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Incompressible fluid in TV

Navier-Stokes (N-S) system:

Ou—vAu+ (u-VY)u+Vp = f+1,¢&,
V-u=0,
u(-,0) = ug.

u(x,t): velocity

p(x,t): pressure

f(x,t): known body force

ug(x): initial state

y > 0: viscosity

£(x,1): interior control supported in ® ¢ TV
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(Global) approximate controllability

Yug,u1, T >0,&>03¢: ||u(-,T) —ui|| <e
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Finite-dimensional controls

E(x,t) = ar (D1 (x) + -+ + aua (1) Paa(x)
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Finite-dimensional controls for fluid equations

N.
Case @ # T':
Home > Geometric Control Theory and Sub-Riemannian Geometry > Chapter pr—
Some open problems E
Geometric
Chapter Control Theory and
pp 1-13 | Cite this chapter Zlél;:‘?g;annlan

«Abstract We discuss some challenging open problems in the geometric control the-

Andrei A. Agrachev ory and sub-Riemannian geometry.

Some literature for case @ = TN :

@ A. A. Agrachev and A. V. Sarychev, 2006 (CMP)
@ A. Shirikyan, 2006 (CMP)

@ A. Shirikyan, 2008 (Phys. D)

@ V. Nersesyan, 2015 (Nonlinearity)

@ V. Nersesyan, 2021 (SICON)

o ..
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Finite-dimensional controls for transport equation?

Are there choices of u* such that

ov+ (w*-Vv=g,
is approximate controllable with control

g € L*((0,1); Ho),

where

Hoy = span {sin(x1), cos(x1), sin(x3), cos(x2) }?
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Universally fixed divergence-free vector field

)= 0|5+ 3200

where

VATERE

0

cos (xz)]

10| o |+ 70t |

sin(x1)

,v4 € WH((0,1);R)

have a special structure, first introduced by Kuksin, Nersesyan, and

Shirikyan, 2020 (GAFA).
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Lemma (R., V. Nersesyan)

For all v; € H™ and & > 0 there is g € L2((0,1); Hy)) such that the
solution

v(x,t) = /Ot g(@“* (x,1,5),s)ds

to
v+ (w*-Vv=g, v(-,00=0

satisfies

lo(-, 1) — vl < &.

Here, ®V is flow of vector field V:

d
EdDV(x, s, 1) = V(CDV(x, s,1),1), dDV(x, s,8) =X.
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Open o C T? with T? \ ® simply-connected.

Theorem (V. Nersesyan, R., 2025 (CPAM))
The N-S in T? is approximately controllable in any time T > 0 with control

§(x,0) = a1 () (x, @) + - - - + s (D) Tg(x, (1)),

where
supp(§) € © X (0,7).
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J.-M. Coron’s return method

Ansatz:
ul(-,t) =615, 67 ) + U(-, 67 1t) + error® (-, 1),
E0( 1) =072E(, 07 )+ 67 (-, 671

@ 7 flushes information through ® and (7, &) satisfy Euler system
8ty+(yV)y+Vﬁ:I[(DE, Vy:O’ y(’o):y(’l)zo
QoU+(y -VYU+(U-VYy+VP=n, U0 =uy, U(,1)=u;.

(In 2D, v .=V A U, satisfies

v+ (y-Vo+(U-VIVAy=V AR, v(-,0)=ug, v(-,l):ul)

@ Approximate controllability: error®(-,§) — 0, as 6 — 0.
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Approach

@ Return method with constant-in-space reference trajectory y.

@ Approximate controllability of 2D transport problem
ov+(y-Vyv=1Iyn, v(-0)=0.

Goal: find control 17 of desired structure.

@ Take generating u* and determine control g € L2((0,1); Hp) for

OV+ W -V)V=g, V(0 =0.
@ Construct 77 as a rearrangement

v(1) = /Oln(qﬁ(x, 1,5),s)ds = /Olg(cpu*(x,l,s),s) ds = V(1).
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Cover T? by overlapping squares O1, . .., Oy, fix reference square O C w.

Equal-distant partition of time interval:

M

0<<tl<t)<tl<Z<ti<tZ<- <t <) <M<
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During [z§, '], information from O, is transported along y to O.
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During [tf,tf], the flow rests.
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During [t{’, t{], information is transported along y from O to O;.

Z
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During [{,], information from O, is transported to O.

Sa

O
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I[tk k (t)
n(x,1) = x(x) o
‘*\/—/kz; b a

supported
in ®

ng”

k k

t—tk\ -1t
®Y(x,1,0),0, 4
1 — tk) -1k

/-

y

1 . 1 .
/ n(®Y(x,1,s),s)ds = / g(®" (x,1,5),s)ds
0 0
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Main issue from the start: using constant-in-space y not suitable to get
finite-dimensional controls (no mixing effect)

On the other hand: according to the return method ansatz, if i is not
constant-in-space one would need to obtain desired controls for

OV + (Y- VIV+(VEH(=A) V- V)V Ay =19,

instead for
oV +(y-V)V =lyy,
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Boussinesq system controlled in velocity and temperature

Ou—vAu+ (u-V)u+Vp =0es +1,&,
V-u=0,
0,0 —TtAO+ (u-V)0 =1,n.

