

Incompressible fluids driven by degenerate forces

Manuel Rissel

NYU Shanghai

Control of PDEs and related topics

Incompressible fluid in \mathbb{T}^N

Navier-Stokes (N-S) system:

$$\begin{aligned}\partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla p &= f + \mathbb{I}_{\omega} \xi, \\ \nabla \cdot u &= 0, \\ u(\cdot, 0) &= u_0.\end{aligned}$$

$u(x, t)$: velocity

$p(x, t)$: pressure

$f(x, t)$: known body force

$u_0(x)$: initial state

$\nu > 0$: viscosity

$\xi(x, t)$: interior control supported in $\omega \subset \mathbb{T}^N$

(Global) approximate controllability

$$\forall u_0, u_1, T > 0, \varepsilon > 0 \exists \xi: \|u(\cdot, T) - u_1\| < \varepsilon$$

Finite-dimensional controls

$$\xi(x, t) = \alpha_1(t)\psi_1(x) + \cdots + \alpha_{42}(t)\psi_{42}(x)$$

Finite-dimensional controls for fluid equations

Case $\omega \neq \mathbb{T}^N$:

[Home](#) > [Geometric Control Theory and Sub-Riemannian Geometry](#) > Chapter

Some open problems

Chapter

pp 1–13 | [Cite this chapter](#)

Andrei A. Agrachev

Abstract We discuss some challenging open problems in the geometric control theory and sub-Riemannian geometry.

Springer INdAM Series 5
Andrei Agrachev
Ricardo Almeida
Jean-Paul Gauthier
Riddell Sarychev
Maria Silvia Spartini

Geometric
Control Theory and
Sub-Riemannian
Geometry

Some literature for case $\omega = \mathbb{T}^N$:

- A. A. Agrachev and A. V. Sarychev, 2006 (CMP)
- A. Shirikyan, 2006 (CMP)
- A. Shirikyan, 2008 (Phys. D)
- V. Nersesyan, 2015 (Nonlinearity)
- V. Nersesyan, 2021 (SICON)
- ...

Finite-dimensional controls for transport equation?

Are there choices of u^\star such that

$$\partial_t v + (u^\star \cdot \nabla)v = g,$$

is approximate controllable with control

$$g \in L^2((0, 1); \mathcal{H}_0),$$

where

$$\mathcal{H}_0 := \text{span} \{ \sin(x_1), \cos(x_1), \sin(x_2), \cos(x_2) \}?$$

Universally fixed divergence-free vector field

$$u^\star(x, t) := \gamma_1(t) \begin{bmatrix} \sin(x_2) \\ 0 \end{bmatrix} + \gamma_2(t) \begin{bmatrix} \cos(x_2) \\ 0 \end{bmatrix} + \gamma_3(t) \begin{bmatrix} 0 \\ \sin(x_1) \end{bmatrix} + \gamma_4(t) \begin{bmatrix} 0 \\ \cos(x_1) \end{bmatrix},$$

where

$$\gamma_1, \dots, \gamma_4 \in W^{1,2}((0, 1); \mathbb{R})$$

have a special structure, first introduced by Kuksin, Nersesyan, and Shirikyan, 2020 (GAFA).

Lemma (R., V. Nersesyan)

For all $v_1 \in H^m$ and $\varepsilon > 0$ **there is** $g \in L^2((0, 1); \mathcal{H}_0)$ **such that** the solution

$$v(x, t) = \int_0^t g(\Phi^{u^\star}(x, 1, s), s) ds$$

to

$$\partial_t v + (u^\star \cdot \nabla) v = g, \quad v(\cdot, 0) = 0$$

satisfies

$$\|v(\cdot, 1) - v_1\|_m < \varepsilon.$$

Here, Φ^V is flow of vector field V :

$$\frac{d}{dt} \Phi^V(x, s, t) = V(\Phi^V(x, s, t), t), \quad \Phi^V(x, s, s) = x.$$

Open $\omega \subset \mathbb{T}^2$ with $\mathbb{T}^2 \setminus \omega$ simply-connected.

