

CONTROL OF PARABOLIC PROBLEMS AND BLOCK MOMENT METHOD

Morgan MORANCEY

I2M, Aix-Marseille Université

July 2025

Control of PDEs and related topics, Toulouse.

Collaborations with F. Ammar Khodja (Besançon), A. Benabdallah (Marseille), F. Boyer (Toulouse), M. González-Burgos (Sevilla), M. Mehrenberger (Marseille), L. de Teresa (Mexico)

Abstract linear control problem

$$\begin{cases} y'(t) + \mathcal{A}y(t) = \mathcal{B}u(t), & t \in (0, T), \\ y(0) = y_0. \end{cases}$$

- $-\mathcal{A}$ generates a C^0 -semigroup on the Hilbert space $(X, \|\cdot\|)$,
- The space of controls is the Hilbert space $(U, \|\cdot\|_U)$.
- The control operator $\mathcal{B} : U \rightarrow D(\mathcal{A}^*)'$. Assume (for simplicity) that

$$\int_0^T \left\| \mathcal{B}^* e^{-t\mathcal{A}^*} z \right\|_U^2 dt \leq C \|z\|, \quad \forall z \in D(\mathcal{A}^*).$$

Wellposedness theorem

Let $T > 0$. For any $y_0 \in X$ and any $u \in L^2(0, T; U)$, there exists a unique solution $y \in C^0([0, T], X)$ characterized by

$$\langle y(t), z \rangle - \left\langle y_0, e^{-t\mathcal{A}^*} z \right\rangle = \int_0^t \left\langle u(\tau), \mathcal{B}^* e^{-(t-\tau)\mathcal{A}^*} z \right\rangle_U d\tau,$$

for any $t \in [0, T]$, and any $z \in X$.

Moreover, there exists $C > 0$ such that for any such y_0 , u , the solution satisfies

$$\|y(t)\| \leq C (\|y_0\| + \|u\|_{L^2(0, T; U)}), \quad \forall t \in [0, T].$$

- **Question :** null controllability of a given y_0 at a given time $T > 0$?

Typical examples

- Boundary control of coupled equations

$$\begin{cases} \partial_t y_1 - \Delta y_1 + y_2 = 0, & \text{in } (0, T) \times \Omega, \\ \partial_t y_2 + (-\Delta + c(x))y_2 = 0, & \text{in } (0, T) \times \Omega, \\ y_1|_{\partial\Omega} = 0, \quad y_2|_{\partial\Omega} = \mathbf{1}_\Gamma u & \text{in } (0, T) \times \partial\Omega, \\ y_1(0, \cdot) = y_{1,0}, \quad y_2(0, \cdot) = y_{2,0}. \end{cases}$$

- Simultaneous controllability

$$\begin{cases} \partial_t y_1 - \Delta y_1 = \mathbf{1}_\omega u, & \text{in } (0, T) \times \Omega, \\ \partial_t y_2 + (-\Delta + c(x))y_2 = \mathbf{1}_\omega u, & \text{in } (0, T) \times \Omega, \\ y_1|_{\partial\Omega} = y_2|_{\partial\Omega} = 0 & \text{in } (0, T) \times \partial\Omega, \\ y_1(0, \cdot) = y_{1,0}, \quad y_2(0, \cdot) = y_{2,0}. \end{cases}$$

1 Control of parabolic problems and moment problems

- Moment problems and biorthogonal families
- A limitation in the use of biorthogonal families

2 The block moment method for scalar controls

- Setting
- The block moment problem and its resolution
- Biorthogonal family to divided differences of time exponentials

3 The block moment method for general control operators

- Strategy of proof on an example
- Examples

4 Biorthogonal families in higher dimension

- Setting and biorthogonal families
- Ingredients of proof

1 Control of parabolic problems and moment problems

- Moment problems and biorthogonal families
- A limitation in the use of biorthogonal families

2 The block moment method for scalar controls

3 The block moment method for general control operators

4 Biorthogonal families in higher dimension

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_\lambda)_{\lambda \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X .

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_\lambda)_{\lambda \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X .

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_\lambda \rangle - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle = \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_\lambda \right\rangle_U dt.$$

Assumptions and moment problem

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_\lambda)_{\lambda \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X .

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_\lambda \rangle - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle = \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_\lambda \right\rangle_U dt.$$

Hilbert basis of eigenvectors $(\phi_\lambda)_{\lambda \in \Lambda}$:

$$y(T) = 0 \iff \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda$$

Assumptions and moment problem

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_\lambda)_{\lambda \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X .

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_\lambda \rangle - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle = \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_\lambda \right\rangle_U dt.$$

Hilbert basis of eigenvectors $(\phi_\lambda)_{\lambda \in \Lambda}$:

$$y(T) = 0 \iff \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda$$

$$\iff \boxed{\int_0^T \left\langle v(t), e^{-\lambda t} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda}$$

with $v := u(T - \cdot)$.

Reduction to a moment problem when $\dim U = 1$

- Scalar control ($\dim U = 1$) with observable eigenvectors ($\mathcal{B}^* \phi_\lambda \neq 0$)

$$y(T) = 0 \iff \int_0^T e^{-\lambda t} \langle v(t), \mathcal{B}^* \phi_\lambda \rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda$$

$$\iff \mathcal{B}^* \phi_\lambda \int_0^T e^{-\lambda t} v(t) dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda$$

$$\iff \boxed{\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle, \forall \lambda \in \Lambda}$$

Resolution of the moment problem using a biorthogonal family

Find v such that $\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle, \forall \lambda \in \Lambda$

Biorthogonal family $(q_\lambda)_{\lambda \in \Lambda}$ to the exponentials associated with Λ in $L^2(0, T; \mathbb{R})$

$$\begin{cases} \int_0^T e^{-\mu t} q_\lambda(t) dt = 0, & \forall \mu \in \Lambda \setminus \{\lambda\}, \\ \int_0^T e^{-\lambda t} q_\lambda(t) dt = 1. \end{cases}$$

Resolution of the moment problem using a biorthogonal family

Find v such that $\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle, \forall \lambda \in \Lambda$

Biorthogonal family $(q_\lambda)_{\lambda \in \Lambda}$ to the exponentials associated with Λ in $L^2(0, T; \mathbb{R})$

$$\begin{cases} \int_0^T e^{-\mu t} q_\lambda(t) dt = 0, & \forall \mu \in \Lambda \setminus \{\lambda\}, \\ \int_0^T e^{-\lambda t} q_\lambda(t) dt = 1. \end{cases}$$

Existence of such biorthogonal family $\overset{\text{Schwartz}}{\iff} \sum_{\lambda \in \Lambda} \frac{1}{\lambda} < +\infty$.

