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Framework and objective

~

Framework. Let Q C RY, d > 1, a bounded domain sufficiently smooth and

T > 0. We denote T £
QT =Q x (0, T)7 ZT = 00 x (0, T)

We consider 0

Oy — By + f(y) =0, or, 0 I,

Y = Virgs I, ()

(v(-,0),8:y(-,0)) = (w0, u1), 9,

Fi -C | o,

where v € L2(X7), T'o C OQ non-empty and f € C(R) is a non-linear function. dlgzur; ontrol zone To

2/21



Framework and objective

~

Framework. Let Q C RY, d > 1, a bounded domain sufficiently smooth and
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We consider 0

Oy — By + f(y) =0, or, 0 I,

Y = Virgs I, ()

(v(-,0),8:y(-,0)) = (w0, u1), 9,

Figure — | r

where v € L2(X7), T'o C OQ non-empty and f € C(R) is a non-linear function. dlgzur; Control zone o,

Exact controllability problem.

Given T >0, I'p C 9 and (uo, u1), (20, 21) in an appropriate space, find (if possible) a pair (y, v) solution of
(%) such that

(y('9 T)78fy('9 T)) = (20721)? (1)
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Framework and objective

~

Framework. Let Q C R, d > 1, a bounded domain sufficiently smooth and

T > 0. We denote T =
QT =Q x (0, T), ZT = 00 x (07 T)

We consider 0

Oy — Ay +f(y) =0, QT

Y =Vrg» X7, (*)

(y(vo)vaty(vo)) = (Uo,ul), Q,

Fi -C | I

where v € L2(X7), I'g C OQ non-empty and f € C(R) is a non-linear function. dlgzur; ontrol zone Lo,

Exact controllability problem.

Given T >0, I'op C 9 and (wo, u1), (20, z1) in an appropriate space, find (if possible) a pair (y, v) solution of

(%) such that
(y('7 T)78fy('7 T)) = (20721)? (1)

For (up, u1) and (zo, z1) fixed, we call state-control pair of (x) any pair (y, v) solution of (x) satisfying (1).
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First controllability result

Controllability result [Zua91, Theorem 2.1]1

Assume that f is globally lipschitz and T large enough. The system (%) is exactly controllable in
L2(Q) x HY(Q).

1. E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and Their
Applications, Collége de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser. 220, Longman, Harlow, UK,
1991,pp. 357-391.
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First controllability result

Controllability result [Zua91, Theorem 2.1]1

Assume that f is globally lipschitz and T large enough. The system (%) is exactly controllable in
L2(Q) x HY(Q).

Linearization P (0
any—Ay—Iri(z); ( )y:—f(O), QT,
y = V\I'ov ZT (2)
(y(70)78ty(70)) = (u07u1)7 Q.

Fixed point operator
A:=L*(Qr) — L*(Qr)
zZ—y

where (y, v) is a state-control pair of (2) such that v := argmin H"”é()})'
v

1. E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and Their
Applications, Collége de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser. 220, Longman, Harlow, UK,
1991,pp. 357-391.
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Literature
[e]e] 6]

Controllability result d = 1, distributed control case [Zua93, Theorem 1]2

Let T large enough. Assume that f € C1(R) such that

38 > 0, lim sup M <B.

Ir]—oo |l In? [r| =

If B is small enough then, the system (%) is exactly controllable at time T in H3(Q) x L2(R).

2. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire,
10 (1993), pp. 109-129.
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Literature
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Most general result known - distributed control case - Carleman setting

Let xo € RI\Q and £ > 0. We denote

lo :={x €0Q; (x—x0)-v(x) >0},
Oc(Fo) :={x € RY: dist(x, o) < €}.

We suppose that w = O (o) NQ and

T > max {8 max |x — xo0|2,1 4 24vd max{2(x — x0) - (x)} (2 + d)}
x€Q x€EQ

If, moreover, the function f € CI(R) satisfies

f
38 > 0, limsup ———— L]

Irl—oo |F[INP{r] =

<B, 0<p<3/2

Controllability result [FLZ19, Theorem 4.5]3

Under the above conditions, if 3 is small enough, the system (%) is exactly controllable in H3(Q) x L2(Q).

