z_1)? \quad (1)$$

For (u_0, u_1) and (z_0, z_1) fixed, we call **state-control pair** of $(*)$ any pair (y, v) solution of $(*)$ satisfying (1).

Table of contents

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (*)$$

1 Literature

2 First main result (existence of a control)

3 Idea of the proof

- Linearize the system by introducing an operator Λ_s
- Outline of the proof
- Carleman inequality
- Estimate of the linear optimal state-control pair
- Existence of a fixed-point for Λ_s

4 Second main result (construction of a control)

Table of contents

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (*)$$

1 Literature

2 First main result (existence of a control)

3 Idea of the proof

- Linearize the system by introducing an operator Λ_s
- Outline of the proof
- Carleman inequality
- Estimate of the linear optimal state-control pair
- Existence of a fixed-point for Λ_s

4 Second main result (construction of a control)

First controllability result

Controllability result [Zua91, Theorem 2.1]¹

Assume that f is **globally lipschitz** and T large enough. The system $(*)$ is exactly controllable in $L^2(\Omega) \times H^{-1}(\Omega)$.

1. E. Zuazua, *Exact boundary controllability for the semilinear wave equation*, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser. 220, Longman, Harlow, UK, 1991, pp. 357-391.

First controllability result

Controllability result [Zua91, Theorem 2.1]¹

Assume that f is **globally lipschitz** and T large enough. The system $(*)$ is exactly controllable in $L^2(\Omega) \times H^{-1}(\Omega)$.

Linearization

$$\begin{cases} \partial_{tt}y - \Delta y + \frac{f(z) - f(0)}{z}y = -f(0), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (2)$$

Fixed point operator

$$\begin{aligned} \Lambda &:= L^2(Q_T) \rightarrow L^2(Q_T) \\ z &\mapsto y \end{aligned}$$

where (y, v) is a state-control pair of (2) such that $v := \arg \min_v \|v\|_{L^2(\Sigma_T)}^2$

1. E. Zuazua, *Exact boundary controllability for the semilinear wave equation*, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser. 220, Longman, Harlow, UK, 1991, pp. 357-391.

Controllability result $d = 1$, distributed control case [Zua93, Theorem 1]²

Let T large enough. Assume that $f \in \mathcal{C}^1(\mathbb{R})$ such that

$$\exists \beta > 0, \quad \limsup_{|r| \rightarrow \infty} \frac{|f(r)|}{|r| \ln^2 |r|} \leq \beta.$$

If β is small enough then, the system $(*)$ is exactly controllable at time T in $H_0^1(\Omega) \times L^2(\Omega)$.

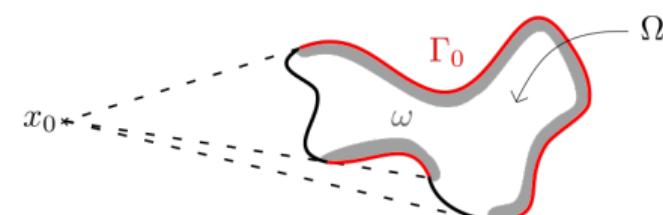
2. E. Zuazua, *Exact controllability for semilinear wave equations in one space dimension*, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), pp. 109-129.

Most general result known - distributed control case - Carleman setting

Let $x_0 \in \mathbb{R}^d \setminus \overline{\Omega}$ and $\varepsilon > 0$. We denote

$$\Gamma_0 := \{x \in \partial\Omega; (x - x_0) \cdot \nu(x) > 0\},$$

$$\mathcal{O}_\varepsilon(\Gamma_0) := \{x \in \mathbb{R}^d; \text{dist}(x, \Gamma_0) < \varepsilon\}.$$



We suppose that $\omega = \mathcal{O}_\varepsilon(\Gamma_0) \cap \Omega$ and

$$T > \max \left\{ 8 \max_{x \in \overline{\Omega}} |x - x_0|^2, 1 + 24\sqrt{d} \max_{x \in \overline{\Omega}} \{2(x - x_0) \cdot \nu(x)\} (2 + d) \right\}$$

If, moreover, the function $f \in \mathcal{C}^1(\mathbb{R})$ satisfies

$$\exists \beta > 0, \quad \limsup_{|r| \rightarrow \infty} \frac{|f(r)|}{|r| \ln^p |r|} \leq \beta, \quad 0 \leq p < 3/2.$$

Controllability result [FLZ19, Theorem 4.5]³

Under the above conditions, if β is small enough, the system $(*)$ is exactly controllable in $H_0^1(\Omega) \times L^2(\Omega)$.

