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Incompressible fluid in T𝑁

Navier-Stokes (N–S) system:

𝜕𝑡𝑢 − 𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 + Iω𝜉,
∇ · 𝑢 = 0,

𝑢(·, 0) = 𝑢0.

𝑢(𝑥, 𝑡) : velocity
𝑝(𝑥, 𝑡) : pressure
𝑓 (𝑥, 𝑡) : known body force
𝑢0(𝑥) : initial state
𝜈 > 0 : viscosity

𝜉 (𝑥, 𝑡) : interior control supported in ω ⊂ T𝑁
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(Global) approximate controllability

∀𝑢0, 𝑢1, 𝑇 > 0, 𝜀 > 0∃ 𝜉 : ∥𝑢(·, 𝑇) − 𝑢1∥ < 𝜀
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Finite-dimensional controls

𝜉 (𝑥, 𝑡) = 𝛼1(𝑡)𝜓1(𝑥) + · · · + 𝛼42(𝑡)𝜓42(𝑥)
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Finite-dimensional controls for fluid equations

Case ω ≠ T𝑁 :

Some literature for case ω = T𝑁 :

A. A. Agrachev and A. V. Sarychev, 2006 (CMP)
A. Shirikyan, 2006 (CMP)
A. Shirikyan, 2008 (Phys. D)
V. Nersesyan, 2015 (Nonlinearity)
V. Nersesyan, 2021 (SICON)
. . .
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Finite-dimensional controls for transport equation?

Are there choices of 𝑢★ such that

𝜕𝑡𝑣 + (𝑢★ · ∇)𝑣 = 𝑔,

is approximate controllable with control

𝑔 ∈ 𝐿2((0, 1);H0),

where

H0 ≔ span {sin(𝑥1), cos(𝑥1), sin(𝑥2), cos(𝑥2)}?
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Universally fixed divergence-free vector field

𝑢★(𝑥, 𝑡) ≔ 𝛾1(𝑡)
[
sin(𝑥2)

0

]
+ 𝛾2(𝑡)

[
cos(𝑥2)

0

]
+ 𝛾3(𝑡)

[
0

sin(𝑥1)

]
+ 𝛾4(𝑡)

[
0

cos(𝑥1)

]
,

where

𝛾1, . . . , 𝛾4 ∈ 𝑊1,2((0, 1);R)

have a special structure, first introduced by Kuksin, Nersesyan, and
Shirikyan, 2020 (GAFA).
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Lemma (R., V. Nersesyan)

For all 𝑣1 ∈ 𝐻𝑚 and 𝜀 > 0 there is 𝑔 ∈ L2((0, 1);H0)) such that the
solution

𝑣(𝑥, 𝑡) =
∫ 𝑡

0

𝑔(Φ𝑢★ (𝑥, 1, 𝑠), 𝑠) 𝑑𝑠

to
𝜕𝑡𝑣 + (𝑢★ · ∇)𝑣 = 𝑔, 𝑣(·, 0) = 0

satisfies
∥𝑣(·, 1) − 𝑣1∥𝑚 < 𝜀.

Here, Φ𝑉 is flow of vector field 𝑉 :

𝑑

𝑑𝑡
Φ𝑉 (𝑥, 𝑠, 𝑡) = 𝑉 (Φ𝑉 (𝑥, 𝑠, 𝑡), 𝑡), Φ𝑉 (𝑥, 𝑠, 𝑠) = 𝑥.
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Open ω ⊂ T2 with T2 \ ω simply-connected.

Theorem (V. Nersesyan, R., 2025 (CPAM))

The N–S in T2 is approximately controllable in any time 𝑇 > 0 with control

𝜉 (𝑥, 𝑡) = 𝛼1(𝑡)𝜗1(𝑥, 𝛼(𝑡)) + · · · + 𝛼8(𝑡)𝜗8(𝑥, 𝛼(𝑡)),

where
supp(𝜉) ⊂ ω × (0, 𝑇).
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J.-M. Coron’s return method

Ansatz:

𝑢𝛿 (·, 𝑡) = 𝛿−1𝑦(·, 𝛿−1𝑡) +𝑈 (·, 𝛿−1𝑡) + error𝛿 (·, 𝑡),
𝜉 𝛿 (·, 𝑡) = 𝛿−2𝜉 (·, 𝛿−1𝑡) + 𝛿−1𝜂(·, 𝛿−1𝑡)