3. X. Fu, Q. Lii, X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications : A Unified
Approach, Springer Briefs in Math., Springer, Cham, 2019.
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First main result (existence of a control)
oe0

First main result (existence of a control)

For any xp € Rd\ﬁ, let
o[ :={x€0Q:(x—x0) v(x)>0}
o o C 9 such that dist(l1,02\ ) >0 -
° T>2maxx€§|xfxo\. Tow "

Assume that f € CO(R) satisfies

f
38 > 0, IimsupM<ﬁ, 0<p<3/2

|r|—o0 |r| InP ‘r| N

Theorem [CLM24] 4

If B is small enough then, the system (x) is exactly controllable in L2(Q) x H=1(Q).

4. C., Lemoine, Miinch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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F main result (existence of a control)
ooe

First main result (existence of a control)

o Extends and generalizes to any dimension [BLM23] 5devoted to the case d = 1.

o Improve [FLZ19, Theorem 4.5] ¢

[FLZ19] [CLM24]
Regularity of f CY(R) C°(R)
Regularity of (uo, u1) HA () x L2(2) L2(Q) x H1(Q)
Lower bound of T max {8;“;% Ix — x0|2, 2 max, g |X — X0|
1+ 24v/d max{2(x — x0) - v(x)} (2 + d) }
xXEQ

@ The conditions on g, T and (up, u1) are those of the linear case, which are optimal.

5. K. Bhandari, J. Lemoine, A. Miinch, Exact boundary controllability of 1d semilinear wave equations through a constructive
approach, Math. Control Signals Systems, 1 (2023).
6. X. Fu, Q. Lii, X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications : A Unified
Approach, Springer Briefs in Math., Springer, Cham, 2019.
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Idea of the proof
[ ]

Linearize the system by introducing an operator Ag

Linearization + Fixed point

Zero order linearization.
Ony — Ay = —f(2), QT,

Y = Vrg> X, (%)
(Y('vo)vat}/('vo)) = (U07 Ul)’ Q.

Fixed point operator.

As == C(s) C L®(0, T; L2(Q)) — C(s)
zZ—=Yy

where (y, v) is an optimal state-control pair of (xx) with (z,z1) = (0, 0) for the cost
Tilyv)i=s [ plyPaxder [ a2
Qr Ir

involving Carleman weight p(s; x, t) and parameter s > 0.
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Linearize the system by introducing an operator Ag

Linearization + Fixed point

Zero order linearization.
Ony — Ay = —f(2), QT,

Y = Vrg> X, (%)
(Y('vo)vat}/('vo)) = (U07 Ul)’ Q.

Fixed point operator.

As == C(s) C L®(0, T; L2(Q)) — C(s)

zZ—=Yy

where (y, v) is an optimal state-control pair of (xx) with (z,z1) = (0, 0) for the cost

Tilyv)i=s [ plyPaxder [ a2
Qr Ir

involving Carleman weight p(s; x, t) and parameter s > 0.

Goal. Prove the existence of a fixed-point for Ag for at least one s.
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Outline of the proof

o Verify assumptions for the Schauder theorem.
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Outline of the proof

o Verify assumptions for the Schauder theorem.

o A priori estimate of the linear optimal state-control pair (with respect to the initial data (up, u1), the
second member f(z) and the parameter s).
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Idea of the proof
[ ]
Outline of the proof

o Verify assumptions for the Schauder theorem.

o A priori estimate of the linear optimal state-control pair (with respect to the initial data (up, u1), the
second member f(z) and the parameter s).

o Carleman inequality (depending of s).
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Idea of the proof
[ ]

Carleman inequality

Weight function

For any p € (0,1), A > 0 and for some My > 0 large enough so that
P(x, t) = \x—x0|2—u<t—%> + My >1in Qr,

B(x, t) 1= M), e™ < p(six, t) 1= e N < e, V(x,t) € Qr, ¢ = |8l (o)

Carleman estimate [BABE2013] 7

Under the geometric condition, there exists sp > 0, A > 0 and C > 0 such that for any s > sp,

s/ p_z(s) (|8,,~w|2 + \VWF) dx dt +s3/ p_z(s) |w|2 dxdtJrs/Q p_z(s; x,0) (|8tw(x, 0)\2 + |VW(X,O)|2) dx

QT Qr

initial energy

+s3/ p2(s: x,0) |w(x,0)[2dx < C(/ p2(s) |Beew — Aw|? dxdt+s/ 72 (t)W(x)p~2(s) |8, w|? dxd
Q Q s

T

—+
~—r

source observation

for any w € H := {w € CO([0, T]; H3()) nCL([0, T]; L2(Q)); 0w — Aw € L2(QT)}.