Table of contents

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (*)$$

1 Literature

2 First main result (existence of a control)

3 Idea of the proof

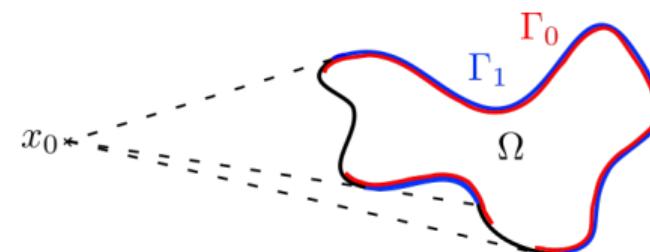
- Linearize the system by introducing an operator Λ_s
- Outline of the proof
- Carleman inequality
- Estimate of the linear optimal state-control pair
- Existence of a fixed-point for Λ_s

4 Second main result (construction of a control)

First main result (existence of a control)

For any $x_0 \in \mathbb{R}^d \setminus \overline{\Omega}$, let

- $\Gamma_1 := \{x \in \partial\Omega : (x - x_0) \cdot \nu(x) > 0\}$
- $\Gamma_0 \subset \partial\Omega$ such that $\text{dist}(\Gamma_1, \partial\Omega \setminus \Gamma_0) > 0$
- $T > 2 \max_{x \in \overline{\Omega}} |x - x_0|$.

Assume that $f \in \mathcal{C}^0(\mathbb{R})$ satisfies

$$\exists \beta > 0, \quad \limsup_{|r| \rightarrow \infty} \frac{|f(r)|}{|r| \ln^p |r|} \leq \beta, \quad 0 \leq p < 3/2.$$

Theorem [CLM24]⁴If β is small enough then, the system (\star) is exactly controllable in $L^2(\Omega) \times H^{-1}(\Omega)$.

4. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4), 1953-1976 (2024).

First main result (existence of a control)

- Extends and generalizes to any dimension [BLM23]⁵ devoted to the case $d = 1$.
- Improve [FLZ19, Theorem 4.5]⁶

	[FLZ19]	[CLM24]
Regularity of f	$C^1(\mathbb{R})$	$C^0(\mathbb{R})$
Regularity of (u_0, u_1)	$H_0^1(\Omega) \times L^2(\Omega)$	$L^2(\Omega) \times H^{-1}(\Omega)$
Lower bound of T	$\max \left\{ 8 \max_{x \in \bar{\Omega}} x - x_0 ^2, \right.$ $\left. 1 + 24\sqrt{d} \max_{x \in \bar{\Omega}} \{2(x - x_0) \cdot \nu(x)\} (2 + d) \right\}$	$2 \max_{x \in \bar{\Omega}} x - x_0 $

- The conditions on Γ_0 , T and (u_0, u_1) are those of the linear case, which are [optimal](#).

5. K. Bhandari, J. Lemoine, A. Münch, *Exact boundary controllability of 1d semilinear wave equations through a constructive approach*, Math. Control Signals Systems, 1 (2023).

6. X. Fu, Q. Lü, X. Zhang, *Carleman Estimates for Second Order Partial Differential Operators and Applications : A Unified Approach*, Springer Briefs in Math., Springer, Cham, 2019.

Table of contents

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (*)$$

1 Literature

2 First main result (existence of a control)

3 Idea of the proof

- Linearize the system by introducing an operator Λ_s
- Outline of the proof
- Carleman inequality
- Estimate of the linear optimal state-control pair
- Existence of a fixed-point for Λ_s

4 Second main result (construction of a control)

Linearize the system by introducing an operator Λ_S

Linearization + Fixed point

Linearize the system by introducing an operator Λ_s

Linearization + Fixed point

Zero order linearization.

$$\begin{cases} \partial_{tt}y - \Delta y = -f(z), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (\star\star)$$

Linearization + Fixed point

Zero order linearization.

$$\begin{cases} \partial_{tt}y - \Delta y = -f(z), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (\star\star)$$

Fixed point operator.

$$\begin{aligned} \Lambda_s := \mathcal{C}(s) &\subset L^\infty(0, T; L^2(\Omega)) \rightarrow \mathcal{C}(s) \\ z &\mapsto y \end{aligned}$$

where (y, v) is an optimal state-control pair of $(\star\star)$ with $(z_0, z_1) = (0, 0)$ for the cost

$$\mathcal{J}_s(y, v) := s \int_{Q_T} \rho^2 |y|^2 \, dx \, dt + \int_{\Sigma_T} \eta^{-2} \Psi^{-1} \rho^2 |v|^2 \, dx \, dt,$$

involving Carleman weight $\rho(s; x, t)$ and parameter $s > 0$.