Theorem (V. Nersesyan, R., 2025 (CPAM))

The N-S in \mathbb{T}^2 is approximately controllable in any time $T > 0$ with control

$$\xi(x, t) = \alpha_1(t)\vartheta_1(x, \alpha(t)) + \cdots + \alpha_8(t)\vartheta_8(x, \alpha(t)),$$

where

$$\text{supp}(\xi) \subset \omega \times (0, T).$$

J.-M. Coron's return method

Ansatz:

$$\begin{aligned}u^\delta(\cdot, t) &= \delta^{-1}\bar{y}(\cdot, \delta^{-1}t) + U(\cdot, \delta^{-1}t) + \text{error}^\delta(\cdot, t), \\ \xi^\delta(\cdot, t) &= \delta^{-2}\bar{\xi}(\cdot, \delta^{-1}t) + \delta^{-1}\eta(\cdot, \delta^{-1}t)\end{aligned}$$

- \bar{y} flushes information through ω and $(\bar{y}, \bar{\xi})$ satisfy Euler system

$$\partial_t \bar{y} + (\bar{y} \cdot \nabla) \bar{y} + \nabla \bar{p} = \mathbb{L}_\omega \bar{\xi}, \quad \nabla \cdot \bar{y} = 0, \quad \bar{y}(\cdot, 0) = \bar{y}(\cdot, 1) = 0$$

- $\partial_t U + (\bar{y} \cdot \nabla) U + (U \cdot \nabla) \bar{y} + \nabla P = \eta, \quad U(\cdot, 0) = u_0, \quad U(\cdot, 1) = u_1.$

In 2D, $v := \nabla \wedge U$, satisfies

$$\partial_t v + (\bar{y} \cdot \nabla) v + (U \cdot \nabla) \nabla \wedge \bar{y} = \nabla \wedge \eta, \quad v(\cdot, 0) = u_0, \quad v(\cdot, 1) = u_1$$

- Approximate controllability: $\text{error}^\delta(\cdot, \delta) \rightarrow 0$, as $\delta \rightarrow 0$.

Approach

- Return method with constant-in-space reference trajectory \bar{y} .
- Approximate controllability of 2D transport problem

$$\partial_t v + (\bar{y} \cdot \nabla) v = \mathbb{I}_\omega \eta, \quad v(\cdot, 0) = 0.$$

Goal: find control η of desired structure.

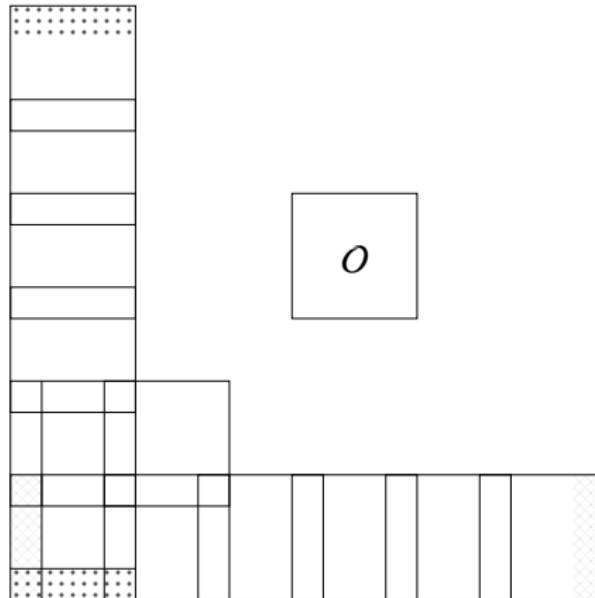
- Take generating u^\star and determine control $g \in L^2((0, 1); \mathcal{H}_0)$ for

$$\partial_t V + (u^\star \cdot \nabla) V = g, \quad V(\cdot, 0) = 0.$$

- Construct η as a rearrangement

$$v(1) = \int_0^1 \eta(\Phi^{\bar{y}}(x, 1, s), s) \, ds = \int_0^1 g(\Phi^{u^\star}(x, 1, s), s) \, ds = V(1).$$