In this case,

$$u : t \in (0, T) \mapsto - \sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle q_\lambda(T - t)$$

formally solves the moment problem.

Question: estimate $\mathcal{B}^* \phi_\lambda$ and $\|q_\lambda\|_{L^2(0, T; \mathbb{R})}$ to prove that the series converges in $L^2(0, T; \mathbb{R})$.

Some estimates on biorthogonal families

Under the gap condition ($|\lambda - \mu| > \rho$, $\forall \lambda \neq \mu \in \Lambda$).

- H.O. Fattorini & D.L. Russell (1974): $\|q_\lambda\|_{L^2(0,T;\mathbb{R})} \leq C_{\varepsilon,T} e^{\varepsilon\lambda}$.
Uniform estimates with respect to Λ in a certain class.
- A. Benabdallah, F. Boyer, M. González Burgos & G. Olive (2014)
Sharper estimates + dependency $/T$: $\|q_\lambda\|_{L^2(0,T;\mathbb{R})} \leq C e^{C/T} e^{C\sqrt{\lambda}}$.
- P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)

- N. Cîndea, S. Micu, I. Roventa & M. Tucsnak (2015)
Union of two sequences with gap condition plus a non-condensation assumption
- A. Benabdallah, F. Boyer & M. M. (2020)
- M. González Burgos & L. Ouaili (2020)

Without any gap condition

- F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014)
Condensation index of the sequence.
- D. Allonsius, F. Boyer & M. Morancey (2021)
"Local" gap for each λ .

$$\mathcal{A}y = \begin{pmatrix} -\partial_{xx} & 1 \\ 0 & -\partial_{xx} + \exp(a\partial_{xx}) \end{pmatrix} y, \quad \mathcal{B} = \begin{pmatrix} 0 \\ \text{a nice scalar control operator} \end{pmatrix}.$$

Eigenvectors of $-\partial_{xx}$: $-\partial_{xx}\varphi_k = k^2\varphi_k$. Thus,

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \lambda_{k,2} := k^2 + e^{-ak^2}; k \in \mathbb{N}^* \right\}$$

Complete family of associated eigenvectors of \mathcal{A}^* :

$$\phi_{k,1} = \begin{pmatrix} -e^{-ak^2} \\ 1 \end{pmatrix} \varphi_k, \quad \phi_{k,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \varphi_k,$$

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014):
there exists a biorthogonal family satisfying

$$\frac{1}{C_\varepsilon} e^{(a-\varepsilon)\lambda} \leq \|q_\lambda\|_{L^2(0,T;\mathbb{R})} \leq C_\varepsilon e^{(a+\varepsilon)\lambda}.$$

→ Direct application of moments method yields null controllability in time $T > a$.

Limitation in the use of biorthogonal families

Yet, we will see that the previous example is null controllable in any time $T > 0$...
What is missed in the direct application of the moment method?

$$u : t \in (0, T) \mapsto - \sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle q_\lambda(T - t)$$

Only information on $\|q_\lambda\|$: proof of normal convergence of the series in $L^2(0, T; \mathbb{R})$
which is not the most subtle convergence...

Limitation in the use of biorthogonal families

Yet, we will see that the previous example is null controllable in any time $T > 0$...
What is missed in the direct application of the moment method?

$$u : t \in (0, T) \mapsto - \sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle q_\lambda(T - t)$$

Only information on $\|q_\lambda\|$: proof of normal convergence of the series in $L^2(0, T; \mathbb{R})$
which is not the most subtle convergence...

As $\lambda_{k,1} \approx \lambda_{k,2}$, it can be a good idea to consider the biorthogonal elements $q_{k,1}$ and $q_{k,2}$ together. Especially if $\phi_{k,1} \approx \phi_{k,2}$. In this case, we will rather consider the control u in the form

$$u : t \in (0, T) \mapsto - \sum_{k \geq 1} \left(\sum_{j=1}^2 e^{-\lambda_{k,j} T} \left\langle y_0, \frac{\phi_{k,j}}{\mathcal{B}^* \phi_{k,j}} \right\rangle q_{k,j}(T - t) \right)$$

and estimate

$$\left\| \sum_{j=1}^2 e^{-\lambda_{k,j} T} \left\langle y_0, \frac{\phi_{k,j}}{\mathcal{B}^* \phi_{k,j}} \right\rangle q_{k,j}(T - \cdot) \right\|_{L^2(0, T)} .$$

1 Control of parabolic problems and moment problems

2 The block moment method for scalar controls

- Setting
- The block moment problem and its resolution
- Biorthogonal family to divided differences of time exponentials

3 The block moment method for general control operators

4 Biorthogonal families in higher dimension

Assumptions

\mathcal{A} and \mathcal{B} satisfy the assumptions for the wellposedness.