Linearization + Fixed point

Zero order linearization.

$$\begin{cases} \partial_{tt}y - \Delta y = -f(z), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (\star\star)$$

Fixed point operator.

$$\begin{aligned} \Lambda_s &:= \mathcal{C}(s) \subset L^\infty(0, T; L^2(\Omega)) \rightarrow \mathcal{C}(s) \\ z &\mapsto y \end{aligned}$$

where (y, v) is an optimal state-control pair of $(\star\star)$ with $(z_0, z_1) = (0, 0)$ for the cost

$$\mathcal{J}_s(y, v) := s \int_{Q_T} \rho^2 |y|^2 \, dx \, dt + \int_{\Sigma_T} \eta^{-2} \Psi^{-1} \rho^2 |v|^2 \, dx \, dt,$$

involving Carleman weight $\rho(s; x, t)$ and parameter $s > 0$.**Goal.** Prove the existence of a fixed-point for Λ_s for at least one s .

- Verify assumptions for the Schauder theorem.

- Verify assumptions for the **Schauder theorem**.
- *A priori* estimate of the linear optimal state-control pair (with respect to the initial data (u_0, u_1) , the second member $f(z)$ and the parameter s).
- Carleman inequality (depending of s).

Weight function

For any $\mu \in (0, 1)$, $\lambda > 0$ and for some $M_0 > 0$ large enough so that

$$\psi(x, t) := |x - x_0|^2 - \mu \left(t - \frac{T}{2} \right) + M_0 > 1 \text{ in } \overline{Q_T},$$

$$\phi(x, t) := e^{\lambda \psi(x, t)}, \quad e^{-sc} \leq \rho(s; x, t) := e^{-s\phi(x, t)} \leq e^{-s}, \quad \forall (x, t) \in Q_T, \quad c = \|\phi\|_{L^\infty(Q_T)}$$

Carleman estimate [BdB2013]⁷

Under the geometric condition, there exists $s_0 > 0$, $\lambda > 0$ and $C > 0$ such that for any $s \geq s_0$,

$$\begin{aligned} s \int_{Q_T} \rho^{-2}(s) (|\partial_t w|^2 + |\nabla w|^2) \, dx \, dt + s^3 \int_{Q_T} \rho^{-2}(s) |w|^2 \, dx \, dt + & \underbrace{s \int_{\Omega} \rho^{-2}(s; x, 0) (|\partial_t w(x, 0)|^2 + |\nabla w(x, 0)|^2) \, dx}_{\text{initial energy}} \\ + s^3 \int_{\Omega} \rho^{-2}(s; x, 0) |w(x, 0)|^2 \, dx \leq & C \left(\underbrace{\int_{Q_T} \rho^{-2}(s) |\partial_{tt} w - \Delta w|^2 \, dx \, dt}_{\text{source}} + s \int_{\Sigma_T} \eta^2(t) \Psi(x) \rho^{-2}(s) |\partial_\nu w|^2 \, dx \, dt \right), & \underbrace{\text{observation}}_{\text{observation}} \end{aligned}$$

for any $w \in \mathcal{H} := \{w \in \mathcal{C}^0([0, T]; H_0^1(\Omega)) \cap \mathcal{C}^1([0, T]; L^2(\Omega)); \partial_{tt} w - \Delta w \in L^2(Q_T)\}$.