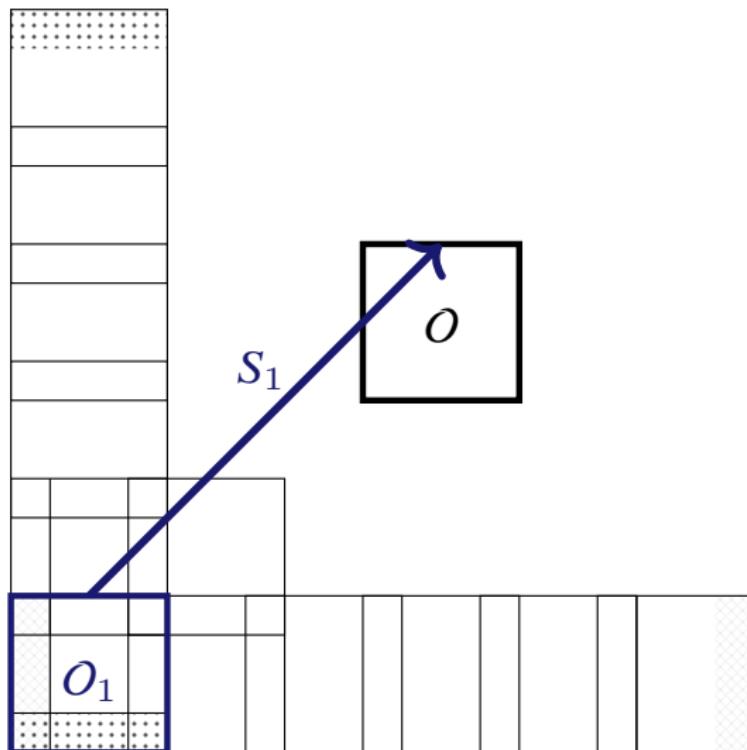
Cover \mathbb{T}^2 by overlapping squares O_1, \dots, O_M , fix reference square $O \subset \omega$.



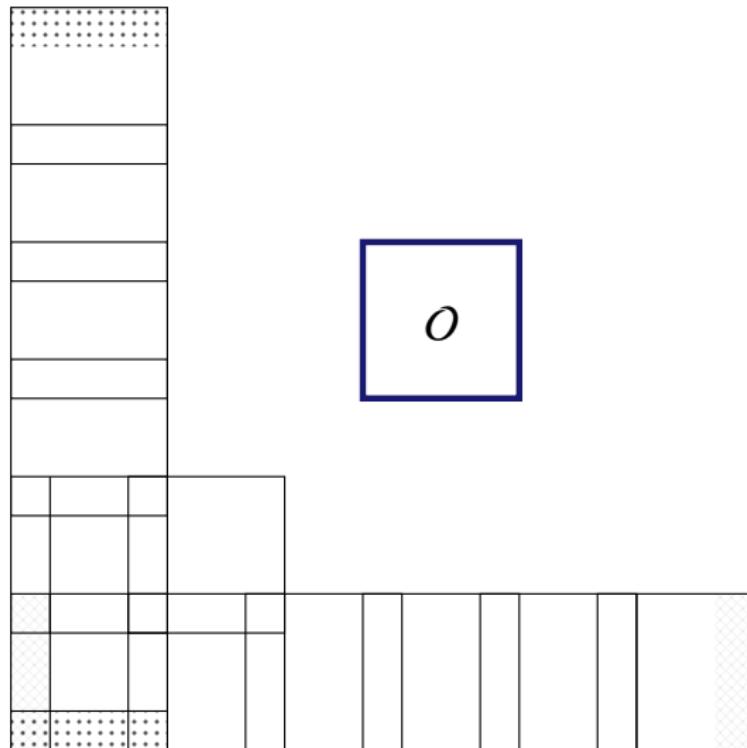
Equal-distant partition of time interval:

$$0 < t_c^0 < t_a^1 < t_b^1 < t_c^1 < t_a^2 < t_b^2 < t_c^2 < \dots < t_a^M < t_b^M < t_c^M < 1.$$