- Scalar control $U = \mathbb{R}$.
- Eigenvalues of \mathcal{A}^* .
 - Λ : positive simple eigenvalues of \mathcal{A}^* satisfying $\sum_{\lambda \in \Lambda} \frac{1}{\lambda} < +\infty$.
 - asymptotic behavior of the counting function:
 $N_\Lambda(r) := \text{Card} \{ \lambda \in \Lambda ; \lambda \leq r \} \leq \kappa r^\theta$ with $\theta \in (0, 1)$.
- $(\phi_\lambda)_{\lambda \in \Lambda}$ associated eigenvectors.
 - complete family of eigenvectors in X .
 - $\text{Ker}(\mathcal{A}^* - \lambda) \cap \text{Ker } \mathcal{B}^* = \{0\}$ for every $\lambda \in \mathbb{R}$.

Extra assumption :

- Weak gap condition: there exists $\rho > 0$ and $p \in \mathbb{N}^*$ such that

$$\text{Card} (\Lambda \cap [\mu, \mu + \rho]) \leq p, \quad \forall \mu \geq 0.$$

Groups of eigenvalues

Let $p \in \mathbb{N}^*$ and $\rho > 0$. The weak-gap condition ensures the existence of sets $(G_k)_{k \geq 1} \subset \mathcal{P}(\Lambda)$ such that

$$\Lambda = \bigcup_{k \geq 1} G_k, \quad \sup(G_k) < \inf(G_{k+1}),$$

with the additional properties that for every $k \geq 1$,

$$g_k := \#G_k \leq p, \quad \text{dist}(G_k, G_{k+1}) \geq r, \quad \text{diam } G_k < \rho.$$

with $r = r_{p,\rho} > 0$.

- Labelling the eigenelements

$$G_k = \{\lambda_{k,1}, \dots, \lambda_{k,g_k}\} \quad \text{with } \lambda_{k,1} < \dots < \lambda_{k,g_k},$$

$$\phi_{k,j} := \phi_{\lambda_{k,j}}, \quad \forall k \geq 1, \forall 1 \leq j \leq g_k.$$

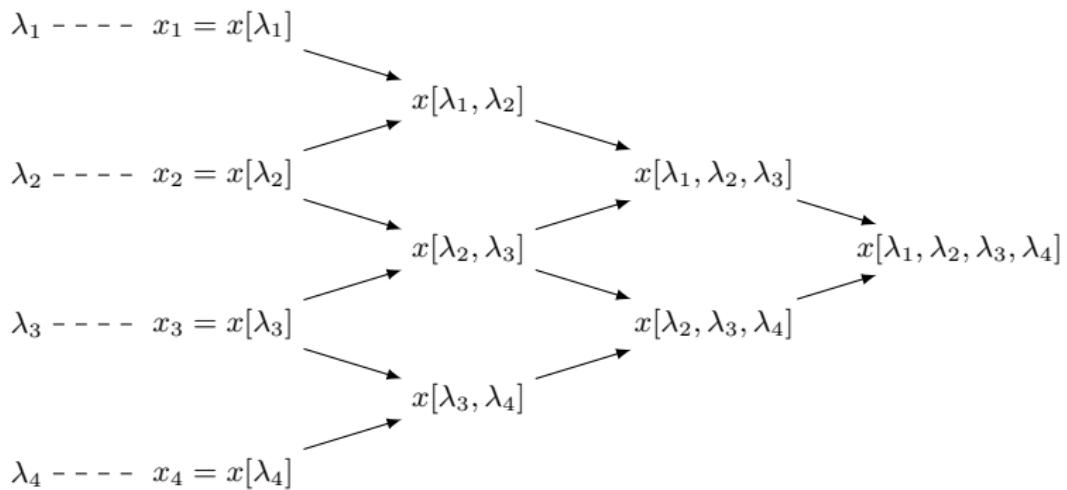
- The analysis is insensitive to the particular choice of such a grouping.

Divided differences in a given group G_k

- For any j , set $x[\lambda_j] := x_j$.
- Divided differences. For any $i \neq j$ we set

$$x[\lambda_i, \lambda_j] := \frac{x[\lambda_j] - x[\lambda_i]}{\lambda_j - \lambda_i} \in X.$$

and so on ... following the diagram



The block moment problem

$$\begin{aligned} y(T) = 0 &\iff \int_0^T e^{-\lambda(T-t)} u(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda} \right\rangle, \forall \lambda \in \Lambda \\ &\iff \int_0^T e^{-\lambda(T-t)} u(t) dt = -e^{-\lambda T} \langle y_0, \psi_\lambda \rangle, \forall \lambda \in \Lambda \\ &\quad \text{where } \psi_\lambda := \frac{\phi_\lambda}{\mathcal{B}^* \phi_\lambda}. \end{aligned}$$

Look for u in the form

$$u : t \in (0, T) \mapsto - \sum_{k \geq 1} v_k(T-t)$$

where

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} v_k(t) dt = e^{-\lambda_{k,j} T} \langle y_0, \psi_{k,j} \rangle, & \forall k \geq 1, \forall 1 \leq j \leq g_k, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases}$$

The function v_k solves the moment problem inside the group G_k .

A. Benabdallah, F. Boyer & M. M. (2020)

Let $T \in (0, +\infty]$. For any $\varepsilon > 0$, there exists a constant $C > 0$ such that for any $k \geq 1$, for any $\omega_{k,1}, \dots, \omega_{k,g_k} \in \mathbb{R}$, there exists $v_k \in L^2(0, T; \mathbb{R})$ satisfying

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = \omega_{k,j}, & \forall 1 \leq j \leq g_k, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k, \end{cases}$$

and

$$\|v_k\|_{L^2(0, T; \mathbb{R})} \leq C e^{C/T^{1/\theta}} e^{C\lambda_{k,1}^\theta} \max_{1 \leq l \leq g_k} |\omega[\lambda_{k,1}, \dots, \lambda_{k,l}]|.$$

Moreover, up to the exponential factors, this last estimate is sharp.