7. L. Baudouin, M. de Buhan, S. Ervedoza, *Global Carleman Estimates for Waves and Applications*, Communications in Partial Differential Equation, 38(5), 823-859.

$$\Lambda_s : \mathcal{C}(s) \rightarrow \mathcal{C}(s)$$

$$z \mapsto y$$

where (y, v) is the optimal state-control pair of

$$\begin{cases} \partial_{tt}y - \Delta y = -\textcolor{blue}{f}(z), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega, \end{cases} \quad (\star\star)$$

for the cost

$$\mathcal{J}_s(y, v) = \frac{s}{2} \int_{Q_T} \rho^2(s) |y|^2 \, dx \, dt + \frac{1}{2} \int_{\Sigma_T} \eta^{-2}(t) \Psi^{-1}(x) \rho^2(s) |v|^2 \, dx \, dt.$$

$$\Lambda_s : \mathcal{C}(s) \rightarrow \mathcal{C}(s)$$

$$z \mapsto y$$

where (y, v) is the optimal state-control pair of

$$\begin{cases} \partial_{tt}y - \Delta y = -\mathbf{f}(z), & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega, \end{cases} \quad (\star\star)$$

for the cost

$$\mathcal{J}_s(y, v) = \frac{s}{2} \int_{Q_T} \rho^2(s) |y|^2 \, dx \, dt + \frac{1}{2} \int_{\Sigma_T} \eta^{-2}(t) \Psi^{-1}(x) \rho^2(s) |v|^2 \, dx \, dt.$$

A priori estimate on (y, v)

For any $r \in [0, 1] \setminus \{1/2\}$. The following estimate holds

$$\begin{aligned} & \|\rho(s)y\|_{L^2(Q_T)} + s^{-2} \|\rho(s)y\|_{L^\infty(0, T; L^2(\Omega))} + s^{-1/2} \left\| \rho(s) \eta^{-1} \Psi^{-1/2} v \right\|_{L^2(\Sigma_T)} \\ & \leq C_r \left(s^{r-3/2} \|\rho(s)\mathbf{f}(z)\|_{L^2(0, T; H^{-r}(\Omega))} + s^{-1/2} \|\rho(0)(u_0, u_1)\|_{L^2(\Omega) \times H^{-1}(\Omega)} \right). \end{aligned} \quad (E_1)$$

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

Recall : *A priori* estimate on y

For any $r \in [0, 1] \setminus \{1/2\}$. The following estimate holds

$$\begin{aligned}\|\rho(s)y\|_{L^2(Q_T)} + s^{-2} \|\rho(s)y\|_{L^\infty(0, T; L^2(\Omega))} \\ \leq C_r \left(s^{r-3/2} \|\rho(s)f(z)\|_{L^2(0, T; H^{-r}(\Omega))} + s^{-1/2} \|\rho(0)(u_0, u_1)\|_{L^2(\Omega) \times H^{-1}(\Omega)} \right).\end{aligned}\tag{E_1}$$

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

A priori estimate on on $y := \Lambda_s(z), z \in \mathcal{C}(s)$

For any $p \in (1, 3/2)$. The following estimate holds

$$\begin{aligned}\|\rho(s)y\|_{L^2(Q_T)} + s^{-2} \|\rho(s)y\|_{L^\infty(0, T; L^2(\Omega))} \\ \leq sC \left(s^{-p} \alpha_2 + \beta c^p + e^{-s} \left(s^{-p-1} \alpha_1 T^{1/2} |\Omega|^{1/2} + s^{-1/2} \left(\|u_0\|_{L^2(\Omega)} + \|u_1\|_{H^{-1}(\Omega)} \right) \right) \right).\end{aligned}$$

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

A priori estimate on $y := \Lambda_s(z), z \in \mathcal{C}(s)$

For any $p \in (1, 3/2)$. The following estimate holds

$$\begin{aligned}\|\rho(s)y\|_{L^2(Q_T)} + s^{-2} \|\rho(s)y\|_{L^\infty(0, T; L^2(\Omega))} \\ \leq Cs \left(s^{-p} \alpha_2 + \underbrace{\beta c^p}_{\Rightarrow \beta < \frac{1}{Cc^p}} + e^{-s} \left(s^{-p-1} \alpha_1 T^{1/2} |\Omega|^{1/2} + s^{-1/2} \left(\|u_0\|_{L^2(\Omega)} + \|u_1\|_{H^{-1}(\Omega)} \right) \right) \right).\end{aligned}$$

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

→ For β small enough, there exists s large enough such that $\mathcal{C}(s)$ is stable under the map Λ_s .