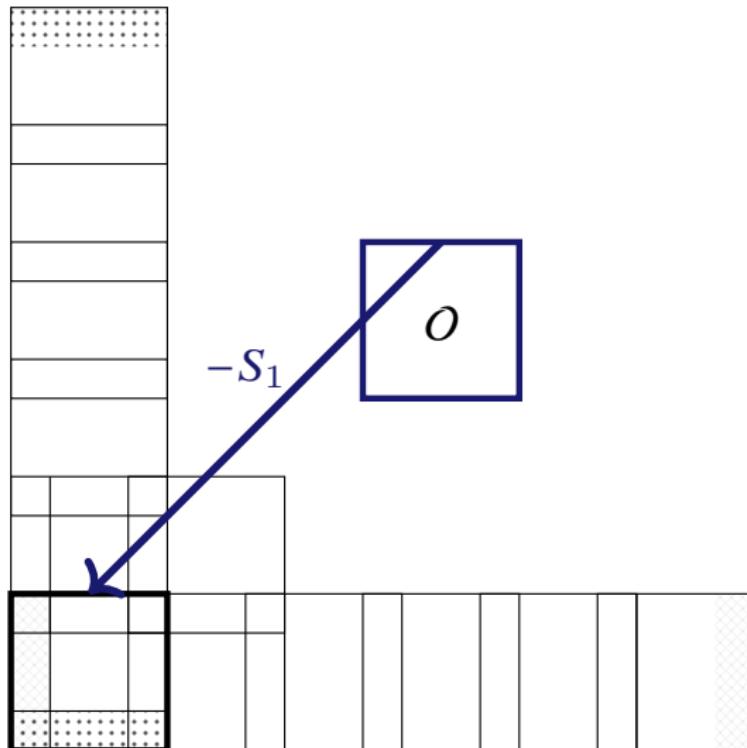
During $[t_0^c, t_1^a]$, information from O_1 is transported along \bar{y} to O .



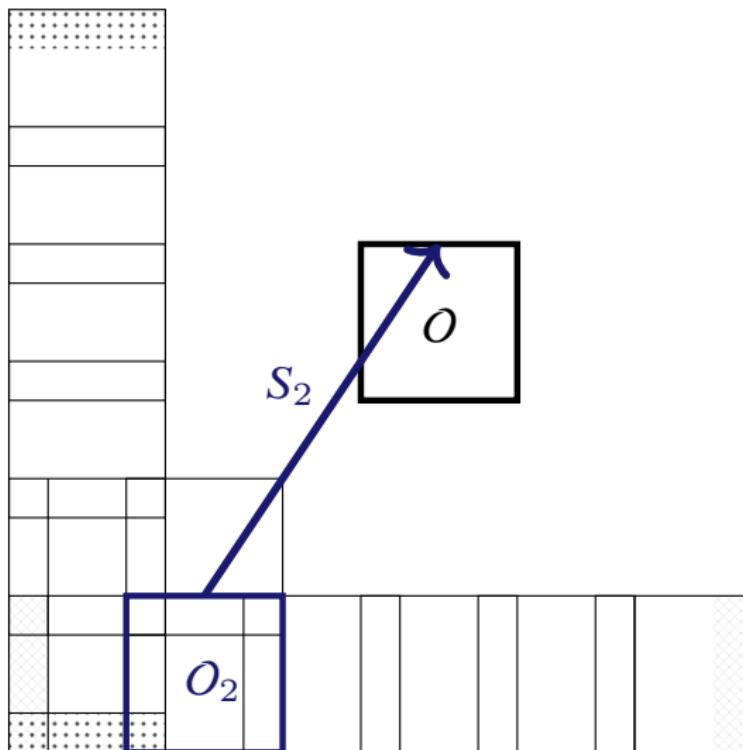
During $[t_1^a, t_1^b]$, the flow rests.