Adaptation of [H.O. Fattorini & D.L. Russell \(1974\)](#) using the isomorphism of the Laplace transform and refined estimates using Paley-Wiener theorem ([F. Boyer - M2 lecture notes \(HAL\)](#))

- Sufficiently sharp estimates to characterize the minimal null control time

$$T_0 = \limsup_{k \rightarrow \infty} \frac{\ln \left(\max_{1 \leq l \leq g_k} \|\psi[\lambda_{k,1}, \dots, \lambda_{k,l}]\| \right)}{\lambda_{k,1}}.$$

- Extension to complex eigenvalues in a sector of dominant real part.
- Uniform estimates: similar results for algebraically multiple eigenvalues (limit process $\lambda, \lambda + h$).
- Application
 - [K. Bhandari & F. Boyer \(2021\)](#): boundary control, from Robin to Dirichlet boundary conditions.
 - [F. Boyer & G. Olive \(2023\)](#): 2D coupled heat equations with different constant diffusion coefficient.

Back to the academic example

$$\mathcal{A}y = \begin{pmatrix} -\partial_{xx} & 1 \\ 0 & -\partial_{xx} + \exp(a\partial_{xx}) \end{pmatrix} y, \quad \mathcal{B} = \begin{pmatrix} 0 \\ \text{a nice scalar control operator} \end{pmatrix}.$$

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \lambda_{k,2} := k^2 + e^{-ak^2}; k \in \mathbb{N}^* \right\} \implies \#G_k = 2$$

$$T_0 = \limsup_{k \rightarrow \infty} \frac{1}{\lambda_{k,1}} \ln \max \left\{ \frac{1}{|\mathcal{B}^* \phi_{k,1}|}, \frac{1}{|\mathcal{B}^* \phi_{k,2}|}, \frac{\left\| \frac{\phi_{k,2}}{\mathcal{B}^* \phi_{k,2}} - \frac{\phi_{k,1}}{\mathcal{B}^* \phi_{k,1}} \right\|}{\lambda_{k,2} - \lambda_{k,1}} \right\} = 0.$$

Indeed,

$$\phi_{k,1} = \begin{pmatrix} -e^{-ak^2} \\ 1 \end{pmatrix} \varphi_k, \quad \phi_{k,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \varphi_k,$$

imply

$$\mathcal{B}^* \phi_{k,1} = \mathcal{B}^* \phi_{k,2} = \text{ nice} \quad \text{and} \quad \|\phi_{k,2} - \phi_{k,1}\| = e^{-ak^2} = |\lambda_{k,2} - \lambda_{k,1}|.$$

The condensation of eigenvectors compensates the condensation of eigenvalues.

A PDE example behaving as the academic example

$$\begin{cases} \partial_t y(t, x) + \begin{pmatrix} -\partial_{xx} & 1 \\ 0 & -\partial_{xx} + c(x) \end{pmatrix} y(t, x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & (t, x) \in (0, T) \times (0, 1), \\ y(t, 0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t, 1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & t \in (0, T), \\ y(0, x) = y_0(x), & x \in (0, 1), \end{cases}$$

For any $c \in L^2(0, 1; \mathbb{R})$

- possible presence of algebraically double eigenvalues;
- possible strong condensation of eigenvalues;
- possible (finite number of) non observable modes.

There exists $Y_0 \subset (H^{-1}(0, 1; \mathbb{R}))^2$ with finite codimension such that

- if $y_0 \notin Y_0$: not approximately controllable;
- if $y_0 \in Y_0$: null controllability in any time $T > 0$.

For any $s \in \mathbb{C}$, let $e_s : x \in \mathbb{R} \mapsto e^{-sx}$.

M. Mehrenberger, M. M. (2025)

Solvability of block moment problems at cost

$$\|v_k\|_{L^2(0,T)} \leq \mathfrak{C}(T, G_k) \times \sum_{j=1}^{g_k} |\omega[\lambda_{k,1}, \dots, \lambda_{k,j}]|, \quad \forall k \geq 1,$$

\iff

Existence of a biorthogonal family $(q_{\ell,m})_{\ell \geq 1, 1 \leq m \leq g_\ell}$ to the divided differences in the blocks of the time exponentials i.e. $\forall k, \ell \geq 1, \forall j : 1 \leq j \leq g_k, \forall m : 1 \leq m \leq g_\ell$,

$$\int_0^T e_t [\lambda_{k,1}, \dots, \lambda_{k,j}] q_{\ell,m}(t) dt = \delta_{k\ell} \delta_{jm}$$

with

$$\|q_{\ell,m}\|_{L^2(0,T)} \leq \mathfrak{C}(T, G_\ell).$$

- The resolution of block moment problems is the parabolic equivalent of generalized Ingham-type results with weak gap condition obtained for hyperbolic problems in

C. Baiocchi, V. Komornik & P. Loret (2000, 2002)

S. A. Avdonin & S. A. Ivanov (2001).

- The resolution of block moment problems is the parabolic equivalent of generalized Ingham-type results with weak gap condition obtained for hyperbolic problems in
C. Baiocchi, V. Komornik & P. Loret (2000, 2002)
S. A. Avdonin & S. A. Ivanov (2001).
- Following C. Laurent & M. Léautaud (2023) we provide an alternative proof for the resolution of block moment problems:
 - existence of a bounded biorthogonal family to the divided differences in the blocks of the complex time exponentials coming from generalized Ingham-type results
 - application of the transmutation transformation from S. Ervedoza & E. Zuazua (2011) to the biorthogonal elements
 - careful estimation of the divided differencesbut under the (more restrictive) condition that $\sqrt{\Lambda}$ satisfies a weak-gap condition

M. Mehrenberger, M. M. (2025)

$$\|q_{\ell,m}\|_{L^2(0,T)} \leq C e^{C/T} e^{C\sqrt{\lambda_{\ell,1}}}, \quad \forall \ell \geq 1, \forall m : 1 \leq m \leq g_\ell.$$

- 1 Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
- 3 The block moment method for general control operators
 - Strategy of proof on an example
 - Examples
- 4 Biorthogonal families in higher dimension

Setting

Work with [F. Boyer \(2023, 2025\)](#).