19/32



o C T? arbitrary nonempty open set. We construct universal
finite-dimensional spaces

F, c C¥(T%:R?), % c C¥(T%:R)
such that the following statement holds.

Theorem (R. 2025, arXiv:2506.19764)

For any given

v, 7,T>0, keNy, wugelLl, u €H, 6el?

iv?
there exist controls
£€CY((0,T); F), neC™(0,7T); F)
such that the solution to the Boussinesq system satisfies

(. T) —urllx + 16 T) = 6]k < &.

91€Hk
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Special case: ® contains two cuts of the torus:

If a closed square of side-length L fits inside ®, our approach yields
completely explicit representations of %, and %; with

dim(%,) < 2+18[27x/L1? +8[2n/L]*,
dim(%F,) < 2+ 8[2n/L]>.
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0

o M+1

O1
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We know already that
ov+ Ww*-Vo=g*

is approximately controllable with FHy-valued (4-dimensional) control

g (x, 1) = a1 (1) sin(x1) + @2 (7) sin(xa) + B1 (1) cos(x1) + Ba(1) cos(x2).

Idea: construct a particular “finite-dimensional” return method trajectory
U that allows controlling

OV +(U-V)V=1,G

with control (roughly) of the form

M
G(x, 1) = u(x) Z T (D97 (x = Siyt = 1),
i=1
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o C T? arbitrarily fixed nonempty open set.
Lemma

There exists a D,-dimensional vector space %, ¢ C*(T?;R?) and a
vector field y =y, € C;°((0,1); #;,) with the properties

@ VheH, Vx € T?: div(h)(x) = 0.
@ Vhe X, g, € C*(T%R), Vx € T2\ w: h(x) = Vo (x).
@ ®Y(Neighborhood(0;),0, [t t;;]) = Neighborhood(O;) + S;.

We take
—_— M .
U(x,0) =G0 1)+ ) T g (DV LY (0% (x = St = 1)1,
i=1

where ¢* is stream function of u*.
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u* on [0,T*] g* on [0,T*]

G H | 7 8 9
D E F 4 5 6
A B C 1 2 3
U on [0, A G on [0,7] U on [13,1,] G on [té,t})]
_ _ _ _ A _ _ 1 _
Uon [1},12] G on [1},12] Uon [1,1] G on [12,1}]
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Theorem (R., 2025, arXiv:2506.19764)

There are finite-dimensional spaces
F, c C¥(T%:R?), % c C¥(T%R)
such that for any given data

v,7,6,T >0, meN, ugell, 6y€L? 6, €H",

iv?

there exists 6y > 0 so that for each § € (0, 8y) there are controls
£€C”((0,6); F), neC((0,6); F)

for which the associated solution to the Boussinesq system satisfies

(-, 6) = uuollm + 16, 6) = O1llm < &.
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Vorticity-temperature formulation:

ow—vAw+ (u-V)w = 0,6,
00 —7tAG+ (u-V)6=0.

One can prove the following scaling limits:
@ If (w,0)(-,0) = (wy, Oy — 6~ 1&), then
w(:,0) — wo — hé
as 0 — 0.
@ If (w,0)(-,0) = (wy +6~2£,6), then
w(-,8) =672 — wy = (V4 (=) "'¢ - V)¢
as 0 — 0.
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V. Nersesyan, R., 2024 & R., 2024

Boussinesq system in T? is approximately controllable using only a
temperature control supported in a strip.

Ou—Au+ (u-V)u+Vp = 0Oes,
V-u=0,
8,0 — A0+ (u- V)8 = I,£.
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Enhanced relaxation

Zero average solutions to advection-diffusion equation
Orp— AP+ (v-V)p =0,

with divergence-free v may decay faster in L? than solutions to diffusion
equation

0 — A = 0.
Characterizations of good divergence-free v are available: e.g.,

@ P. Constantin et al., 2008 (Ann. Math.)
@ A. Kiselev et al., 2008 (Indiana Univ. Math. J.)

Question: Can one take v as a solution to a (controlled) fluid equation?
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Incompressible Euler system with degenerate (four-dimensional) control:

v+ (v-Vv+Vp =
Ol e FE0] i EEA0) (1) ]
N Y3 1n(x ) 74 cos(xl)

Passive scalar advection-diffusion equation:

Op— AP+ (v-V)p =0,
¢(’0) = ¢0

Theorem (K. Koike, V. Nersesyan, R., M. Tucsnak; arXiv:2506.22233)
For every 7,8 > 0, there exist y1, . ..,ys € L*>([0,7];R) such that

lé (T, )Lz (r2y <6

for every ¢g € L?(T?) with lllz2(r2) < 1 and /T? d(x)dx =0
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Thank you!



	Introduction