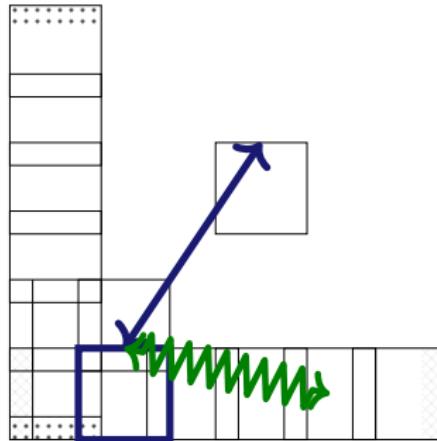
During $[t_1^b, t_1^c]$, information is transported along \bar{y} from O to O_1 .



During $[t_1^c, t_2^a]$, information from O_2 is transported to O .



$$\eta(x, t) := \underbrace{\chi(x)}_{\substack{\text{supported} \\ \text{in } \omega}} \sum_{k=1}^M \frac{\mathbb{I}_{[t_a^k, t_b^k]}(t)}{t_b^k - t_a^k} g\left(\Phi^{u^\star} \left(\Phi^{\bar{y}}(x, t, 0), 0, \frac{t - t_a^k}{t_b^k - t_a^k} \right), \frac{t - t_a^k}{t_b^k - t_a^k} \right)$$



$$\int_0^1 \eta(\Phi^{\bar{y}}(x, 1, s), s) \, ds = \int_0^1 g(\Phi^{u^\star}(x, 1, s), s) \, ds$$

Main issue from the start: using constant-in-space \bar{y} not suitable to get finite-dimensional controls (no mixing effect)

On the other hand: according to the return method ansatz, if \bar{y} is not constant-in-space one would need to obtain desired controls for

$$\partial_t V + (\bar{y} \cdot \nabla) V + (\nabla^\perp (-\Delta)^{-1} V \cdot \nabla) \nabla \wedge \bar{y} = \mathbb{I}_\omega g,$$

instead for

$$\partial_t V + (\bar{y} \cdot \nabla) V = \mathbb{I}_\omega g,$$

Boussinesq system controlled in velocity and temperature

$$\begin{aligned}\partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla p &= \theta e_2 + \mathbb{L}_\omega \xi, \\ \nabla \cdot u &= 0, \\ \partial_t \theta - \tau \Delta \theta + (u \cdot \nabla) \theta &= \mathbb{L}_\omega \eta.\end{aligned}$$

$\omega \subset \mathbb{T}^2$ **arbitrary** nonempty open set. We construct universal finite-dimensional spaces

$$\mathcal{F}_v \subset C^\infty(\mathbb{T}^2; \mathbb{R}^2), \quad \mathcal{F}_t \subset C^\infty(\mathbb{T}^2; \mathbb{R})$$

such that the following statement holds.

Theorem (R. 2025, arXiv:2506.19764)

For any given

$$\varepsilon, \nu, \tau, T > 0, \quad k \in \mathbb{N}_0, \quad u_0 \in L^2_{\text{div}}, \quad u_1 \in H^k_{\text{div}}, \quad \theta_0 \in L^2, \quad \theta_1 \in H^k$$