7. L. Baudouin, M. de Buhan, S. Ervedoza, Global Carleman Estimates for Waves and Applications, Communications in Partial
Differential Equation, 38(5), 823-859.
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Idea of the proof
[ ]

Estimate of the linear optimal state-control pair

As : C(s) = C(s)

Zry
where (y, v) is the optimal state-control pair of
Oy — Ay = —f(z), QT,
Y = Virg» X7, (x%)

(y('vo)vat}/('vo)) = (u07u1)7 Q,

for the cost 1
S _ _
T =3 [ AR axders [0 v i) dxde.
2 Jor 2Jsr
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Idea of the proof
[ ]

Estimate of the linear optimal state-control pair

As : C(s) = C(s)

Zry
where (y, v) is the optimal state-control pair of
Oy — Ay = —f(z), QT,
Y = Virg» X7, (x%)

(y(-,0), 8ey(+,0)) = (uo, uz), Q,
for the cost 1
S _ _
T =3 [ AR axders [0 v i) dxde.
Qr 2Jsr

A priori estimate on (y, v)

For any r € [0,1]\{1/2}. The following estimate holds

_2 —1/2 —1y—1/2
o) lia(ar) + 52 oW lioe(o, razcay + 572 |eleIn w2y,

(E1)
<G (Sr_3/2 lo(s)f ()l 20, 7:1—r(0)) T+ s /2 |p(0)(uo, UI)HL2(Q)><H*1(Q)) .
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag

Goal : Prove the existence of s and of a fixed-point for
As : C(s) — C(s)

zZ—y.

— Employ the Schauder theorem
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag
Goal : Prove the existence of s and of a fixed-point for

As 1 C(s) — C(s)
zry.

— Employ the Schauder theorem

o Define C(s) to have a stability property (i.e. z € C(s) = As(z) = y € C(s)) :

C(s) = {}’ €eL>(0,T; LZ(Q)); ||PY||L2(QT) <s, ||PY“Lw(o,T;L2(Q)) < 53}

Recall : A priori estimate on y
For any r € [0,1]\{1/2}. The following estimate holds

o)yl 2qry + s? lp(s)yll oo (0, 7:12())

r—3/2 —1/2 (£1)
< G (S22 Np()F (Dl izo, rin—ry + 52 10(0) (w0, un) 2y x -1y ) -
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag
Goal : Prove the existence of s and of a fixed-point for

As : C(s) — C(s)
zy.

— Employ the Schauder theorem

o Define C(s) to have a stability property (i.e. z € C(s) = As(z) = y € C(s)) :

C(s) == {y eL= (07 Lk LZ(Q))? ||PY||L2(QT) <s, ||PYHL°°(0,T;L2(Q)) < 53}

A priori estimate on on y := As(z),z € C(s)

For any p € (1,3/2). The following estimate holds

o)yl 2(qp) + s72 o)yl oo 0, 7:12())
< sC(s7Paz + BeP + e (s 2aa T2 QY2 4 5712 (Jluo | 2(q + lenll-aey) ) )-
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag

Goal : Prove the existence of s and of a fixed-point for

As : C(s) = C(s)
zZy.

— Employ the Schauder theorem

o Define C(s) to have a stability property (i.e. z € C(s) = As(z) = y € C(s)) :

C(s) = {y € L0, T;L2(Q): lloyllizigry <5 lloyllioo(o,m12(0)) < 53}

A priori estimate on on y := As(z),z € C(s)

For any p € (1,3/2). The following estimate holds

le(s)ylli2qpy + s? lo($)yll oo 0, 7:12(02))
_ —s (—p—1 1/2 |0(1/2 o —1/2
< Cs(s Paz + ﬁc/p +e~? <s P=lay TH2 QY% + 5 <||u0HL2(Q) + ||LI1HH71(Q))> >

=B<p
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag

Goal : Prove the existence of s and of a fixed-point for

As : C(s) = C(s)
zy.

— Employ the Schauder theorem

o Define C(s) to have a stability property (i.e. z € C(s) = A(z) = y € C(s)) -

C(s) == {)’ €L®(o,T; L2(Q))? ||PYHL2(QT) <s, ||PYHL0<>(0,T;L2(Q)) < 53}

— For B small enough, there exists s large enough such that C(s) is stable under the map As.
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Idea of the proof
[ Jele}

Existence of a fixed-point for Ag

Goal : Prove the existence of s and of a fixed-point for

As : C(s) = C(s)
zy.