Goal : Prove the existence of s and of a fixed-point for

$$\begin{aligned}\Lambda_s : \mathcal{C}(s) &\rightarrow \mathcal{C}(s) \\ z &\mapsto y.\end{aligned}$$

→ Employ the [Schauder theorem](#)

- Define $\mathcal{C}(s)$ to have a **stability property** (i.e. $z \in \mathcal{C}(s) \Rightarrow \Lambda_s(z) = y \in \mathcal{C}(s)$) :

$$\mathcal{C}(s) := \left\{ y \in L^\infty(0, T; L^2(\Omega)); \|\rho y\|_{L^2(Q_T)} \leq s, \|\rho y\|_{L^\infty(0, T; L^2(\Omega))} \leq s^3 \right\}$$

- **Continuity.** The map $\Lambda_s : \mathcal{C}(s) \rightarrow \mathcal{C}(s)$ is continuous for the $L^\infty(0, T; L^2(\Omega))$ -norm.
- **Relative compactness.** $\Lambda_s(\mathcal{C}(s))$ is a relatively compact subset of $\mathcal{C}(s)$ relative to the $L^\infty(0, T; L^2(\Omega))$ -norm.

Relative compactness : Any sequence $(y^n)_n$ of $\Lambda_s(\mathcal{C}(s))$ admits a subsequence $(y^{n_k})_k$ that converges in $\mathcal{C}(s)$ for the $L^\infty(0, T; L^2(\Omega))$ -norm.

Relative compactness : Any sequence $(y^n)_n$ of $\Lambda_s(\mathcal{C}(s))$ admits a subsequence $(y^{n_k})_k$ that converges in $\mathcal{C}(s)$ for the $L^\infty(0, T; L^2(\Omega))$ -norm.

$$y^n \in \mathcal{C}^0([0, T]; L^2(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-1}(\Omega))$$

Relative compactness : Any sequence $(y^n)_n$ of $\Lambda_s(\mathcal{C}(s))$ admits a subsequence $(y^{n_k})_k$ that converges in $\mathcal{C}(s)$ for the $L^\infty(0, T; L^2(\Omega))$ -norm.

$$y^n \in \mathcal{C}^0([0, T]; L^2(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-1}(\Omega))$$

Key point - Additional regularity property on the optimal controlled pair.

Assume that $(u_0, u_1, f(z)) \in H_0^{1-r}(\Omega) \times H^{-r}(\Omega) \times L^2(0, T; H^{-r}(\Omega))$, $r \in (0, 1) \neq \{\frac{1}{2}\}$. The controlled pair (y, v) , which minimize \mathcal{J}_s , belongs to the space

$$(\mathcal{C}^0([0, T]; H^{1-r}(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-r}(\Omega))) \times H^{1-r}(0, T; L^2(\partial\Omega)),$$

and satisfies

$$\begin{aligned} & \|(\rho y)_t\|_{L^\infty(0, T; H^{-r}(\Omega))} + \|\rho y\|_{L^\infty(0, T; H^{1-r}(\Omega))} \\ & \leq C \left(\|\rho f(z)\|_{L^2(0, T; H^{-r}(\Omega))} + \|\rho(0)u_0\|_{H^{1-r}(\Omega)} + \|\rho(0)u_1\|_{H^{-r}(\Omega)} \right). \end{aligned}$$

Relative compactness : Any sequence $(y^n)_n$ of $\Lambda_s(\mathcal{C}(s))$ admits a subsequence $(y^{n_k})_k$ that converges in $\mathcal{C}(s)$ for the $L^\infty(0, T; L^2(\Omega))$ -norm.

$$y^n \in \mathcal{C}^0([0, T]; L^2(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-1}(\Omega))$$

Key point - Additional regularity property on the optimal controlled pair.

Assume that $(u_0, u_1, f(z)) \in H_0^{1-r}(\Omega) \times H^{-r}(\Omega) \times L^2(0, T; H^{-r}(\Omega))$, $r \in (0, 1) \neq \{\frac{1}{2}\}$. The controlled pair (y, v) , which minimize \mathcal{J}_s , belongs to the space

$$\left(\mathcal{C}^0([0, T]; H^{1-r}(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-r}(\Omega)) \right) \times H^{1-r}(0, T; L^2(\partial\Omega)),$$