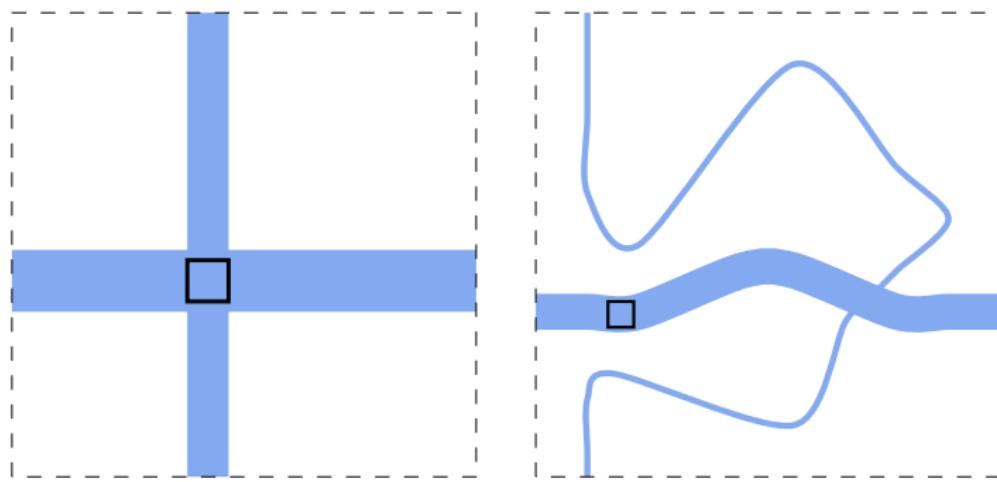
there exist controls

$$\xi \in C^\infty((0, T); \mathcal{F}_v), \quad \eta \in C^\infty((0, T); \mathcal{F}_t)$$

such that the solution to the Boussinesq system satisfies

$$\|u(\cdot, T) - u_1\|_k + \|\theta(\cdot, T) - \theta_1\|_k < \varepsilon.$$

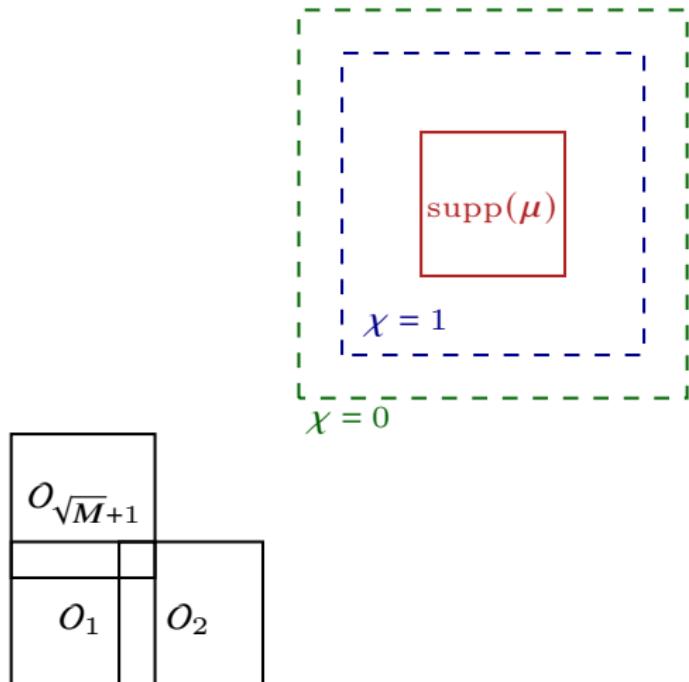
Special case: ω contains two cuts of the torus:



If a closed square of side-length L fits inside ω , our approach yields completely explicit representations of \mathcal{F}_v and \mathcal{F}_t with

$$\dim(\mathcal{F}_v) \leq 2 + 18\lceil 2\pi/L \rceil^2 + 8\lceil 2\pi/L \rceil^4,$$

$$\dim(\mathcal{F}_t) \leq 2 + 8\lceil 2\pi/L \rceil^2.$$



We know already that

$$\partial_t v + (u^\star \cdot \nabla) v = g^\star$$

is approximately controllable with \mathcal{H}_0 -valued (4-dimensional) control

$$g^\star(x, t) = \alpha_1(t) \sin(x_1) + \alpha_2(t) \sin(x_2) + \beta_1(t) \cos(x_1) + \beta_2(t) \cos(x_2).$$