— Employ the Schauder theorem

o Define C(s) to have a stability property (i.e. z € C(s) = A(z) = y € C(s)) -

C(s) == {)’ €L>(0,T; L2(Q)); ||PYHL2(QT) <s, ||P}’HL00(0,T;L2(Q)) < 53}
o Continuity. The map As : C(s) — C(s) is continuous for the L>(0, T; L?(2))-norm.

o Relative compactness. As(C(s)) is a relatively compact subset of C(s) relative to the
L>=(0, T; L3(R2))-norm.
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Idea of the proof
(o] lo}

Existence of a fixed-point for Ag

Relative compactness : Any sequence (y"), of As (C(s)) admits a subsequence (y™), that converges in C(s)
for the L>°(0, T; L2(2))-norm.
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Existence of a fixed-point for Ag

Relative compactness : Any sequence (y"), of As (C(s)) admits a subsequence (y™), that converges in C(s)
for the L>°(0, T; L2(2))-norm.

y"ec(o, T LA(@) nel(fo, T H ()

Key point - Additional regularity property on the optimal controlled pair.

Assume that (uo, u1, f(z)) € Ha~"(R) x H="(R) x L2(0, T; H="(R)), r € (0,1) # {%}. The controlled pair
(v, v), which minimize 75, belongs to the space

(c(lo, T HA=7(R)) N CX ([0, TI: H7(R))) x HX~7(0, T: L3(99)),
and satisfies

lGey)ell oo 0, 7:1=r(@)) + loY o0 (0, 7:H2—r(02))
<€ (IoF(2) 20, 7s1-r(@y) + 10O tllsa—r(ay + (O usll—r(qy ) -
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Idea of the proof
(o] lo}

Existence of a fixed-point for Ag

Relative compactness : Any sequence (y"), of As (C(s)) admits a subsequence (y™), that converges in C(s)
for the L>°(0, T; L2(2))-norm.

y"ec(o, T LA(@) nel(fo, T H ()

Key point - Additional regularity property on the optimal controlled pair.

Assume that (uo, u1, f(z)) € Ha~"(R) x H="(R) x L2(0, T; H="(R)), r € (0,1) # {%}. The controlled pair
(v, v), which minimize 75, belongs to the space

(c(lo, T HA=7(R)) N CX ([0, TI: H7(R))) x HX~7(0, T: L3(99)),
and satisfies

lGey)ell oo 0, 7:1=r(@)) + loY o0 (0, 7:H2—r(02))
<€ (IoF(2) 20, 7s1-r(@y) + 10O tllsa—r(ay + (O usll—r(qy ) -

— work with (y" — y°), which is solution of linear wave equation associated with the data (0,0, f(z,) — f(20)).
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Idea of the proof
(eJe] ]

Existence of a fixed-point for Ag

Recall of the result

For any xp € Rd\ﬁ, let
o[ :={x€0Q:(x—x0) v(x)>0}
o o C 9 such that dist(l1,02\ ) >0 -
° T>2maxx€§|xfxo\. Tow "

Assume that f € CO(R) satisfies

f
38 > 0, IimsupM<ﬁ, 0<p<3/2

|r|—o0 |r| InP ‘r| N

Theorem [CLM24] 8

If B is small enough then, the system (x) is exactly controllable in L2(Q) x H=1(Q).

8. C., Lemoine, Miinch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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Second main result (construction of a control)
0e0

Assume that £ € C!(R) and that there exists 0 < p < 3/2 such that f satisfies

o, B> 0, |f'(r)] <a+BInP(r), VreR.

Proposition [CLM24] °

For any s large enough and 3 small enough (s.t. 8 < %) Then,

16(s) (As(z1) = As(22))ll 207y < € (5P + BcP) llo(s)(z — 22)ll 20y -

9. C., Lemoine, Miinch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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Second main result (construction of a control)
0e0

Assume that £ € C!(R) and that there exists 0 < p < 3/2 such that f satisfies

o, B> 0, |f'(r)] <a+BInP(r), VreR.

Proposition [CLM24] °

For any s large enough and 3 small enough (s.t. 8 < %) Then,

16(s) (As(z1) = As(22))ll 207y < € (5P + BcP) llo(s)(z — 22)ll 20y -

Theorem [CLM24] °

For any (up,u1) € L2(Q) x H=1(R), there exists of a non trivial sequence (yx, vk)x that strongly converges to a
state-control pair (y, v) for system (%). Moreover, the convergence is at least linear for the norm
lo(s) 1l 2(gr) F lp(S)-ll 12(s) where s is chosen sufficiently large.

9. C., Lemoine, Miinch, On the exact boundary controllability of semilinear wave equations. SIAM J. Control and Optimization 62(4),
1953-1976 (2024).
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Second main result (construction of a control)
ooe

Thank you for your attention !
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