and satisfies

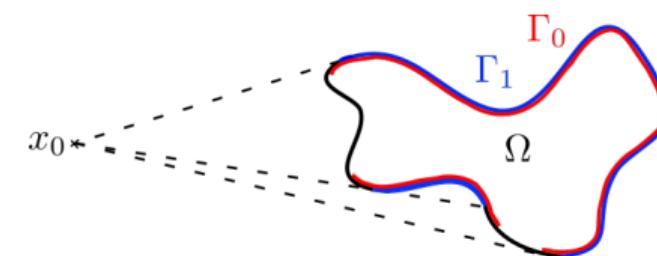
$$\begin{aligned} & \|(\rho y)_t\|_{L^\infty(0, T; H^{-r}(\Omega))} + \|\rho y\|_{L^\infty(0, T; H^{1-r}(\Omega))} \\ & \leq C \left(\|\rho f(z)\|_{L^2(0, T; H^{-r}(\Omega))} + \|\rho(0)u_0\|_{H^{1-r}(\Omega)} + \|\rho(0)u_1\|_{H^{-r}(\Omega)} \right). \end{aligned}$$

→ work with $(y^n - y^0)_n$ which is solution of linear wave equation associated with the data $(0, 0, f(z_n) - f(z_0))$.

Recall of the result

For any $x_0 \in \mathbb{R}^d \setminus \overline{\Omega}$, let

- $\Gamma_1 := \{x \in \partial\Omega : (x - x_0) \cdot \nu(x) > 0\}$
- $\Gamma_0 \subset \partial\Omega$ such that $\text{dist}(\Gamma_1, \partial\Omega \setminus \Gamma_0) > 0$
- $T > 2 \max_{x \in \overline{\Omega}} |x - x_0|$.



Assume that $f \in \mathcal{C}^0(\mathbb{R})$ satisfies

$$\exists \beta > 0, \quad \limsup_{|r| \rightarrow \infty} \frac{|f(r)|}{|r| \ln^p |r|} \leq \beta, \quad 0 \leq p < 3/2.$$

Theorem [CLM24]⁸

If β is small enough then, the system (\star) is exactly controllable in $L^2(\Omega) \times H^{-1}(\Omega)$.

8. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4), 1953-1976 (2024).

Table of contents

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = 0, & Q_T, \\ y = v|_{\Gamma_0}, & \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), & \Omega. \end{cases} \quad (*)$$

1 Literature

2 First main result (existence of a control)

3 Idea of the proof

- Linearize the system by introducing an operator Λ_s
- Outline of the proof
- Carleman inequality
- Estimate of the linear optimal state-control pair
- Existence of a fixed-point for Λ_s

4 Second main result (construction of a control)

Assume that $f \in \mathcal{C}^1(\mathbb{R})$ and that there exists $0 \leq p < 3/2$ such that f satisfies

$$\exists \alpha, \beta > 0, \quad |f'(r)| \leq \alpha + \beta \ln^p(r), \quad \forall r \in \mathbb{R}.$$

Proposition [CLM24]⁹

For any s large enough and β small enough (s.t. $\beta < \frac{1}{Cc^p}$). Then,

$$\|\rho(s)(\Lambda_s(z_1) - \Lambda_s(z_2))\|_{L^2(Q_T)} \leq C(s^{-p}\alpha + \beta c^p) \|\rho(s)(z_1 - z_2)\|_{L^2(Q_T)}.$$

Assume that $f \in \mathcal{C}^1(\mathbb{R})$ and that there exists $0 \leq p < 3/2$ such that f satisfies

$$\exists \alpha, \beta > 0, \quad |f'(r)| \leq \alpha + \beta \ln^p(r), \quad \forall r \in \mathbb{R}.$$

Proposition [CLM24]⁹

For any s large enough and β small enough (s.t. $\beta < \frac{1}{Cc^p}$). Then,

$$\|\rho(s)(\Lambda_s(z_1) - \Lambda_s(z_2))\|_{L^2(Q_T)} \leq C(s^{-p}\alpha + \beta c^p) \|\rho(s)(z_1 - z_2)\|_{L^2(Q_T)}.$$

Theorem [CLM24]⁹

For any $(u_0, u_1) \in L^2(\Omega) \times H^{-1}(\Omega)$, there exists of a non trivial sequence $(y_k, v_k)_k$ that strongly converges to a state-control pair (y, v) for system (\star) . Moreover, the convergence is at least linear for the norm $\|\rho(s)\cdot\|_{L^2(Q_T)} + \|\rho(s)\cdot\|_{L^2(\Sigma_T)}$ where s is chosen sufficiently large.

9. C., Lemoine, Münch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4), 1953-1976 (2024).

Thank you for your attention !