Idea: construct a particular “finite-dimensional” return method trajectory \overline{U} that allows controlling

$$\partial_t V + (\overline{U} \cdot \nabla) V = \mathbb{I}_\omega G$$

with control (roughly) of the form

$$G(x, t) = \mu(x) \sum_{i=1}^M \mathbb{I}_{[t_a^i, t_b^i]}(t) g^\star(x - S_i, t - t_a^i).$$

$\omega \subset \mathbb{T}^2$ arbitrarily fixed nonempty open set.

Lemma

There exists a D_ω -dimensional vector space $\mathcal{H}_\omega \subset C^\infty(\mathbb{T}^2; \mathbb{R}^2)$ and a vector field $\bar{y} = \bar{y}_\omega \in C_0^\infty((0, 1); \mathcal{H}_\omega)$ with the properties

- $\forall h \in \mathcal{H}_\omega, \forall x \in \mathbb{T}^2: \operatorname{div}(h)(x) = 0$.
- $\forall h \in \mathcal{H}_\omega, \exists \varphi_h \in C^\infty(\mathbb{T}^2; \mathbb{R}), \forall x \in \mathbb{T}^2 \setminus \omega: h(x) = \nabla \varphi_h(x)$.
- $\Phi^{\bar{y}}(\operatorname{Neighborhood}(O_i), 0, [t_a^i, t_b^i]) = \operatorname{Neighborhood}(O_i) + S_i$.

We take

$$\bar{U}(x, t) := \bar{y}(x, t) + \sum_{i=1}^M \mathbb{I}_{[t_a^i, t_b^i]}(t) \nabla^\perp [\chi(x) \phi^\star(x - S_i, t - t_a^i)],$$

where ϕ^\star is stream function of u^\star .

u^* on $[0, T^*]$

G	H	I
D	E	F
A	B	C

g^* on $[0, T^*]$

7	8	9
4	5	6
1	2	3

\bar{U} on $[0, t_a^1]$

G on $[0, t_a^1]$

-	-	-
-	-	-
-	-	-

\bar{U} on $[t_a^1, t_b^1]$

-	-	-
-	A	-
-	-	-

G on $[t_a^1, t_b^1]$

-	-	-
-	1	-
-	-	-

\bar{U} on $[t_b^1, t_a^2]$

G on $[t_b^1, t_a^2]$

-	-	-
-	-	-
-	-	-

\bar{U} on $[t_a^2, t_b^2]$

-	-	-
-	B	-
-	-	-

G on $[t_a^2, t_b^2]$

-	-	-
-	2	-
-	-	-

Theorem (R., 2025, arXiv:2506.19764)

There are finite-dimensional spaces

$$\mathcal{F}_v \subset C^\infty(\mathbb{T}^2; \mathbb{R}^2), \quad \mathcal{F}_t \subset C^\infty(\mathbb{T}^2; \mathbb{R})$$

such that for any given data

$$\nu, \tau, \varepsilon, T > 0, \quad m \in \mathbb{N}, \quad u_0 \in L^2_{\text{div}}, \quad \theta_0 \in L^2, \quad \theta_1 \in H^m,$$

there exists $\delta_0 > 0$ so that for each $\delta \in (0, \delta_0)$ there are controls

$$\xi \in C^\infty((0, \delta); \mathcal{F}_v), \quad \eta \in C^\infty((0, \delta); \mathcal{F}_t)$$

for which the associated solution to the Boussinesq system satisfies

$$\|u(\cdot, \delta) - u_0\|_m + \|\theta(\cdot, \delta) - \theta_1\|_m < \varepsilon.$$

Vorticity-temperature formulation:

$$\begin{aligned}\partial_t w - \nu \Delta w + (u \cdot \nabla) w &= \partial_1 \theta, \\ \partial_t \theta - \tau \Delta \theta + (u \cdot \nabla) \theta &= 0.\end{aligned}$$

One can prove the following scaling limits:

- If $(w, \theta)(\cdot, 0) = (w_0, \theta_0 - \delta^{-1}\xi)$, then

$$w(\cdot, \delta) \longrightarrow w_0 - \partial_1 \xi$$

as $\delta \longrightarrow 0$.