- Exact same assumptions as in the scalar case except
 - ‘ $\dim U = 1$ ’ replaced by ‘ U a Hilbert space’;
 - allow finite geometric multiplicity of eigenvalues.

For instance,

$$\begin{cases} \partial_t y(t, x) + \begin{pmatrix} -\partial_{xx} & q(x) \\ 0 & -\partial_{xx} \end{pmatrix} y(t, x) = \begin{pmatrix} 0 \\ \mathbf{1}_\omega u(t, x) \end{pmatrix}, \\ y(t, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad y(t, 1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\ y(0, x) = y_0(x). \end{cases}$$

Setting

Work with [F. Boyer \(2023, 2025\)](#).

- Exact same assumptions as in the scalar case except
 - ‘ $\dim U = 1$ ’ replaced by ‘ U a Hilbert space’;
 - allow finite geometric multiplicity of eigenvalues.

For instance,

$$\begin{cases} \partial_t y(t, x) + \begin{pmatrix} -\partial_{xx} & q(x) \\ 0 & -\partial_{xx} \end{pmatrix} y(t, x) = \begin{pmatrix} 0 \\ \mathbf{1}_\omega u(t, x) \end{pmatrix}, \\ y(t, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad y(t, 1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\ y(0, x) = y_0(x). \end{cases}$$

- The moment problem: $y(T) = 0$ if and only if u satisfies

$$\int_0^T \left\langle u(T-t), e^{-\lambda t} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \quad \forall \lambda \in \Lambda.$$

Strategy on an example - Setting

We consider $X = L^2(0, 1; \mathbb{R})^2$ and $\omega \subset (0, 1)$ a non empty open set. Let $(\varphi_k)_{k \geq 1}$ be an Hilbert basis of X such that $\inf_{k \geq 1} \|\varphi_k\|_{L^2(\omega)} > 0$.

- Eigenelements of \mathcal{A}^* :

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \lambda_{k,2} := k^2 + e^{-ak^2}; k \geq 1 \right\}, \quad G_k := \{\lambda_{k,1}, \lambda_{k,2}\},$$

$$\phi_{k,1} := \begin{pmatrix} \varphi_k \\ \varphi_k \end{pmatrix}, \quad \phi_{k,2} := \begin{pmatrix} 0 \\ \varphi_k \end{pmatrix}.$$

- Control operator:

$$\mathcal{B} : u \in U = L^2(0, 1; \mathbb{R}) \mapsto \begin{pmatrix} 0 \\ \mathbf{1}_\omega u \end{pmatrix} \in X.$$

Strategy on an example - Setting

We consider $X = L^2(0, 1; \mathbb{R})^2$ and $\omega \subset (0, 1)$ a non empty open set. Let $(\varphi_k)_{k \geq 1}$ be an Hilbert basis of X such that $\inf_{k \geq 1} \|\varphi_k\|_{L^2(\omega)} > 0$.

- Eigenelements of \mathcal{A}^* :

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \lambda_{k,2} := k^2 + e^{-ak^2}; k \geq 1 \right\}, \quad G_k := \{\lambda_{k,1}, \lambda_{k,2}\},$$

$$\phi_{k,1} := \begin{pmatrix} \varphi_k \\ \varphi_k \end{pmatrix}, \quad \phi_{k,2} := \begin{pmatrix} 0 \\ \varphi_k \end{pmatrix}.$$

- Control operator:

$$\mathcal{B} : u \in U = L^2(0, 1; \mathbb{R}) \mapsto \begin{pmatrix} 0 \\ \mathbf{1}_\omega u \end{pmatrix} \in X.$$

- Block moment problem: for any $k \geq 1$, find $v_k \in L^2(0, T; U)$ such that

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = -e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} \langle v_k(t), \mathcal{B}^* \phi_\lambda \rangle_U dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases}$$

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = -e^{-\lambda_{k,j}T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} \langle v_k(t), \mathcal{B}^* \phi_\lambda \rangle_U dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases}$$

- A **stronger** orthogonality condition

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = -e^{-\lambda_{k,j}T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases}$$

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = -e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases} \quad (\text{BMPb})$$

- Consider the auxiliary vectorial block moment problem set in the control space: find $v_k \in L^2(0, T; U)$ such that

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} v_k(t) dt = \Omega_{k,j}, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k, \end{cases} \quad (\text{VBMPb})$$

with $\Omega_{k,j} \in U = L^2((0, 1); \mathbb{R})$ to be precised.

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = -e^{-\lambda_{k,j}T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k. \end{cases} \quad (\text{BMPb})$$

- Consider the auxiliary vectorial block moment problem set in the control space: find $v_k \in L^2(0, T; U)$ such that

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = \Omega_{k,j}, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k, \end{cases} \quad (\text{VBMPb})$$

with $\Omega_{k,j} \in U = L^2((0, 1); \mathbb{R})$ to be precised.

- Constraints: If $\Omega_{k,j} \in U$ satisfy

$$\langle \Omega_{k,j}, \mathcal{B}^* \phi_{k,j} \rangle_U = -e^{-\lambda_{k,j}T} \langle y_0, \phi_{k,j} \rangle,$$

then

$$v_k \text{ solution of (VBMPb)} \implies v_k \text{ solution of (BMPb)}.$$

- Since $\mathcal{B}^* \phi_{k,j} \neq 0$, there exists

$$\Omega_{k,1}, \Omega_{k,2} \in U$$

such that

$$\langle \Omega_{k,j}, \mathcal{B}^* \phi_{k,j} \rangle_U = -e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle.$$

Strategy on an example - Dealing with the constraints

- Since $\mathcal{B}^* \phi_{k,j} \neq 0$, there exists

$$\Omega_{k,1}, \Omega_{k,2} \in U$$

such that

$$\langle \Omega_{k,j}, \mathcal{B}^* \phi_{k,j} \rangle_U = -e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle.$$

- Projection onto a finite dimensional subspace of U . There exists

$$\Omega_{k,1}, \Omega_{k,2} \in \boxed{U_k := \text{Span} \{ \mathcal{B}^* \phi_{k,1}, \mathcal{B}^* \phi_{k,2} \}}$$

such that

$$\langle \Omega_{k,j}, \mathcal{B}^* \phi_{k,j} \rangle_U = -e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle.$$

Strategy on an example - Resolution of the auxiliary block moment problem

- The space $U_k := \text{Span} \{ \mathcal{B}^* \phi_{k,1}, \mathcal{B}^* \phi_{k,2} \}$ is of finite dimension !!