𝑦 flushes information through ω and (𝑦, 𝜉) satisfy Euler system

𝜕𝑡𝑦 + (𝑦 · ∇)𝑦 + ∇𝑝 = Iω𝜉, ∇ · 𝑦 = 0, 𝑦(·, 0) = 𝑦(·, 1) = 0

𝜕𝑡𝑈 + (𝑦 · ∇)𝑈 + (𝑈 · ∇)𝑦 + ∇𝑃 = 𝜂, 𝑈 (·, 0) = 𝑢0, 𝑈 (·, 1) = 𝑢1.(
In 2D, 𝑣 ≔ ∇ ∧𝑈, satisfies

𝜕𝑡𝑣 + (𝑦 · ∇)𝑣 + (𝑈 · ∇)∇ ∧ 𝑦 = ∇ ∧ 𝜂, 𝑣(·, 0) = 𝑢0, 𝑣(·, 1) = 𝑢1

)
Approximate controllability: error𝛿 (·, 𝛿) −→ 0, as 𝛿 −→ 0.
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Approach

Return method with constant-in-space reference trajectory 𝑦.

Approximate controllability of 2D transport problem

𝜕𝑡𝑣 + (𝑦 · ∇)𝑣 = Iω𝜂, 𝑣(·, 0) = 0.

Goal: find control 𝜂 of desired structure.

Take generating 𝑢★ and determine control 𝑔 ∈ 𝐿2((0, 1);H0) for

𝜕𝑡𝑉 + (𝑢★ · ∇)𝑉 = 𝑔, 𝑉 (·, 0) = 0.

Construct 𝜂 as a rearrangement

𝑣(1) =
∫ 1

0

𝜂(Φ𝑦(𝑥, 1, 𝑠), 𝑠) d𝑠 =
∫ 1

0

𝑔(Φ𝑢★ (𝑥, 1, 𝑠), 𝑠) d𝑠 = 𝑉 (1).
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Cover T2 by overlapping squares O1, . . . ,O𝑀 , fix reference square O ⊂ ω.

O

Equal-distant partition of time interval:

0 < 𝑡0𝑐 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡1𝑐 < 𝑡2𝑎 < 𝑡2𝑏 < 𝑡2𝑐 < · · · < 𝑡𝑀𝑎 < 𝑡𝑀𝑏 < 𝑡𝑀𝑐 < 1.
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During [𝑡𝑐0 , 𝑡𝑎1 ], information from O1 is transported along 𝑦 to O.

O

O1

𝑆1
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During [𝑡𝑎1 , 𝑡𝑏1 ], the flow rests.

O
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During [𝑡𝑏1 , 𝑡𝑐1 ], information is transported along 𝑦 from O to O1.

O
−𝑆1
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During [𝑡𝑐1 , 𝑡𝑎2 ], information from O2 is transported to O.

O

O2

𝑆2
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𝜂(𝑥, 𝑡) ≔ 𝜒(𝑥)︸︷︷︸
supported

in ω

𝑀∑︁
𝑘=1

I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ]
(𝑡)

𝑡𝑘
𝑏
− 𝑡𝑘𝑎

𝑔

(
Φ𝑢★

(
Φ𝑦(𝑥, 𝑡, 0), 0, 𝑡 − 𝑡𝑘𝑎

𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑡 − 𝑡𝑘𝑎

𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)

∫ 1

0

𝜂(Φ𝑦(𝑥, 1, 𝑠), 𝑠) d𝑠 =
∫ 1

0

𝑔(Φ𝑢★ (𝑥, 1, 𝑠), 𝑠) d𝑠
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Main issue from the start: using constant-in-space 𝑦 not suitable to get
finite-dimensional controls (no mixing effect)

On the other hand: according to the return method ansatz, if 𝑦 is not
constant-in-space one would need to obtain desired controls for

𝜕𝑡𝑉 + (𝑦 · ∇)𝑉+(∇⊥(−Δ)−1𝑉 · ∇)∇ ∧ 𝑦 = Iω𝑔,

instead for
𝜕𝑡𝑉 + (𝑦 · ∇)𝑉 = Iω𝑔,
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Boussinesq system controlled in velocity and temperature

𝜕𝑡𝑢 − 𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝜃𝑒2 + Iω𝜉,
∇ · 𝑢 = 0,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝑢 · ∇)𝜃 = Iω𝜂.
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ω ⊂ T2 arbitrary nonempty open set. We construct universal
finite-dimensional spaces

ℱ𝓋 ⊂ 𝐶∞(T2;R2), ℱ𝓉 ⊂ 𝐶∞(T2;R)

such that the following statement holds.