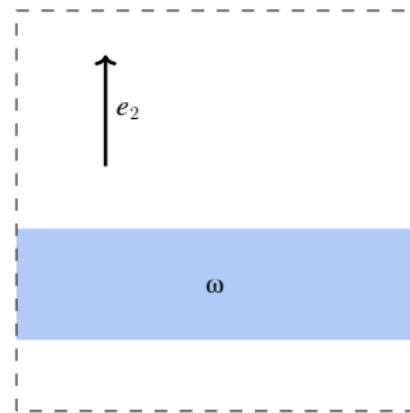
- If $(w, \theta)(\cdot, 0) = (w_0 + \delta^{-1/2}\xi, \theta_0)$, then

$$w(\cdot, \delta) - \delta^{-1/2}\xi \longrightarrow w_0 - (\nabla^\perp(-\Delta)^{-1}\xi \cdot \nabla)\xi$$

as $\delta \longrightarrow 0$.

Advertisements

Boussinesq system in \mathbb{T}^2 is approximately controllable using only a temperature control supported in a strip.



$$\partial_t u - \Delta u + (u \cdot \nabla) u + \nabla p = \theta e_2,$$

$$\nabla \cdot u = 0,$$

$$\partial_t \theta - \Delta \theta + (u \cdot \nabla) \theta = \mathbb{L}_\omega \xi.$$

Enhanced relaxation

Zero average solutions to advection-diffusion equation

$$\partial_t \phi - \Delta \phi + (v \cdot \nabla) \phi = 0,$$

with divergence-free v may decay faster in L^2 than solutions to diffusion equation

$$\partial_t \phi - \Delta \phi = 0.$$

Characterizations of good divergence-free v are available: e.g.,

- P. Constantin et al., 2008 (Ann. Math.)
- A. Kiselev et al., 2008 (Indiana Univ. Math. J.)

Question: Can one take v as a solution to a (controlled) fluid equation?

Incompressible Euler system with degenerate (four-dimensional) control:

$$\partial_t v + (v \cdot \nabla) v + \nabla p =$$

$$\gamma_1(t) \begin{bmatrix} \sin(x_2) \\ 0 \end{bmatrix} + \gamma_2(t) \begin{bmatrix} \cos(x_2) \\ 0 \end{bmatrix} + \gamma_3(t) \begin{bmatrix} 0 \\ \sin(x_1) \end{bmatrix} + \gamma_4(t) \begin{bmatrix} 0 \\ \cos(x_1) \end{bmatrix}$$

Passive scalar advection-diffusion equation:

$$\begin{aligned} \partial_t \phi - \Delta \phi + (v \cdot \nabla) \phi &= 0, \\ \phi(\cdot, 0) &= \phi_0. \end{aligned}$$

Theorem (K. Koike, V. Nersesyan, R., M. Tucsnak; arXiv:2506.22233)

For every $\tau, \delta > 0$, there exist $\gamma_1, \dots, \gamma_4 \in L^2([0, \tau]; \mathbb{R})$ such that

$$\|\phi(\tau, \cdot)\|_{L^2(\mathbb{T}^2)} < \delta$$

for every $\phi_0 \in L^2(\mathbb{T}^2)$ with $\|\phi_0\|_{L^2(\mathbb{T}^2)} \leq 1$ and $\int_{\mathbb{T}^2} \phi_0(x) dx = 0$.

Thank you!