Solving scalar block moment problems (one for each component), for any $\Omega_{k,1}, \Omega_{k,2} \in U_k$, there exists $v_k \in L^2(0, T; U)$ solution of

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} v_k(t) dt = \Omega_{k,j}, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k, \end{cases}$$

such that

$$\|v_k\|_{L^2(0, T; U)}^2 \leq C e^{C/T} e^{C\sqrt{\lambda_{k,1}}} F(\Omega_{k,1}, \Omega_{k,2}),$$

with

$$F : (\Omega_{k,1}, \Omega_{k,2}) \in U^2 \mapsto \|\Omega_{k,1}\|_U^2 + \underbrace{\left\| \frac{\Omega_{k,2} - \Omega_{k,1}}{\lambda_{k,2} - \lambda_{k,1}} \right\|_U^2}_{= \Omega[\lambda_{k,1}, \lambda_{k,2}]}.$$

Strategy on an example - Back to the original block moment problem

- Non-empty constraints + resolution of scalar block moment problems + isolate the dependency with respect to T in the constraints + optimization :

F. Boyer & M. M. (2023)

For any $k \geq 1$, there exists $v_k \in L^2(0, T; U)$ solution of

$$\begin{cases} \int_0^T e^{-\lambda_{k,j} t} \langle v_k(t), \mathcal{B}^* \phi_{k,j} \rangle_U dt = e^{-\lambda_{k,j} T} \langle y_0, \phi_{k,j} \rangle, & \forall j \in \{1, 2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \setminus G_k, \end{cases}$$

such that

$$\|v_k\|_{L^2(0, T; U)}^2 \leq C e^{C/T} e^{C\sqrt{\lambda_{k,1}}} e^{-2\lambda_{k,1} T} \mathcal{C}(G_k, y_0)$$

with

$$\begin{aligned} \mathcal{C}(G_k, y_0) := \inf \left\{ \left\| \tilde{\Omega}_{k,1} \right\|_U^2 + \left\| \frac{\tilde{\Omega}_{k,2} - \tilde{\Omega}_{k,1}}{\lambda_{k,2} - \lambda_{k,1}} \right\|_U^2 ; \tilde{\Omega}_{k,j} \in U_k \text{ such that} \right. \\ \left. \left\langle \tilde{\Omega}_j, \mathcal{B}^* \phi_{k,j} \right\rangle_U = \langle y_0, \phi_{k,j} \rangle, \forall j \in \{1, 2\} \right\}. \end{aligned}$$

Comments

- Uniform estimates in a given class of sequences, extension to complex eigenvalues, algebraic and geometric multiplicity for eigenvalues.

Comments

- Uniform estimates in a given class of sequences, extension to complex eigenvalues, algebraic and geometric multiplicity for eigenvalues.
- Sufficiently sharp estimates to determine the minimal null control time with respect to $\mathcal{C}(G_k, y_0)$.

Comments

- Uniform estimates in a given class of sequences, extension to complex eigenvalues, algebraic and geometric multiplicity for eigenvalues.
- Sufficiently sharp estimates to determine the minimal null control time with respect to $\mathcal{C}(G_k, y_0)$.
- Formulas to compute $\mathcal{C}(G_k, y_0)$

F. Boyer & M. M. (2023)

Assume that $G_k = \{\lambda_{k,1}, \dots, \lambda_{k,g}\}$ is a group of simple eigenvalues. Then,

$$\mathcal{C}(G_k, y_0) = \langle M^{-1}\xi, \xi \rangle_{\mathbb{R}^g}$$

where

$$M = \sum_{\ell=1}^{g_k} \text{Gram}_U \left(\underbrace{0, \dots, 0}_{\ell-1}, \mathcal{B}^* \phi[\lambda_{k,\ell}], \dots, \mathcal{B}^* \phi[\lambda_{k,\ell}, \dots, \lambda_{k,g_k}] \right)$$

and

$$\xi = \begin{pmatrix} \langle y_0, \phi[\lambda_{k,1}] \rangle \\ \vdots \\ \langle y_0, \phi[\lambda_{k,1}, \dots, \lambda_{k,g_k}] \rangle \end{pmatrix}.$$

Back to the academic example

- Eigenelements of \mathcal{A}^* :

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \lambda_{k,2} := k^2 + e^{-ak^2}; k \geq 1 \right\}, \quad G_k := \{\lambda_{k,1}, \lambda_{k,2}\},$$

$$\phi_{k,1} := \begin{pmatrix} \varphi_k \\ \varphi_k \end{pmatrix}, \quad \phi_{k,2} := \begin{pmatrix} 0 \\ \varphi_k \end{pmatrix}.$$

- Resolution of block moment problems at cost

$$\|v_k\|_{L^2(0,T;U)}^2 \leq C e^{C/T} e^{C\sqrt{\lambda_{k,1}}} e^{-2\lambda_{k,1}T} \mathcal{C}(G_k, y_0)$$

with

$$\mathcal{C}(G_k, y_0) = \frac{1}{\|\varphi_k\|_{L^2(\omega)}^2} \left\langle y_0, \begin{pmatrix} 0 \\ \varphi_k \end{pmatrix} \right\rangle^2 + \frac{e^{2a\lambda_{k,1}}}{\|\varphi_k\|_{L^2(\omega)}^2} \left\langle y_0, \begin{pmatrix} \varphi_k \\ 0 \end{pmatrix} \right\rangle^2.$$