Theorem (R. 2025, arXiv:2506.19764)

For any given

𝜀, 𝜈, 𝜏, 𝑇 > 0, 𝑘 ∈ N0, 𝑢0 ∈ 𝐿2
div, 𝑢1 ∈ 𝐻𝑘

div, 𝜃0 ∈ 𝐿2, 𝜃1 ∈ 𝐻𝑘

there exist controls

𝜉 ∈ 𝐶∞((0, 𝑇);ℱ𝓋), 𝜂 ∈ 𝐶∞((0, 𝑇);ℱ𝓉)

such that the solution to the Boussinesq system satisfies

∥𝑢(·, 𝑇) − 𝑢1∥𝑘 + ∥𝜃 (·, 𝑇) − 𝜃1∥𝑘 < 𝜀.
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Special case: ω contains two cuts of the torus:

If a closed square of side-length 𝐿 fits inside ω, our approach yields
completely explicit representations of ℱ𝓋 and ℱ𝓉 with

dim(ℱ𝓋) ≤ 2 + 18⌈2𝜋/𝐿⌉2 + 8⌈2𝜋/𝐿⌉4,
dim(ℱ𝓉) ≤ 2 + 8⌈2𝜋/𝐿⌉2.
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𝜒 = 1

𝜒 = 0

O1 O2

O√
𝑀+1

supp(𝜇)
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We know already that
𝜕𝑡𝑣 + (𝑢★ · ∇)𝑣 = 𝑔★

is approximately controllable with H0-valued (4-dimensional) control

𝑔★(𝑥, 𝑡) = 𝛼1(𝑡) sin(𝑥1) + 𝛼2(𝑡) sin(𝑥2) + 𝛽1(𝑡) cos(𝑥1) + 𝛽2(𝑡) cos(𝑥2).

Idea: construct a particular “finite-dimensional” return method trajectory
𝑈 that allows controlling

𝜕𝑡𝑉 + (𝑈 · ∇)𝑉 = Iω𝐺

with control (roughly) of the form

𝐺 (𝑥, 𝑡) = 𝜇(𝑥)
𝑀∑︁
𝑖=1

I[𝑡𝑖𝑎 ,𝑡𝑖𝑏 ]
(𝑡)𝑔★(𝑥 − 𝑆𝑖, 𝑡 − 𝑡𝑖𝑎).
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ω ⊂ T2 arbitrarily fixed nonempty open set.

Lemma

There exists a 𝐷ω-dimensional vector space ℋω ⊂ 𝐶∞(T2;R2) and a
vector field 𝑦 = 𝑦ω ∈ 𝐶∞

0 ((0, 1);ℋω) with the properties

∀ℎ ∈ ℋω, ∀𝑥 ∈ T2 : div(ℎ) (𝑥) = 0.

∀ℎ ∈ ℋω, ∃𝜑ℎ ∈ 𝐶∞(T2;R), ∀𝑥 ∈ T2 \ ω : ℎ(𝑥) = ∇𝜑ℎ (𝑥).
Φ𝑦(Neighborhood(O𝑖), 0, [𝑡𝑖𝑎, 𝑡𝑖𝑏]) = Neighborhood(O𝑖) + 𝑆𝑖.

We take

𝑈 (𝑥, 𝑡) ≔ 𝑦(𝑥, 𝑡) +
𝑀∑︁
𝑖=1

I[𝑡𝑖𝑎 ,𝑡𝑖𝑏 ]
(𝑡)∇⊥ [𝜒(𝑥)𝜙★(𝑥 − 𝑆𝑖, 𝑡 − 𝑡𝑖𝑎)],

where 𝜙★ is stream function of 𝑢★.
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𝑢★ on [0, 𝑇★] 𝑔★ on [0, 𝑇★]

A B C

D E F

G H I

1 2 3

4 5 6

7 8 9

𝑈 on [0, 𝑡1𝑎] 𝐺 on [0, 𝑡1𝑎]

− − −

− − −

− − −

𝑈 on [𝑡1𝑎, 𝑡1𝑏] 𝐺 on [𝑡1𝑎, 𝑡1𝑏]

− − −

− A −

− − −

− − −

− 1 −

− − −

𝑈 on [𝑡1
𝑏
, 𝑡2𝑎] 𝐺 on [𝑡1

𝑏
, 𝑡2𝑎]