- Then, the minimal time to control to 0 any $y_0 \in X$ for this example is

$$T_0(X) = a.$$

A system with different diffusion coefficients and two boundary controls

$$D(A) = H^2(0, 1; \mathbb{R}) \cap H_0^1(0, 1; \mathbb{R}), \quad A\bullet = -\partial_x(\gamma \partial_x \bullet) + c\bullet,$$

with $c \in L^\infty(0, 1; \mathbb{R})$ satisfying $c \geq 0$ and $\gamma \in C^1([0, 1]; \mathbb{R})$ satisfying $\inf_{[0, 1]} \gamma > 0$.

$$\begin{cases} \partial_t y + \begin{pmatrix} A & 1 \\ 0 & dA \end{pmatrix} y = 0, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = \begin{pmatrix} u_0(t) \\ u_0(t) \end{pmatrix}, & y(t, 1) = \begin{pmatrix} 0 \\ u_1(t) \end{pmatrix}. \end{cases}$$

- **F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014).**
Assume that $A = -\partial_{xx}$, $u_0 \equiv 0$ and $\sqrt{d} \notin \mathbb{Q}$. Then,

$$T_0(H^{-1}(0, 1; \mathbb{R})^2) = \limsup_{k \rightarrow +\infty} \frac{-\ln |\lambda_{k+1} - \lambda_k|}{\lambda_k},$$

and for any $\tau \in [0, +\infty]$, there exists $d \in (0, +\infty)$ such that $T_0 = \tau$.

$$D(A) = H^2(0, 1; \mathbb{R}) \cap H_0^1(0, 1; \mathbb{R}), \quad A\bullet = -\partial_x(\gamma \partial_x \bullet) + c\bullet,$$

with $c \in L^\infty(0, 1; \mathbb{R})$ satisfying $c \geq 0$ and $\gamma \in C^1([0, 1]; \mathbb{R})$ satisfying $\inf_{[0, 1]} \gamma > 0$.

$$\begin{cases} \partial_t y + \begin{pmatrix} A & 1 \\ 0 & dA \end{pmatrix} y = 0, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = \begin{pmatrix} u_0(t) \\ u_0(t) \end{pmatrix}, & y(t, 1) = \begin{pmatrix} 0 \\ u_1(t) \end{pmatrix}. \end{cases}$$

- **F. Boyer & M. M. (2023).**

Using both controls u_0 and u_1 , for any $d > 0$, there exists $Y_0 \subset (H^{-1}(0, 1; \mathbb{R}))^2$ with finite codimension such that

- if $y_0 \notin Y_0$: not approximately controllable;
- if $y_0 \in Y_0$: null controllability in any time $T > 0$.

Space varying zero order coupling term

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

$$\begin{cases} \partial_t y + \begin{pmatrix} A & q(x) \\ 0 & A \end{pmatrix} y = \begin{pmatrix} 0 \\ \mathbf{1}_\omega(x)u(t, x) \end{pmatrix}, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = y(t, 1) = 0. \end{cases} \quad (S_q)$$

For example, with $A = -\partial_{xx}$ and $q(x) = (x - \frac{1}{2}) \mathbf{1}_{(\frac{1}{4}, \frac{3}{4})}(x)$:

- F. Boyer & G. Olive (2014). If

then the problem is not approximately controllable (for any time $T > 0$).

- If

then $T_0(L^2(0, 1; \mathbb{R})^2) = 0$.

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

$$\begin{cases} \partial_t y + \begin{pmatrix} A & q(x) \\ 0 & A \end{pmatrix} y = \begin{pmatrix} 0 \\ \mathbf{1}_\omega(x)u(t, x) \end{pmatrix}, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = y(t, 1) = 0. \end{cases} \quad (S_q)$$

For example, with $A = -\partial_{xx}$, for any $\tau \in [0, +\infty]$, there exists $q, \tilde{q} \in L^\infty(0, 1; \mathbb{R})$ such that

- systems (S_q) and $(S_{\tilde{q}})$ are null controllable in any time $T > 0$;
- the minimal time for simultaneous null controllability of systems (S_q) and $(S_{\tilde{q}})$ is τ .

- 1 Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
- 3 The block moment method for general control operators
- 4 Biorthogonal families in higher dimension
 - Setting and biorthogonal families
 - Ingredients of proof

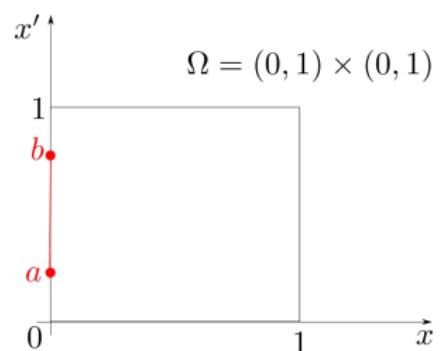
An example

Simultaneous controllability on $\Omega = (0, 1) \times (0, 1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta + c(x) \end{pmatrix} y = 0, \\ y|_{\partial\Omega} = \begin{pmatrix} \mathbf{1}_\Gamma u \\ \mathbf{1}_\Gamma u \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'} c = 0$. $\Gamma = \{0\} \times (a, b)$.

Eigenelements: $(-\partial_{xx} + c(x))\varphi_k^c(x) = \lambda_k^c \varphi_k^c(x)$.