− − −

− − −

− − −

𝑈 on [𝑡2𝑎, 𝑡2𝑏] 𝐺 on [𝑡2𝑎, 𝑡2𝑏]

− − −

− B −

− − −

− − −

− 2 −

− − −

Figure: ...
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Theorem (R., 2025, arXiv:2506.19764)

There are finite-dimensional spaces

ℱ𝓋 ⊂ 𝐶∞(T2;R2), ℱ𝓉 ⊂ 𝐶∞(T2;R)

such that for any given data

𝜈, 𝜏, 𝜀, 𝑇 > 0, 𝑚 ∈ N, 𝑢0 ∈ 𝐿2
div, 𝜃0 ∈ 𝐿2, 𝜃1 ∈ 𝐻𝑚,

there exists 𝛿0 > 0 so that for each 𝛿 ∈ (0, 𝛿0) there are controls

𝜉 ∈ 𝐶∞((0, 𝛿);ℱ𝓋), 𝜂 ∈ 𝐶∞((0, 𝛿);ℱ𝓉)

for which the associated solution to the Boussinesq system satisfies

∥𝑢(·, 𝛿) − 𝑢0∥𝑚 + ∥𝜃 (·, 𝛿) − 𝜃1∥𝑚 < 𝜀.
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Vorticity-temperature formulation:

𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝑢 · ∇) 𝑤 = 𝜕1𝜃,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝑢 · ∇) 𝜃 = 0.

One can prove the following scaling limits:

If (𝑤, 𝜃) (·, 0) = (𝑤0, 𝜃0 − 𝛿−1𝜉), then

𝑤(·, 𝛿) −→ 𝑤0 − 𝜕1𝜉

as 𝛿 −→ 0.

If (𝑤, 𝜃) (·, 0) = (𝑤0 + 𝛿−1/2𝜉, 𝜃0), then

𝑤(·, 𝛿) − 𝛿−1/2𝜉 −→ 𝑤0 − (∇⊥(−Δ)−1𝜉 · ∇)𝜉

as 𝛿 −→ 0.
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Advertisements
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V. Nersesyan, R., 2024 & R., 2024

Boussinesq system in T2 is approximately controllable using only a
temperature control supported in a strip.

ω

𝑒2

𝜕𝑡𝑢 − Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝜃𝑒2,

∇ · 𝑢 = 0,

𝜕𝑡𝜃 − Δ𝜃 + (𝑢 · ∇)𝜃 = Iω𝜉.
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Enhanced relaxation

Zero average solutions to advection-diffusion equation

𝜕𝑡𝜙 − Δ𝜙 + (𝑣 · ∇)𝜙 = 0,

with divergence-free 𝑣 may decay faster in 𝐿2 than solutions to diffusion
equation

𝜕𝑡𝜙 − Δ𝜙 = 0.

Characterizations of good divergence-free 𝑣 are available: e.g.,

P. Constantin et al., 2008 (Ann. Math.)
A. Kiselev et al., 2008 (Indiana Univ. Math. J.)

Question: Can one take 𝑣 as a solution to a (controlled) fluid equation?
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Incompressible Euler system with degenerate (four-dimensional) control:

𝜕𝑡𝑣 + (𝑣 · ∇)𝑣 + ∇𝑝 =

𝛾1(𝑡)
[
sin(𝑥2)

0

]
+ 𝛾2(𝑡)

[
cos(𝑥2)

0

]
+ 𝛾3(𝑡)

[
0

sin(𝑥1)

]
+ 𝛾4(𝑡)

[
0

cos(𝑥1)

]
Passive scalar advection-diffusion equation:

𝜕𝑡𝜙 − Δ𝜙 + (𝑣 · ∇)𝜙 = 0,

𝜙(·, 0) = 𝜙0.

Theorem (K. Koike, V. Nersesyan, R., M. Tucsnak; arXiv:2506.22233)

For every 𝜏, 𝛿 > 0, there exist 𝛾1, . . . , 𝛾4 ∈ 𝐿2( [0, 𝜏];R) such that

∥𝜙(𝜏, ·)∥𝐿2 (T2 ) < 𝛿

for every 𝜙0 ∈ 𝐿2(T2) with ∥𝜙∥𝐿2 (T2 ) ⩽ 1 and
∫
T2

𝜙(𝑥) 𝑑𝑥 = 0.
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Thank you!
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