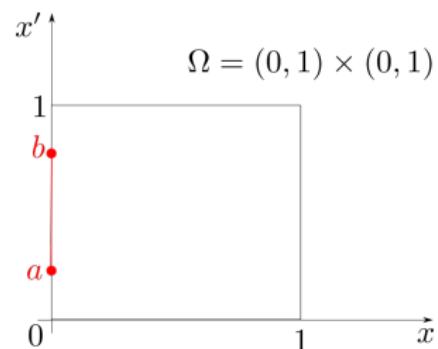
An example

Simultaneous controllability on $\Omega = (0, 1) \times (0, 1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta + c(x) \end{pmatrix} y = 0, \\ y|_{\partial\Omega} = \begin{pmatrix} \mathbf{1}_\Gamma u \\ \mathbf{1}_\Gamma u \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'} c = 0$. $\Gamma = \{0\} \times (a, b)$.

Eigenfunctions: $(-\partial_{xx} + c(x))\varphi_k^c(x) = \lambda_k^c \varphi_k^c(x)$.



- Eigenvalues of \mathcal{A}^* : Assume $\lambda_k^c \neq j^2\pi^2$, $\forall k, j \geq 1$.

$$\Lambda = \{k^2\pi^2 + m^2\pi^2 ; k, m \geq 1\} \cup \{\lambda_k^c + m^2\pi^2 ; k, m \geq 1\}.$$

- L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary condition at $x = 0$) given by the condensation index of the eigenvalues

$$T_0(c) = \limsup_{k \rightarrow +\infty} \frac{-\ln |k^2\pi^2 - \lambda_k^c|}{k^2\pi^2}.$$

- 2D setting: same minimal time with $\Gamma = \{0\} \times (0, 1)$. But $\Gamma = \{0\} \times (a, b)$??

The multi-D moment problem

- Back to the moment problem

$$y(T) = 0 \iff \int_0^T \left\langle u(T-t), e^{-\lambda t} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda.$$

The multi-D moment problem

- Back to the moment problem

$$y(T) = 0 \iff \int_0^T \left\langle u(T-t), e^{-\lambda t} \mathcal{B}^* \phi_\lambda \right\rangle_U dt = - \left\langle y_0, e^{-\lambda T} \phi_\lambda \right\rangle, \forall \lambda \in \Lambda.$$

- Eigenvalues $\lambda_{k,m}^0 = k^2\pi^2 + m^2\pi^2$ and $\lambda_{k,m}^c = \lambda_k^c + m^2\pi^2$ with eigenvectors

$$(x, x') \mapsto \begin{pmatrix} \varphi_k^0(x) \sin(m\pi x') \\ 0 \end{pmatrix} \quad \text{and} \quad (x, x') \mapsto \begin{pmatrix} 0 \\ \varphi_k^c(x) \sin(m\pi x') \end{pmatrix}.$$

- Moment problem: find $v \in L^2((0, T) \times (a, b))$ such that for all $k, m \geq 1$,

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^0 T} \langle y_0, \phi_{k,m}^0 \rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^c t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^c T} \langle y_0, \phi_{k,m}^c \rangle. \end{cases}$$

The multi-D biorthogonal family

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^0 T} \langle y_0, \phi_{k,m}^0 \rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^c t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^c T} \langle y_0, \phi_{k,m}^c \rangle. \end{cases}$$

- Look for a biorthogonal family in $L^2((0, T) \times (a, b))$ to $\{F_{k,m}^p ; p \in \{0, c\}, k, m \geq 1\}$ with

$$F_{k,m}^p : (t, x') \mapsto e^{-\lambda_{k,m}^p t} \sin(m\pi x').$$

The multi-D biorthogonal family

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^0 T} \langle y_0, \phi_{k,m}^0 \rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^c t} \sin(m\pi x') v(t, x') dx' dt = -e^{-\lambda_{k,m}^c T} \langle y_0, \phi_{k,m}^c \rangle. \end{cases}$$

- Look for a biorthogonal family in $L^2((0, T) \times (a, b))$ to $\{F_{k,m}^p ; p \in \{0, c\}, k, m \geq 1\}$ with

$$F_{k,m}^p : (t, x') \mapsto e^{-\lambda_{k,m}^p t} \sin(m\pi x').$$

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

Construction of such biorthogonal family for any $T > 0$ with estimate

$$\|Q_{k,m}^p\|_{L^2((0, T) \times (a, b))} \leq C e^{C/T} e^{C \sqrt{\lambda_{k,m}^p}} \frac{1}{|\lambda_k^c - k^2 \pi^2|}.$$

⇒ Same minimal null control time as in the 1D setting.

First step: a nice biorthogonal family in $L^2((0, T) \times (0, 1))$

- As $\lambda_{k,m}^p = \lambda_k^p + m^2\pi^2$, for any **fixed** $m \geq 1$, biorthogonal family $(q_{k,m}^p)$ in $L^2(0, T; \mathbb{R})$ to

$$t \in (0, T) \mapsto e^{-\lambda_{k,m}^p t}, \quad k \geq 1,$$

with estimate

$$\|q_{k,m}^p\| \leq C e^{C/T} e^{C\sqrt{\lambda_{k,m}}} \frac{1}{|\lambda_k^c - k^2\pi^2|}, \quad \forall k, m \geq 1, p \in \{0, c\}.$$

First step: a nice biorthogonal family in $L^2((0, T) \times (0, 1))$

- As $\lambda_{k,m}^p = \lambda_k^p + m^2\pi^2$, for any **fixed** $m \geq 1$, biorthogonal family $(q_{k,m}^p)$ in $L^2(0, T; \mathbb{R})$ to

$$t \in (0, T) \mapsto e^{-\lambda_{k,m}^p t}, \quad k \geq 1,$$

with estimate

$$\|q_{k,m}^p\| \leq C e^{C/T} e^{C\sqrt{\lambda_{k,m}^p}} \frac{1}{|\lambda_k^c - k^2\pi^2|}, \quad \forall k, m \geq 1, p \in \{0, c\}.$$

- Orthogonality in $L^2((0, 1); \mathbb{R})$ of $(\sin(m\pi \cdot))_{m \geq 1}$ implies that

$$Q_{k,m}^p : (t, x') \mapsto q_{k,m}^p(t) \sin(m\pi x')$$

forms a biorthogonal family in $L^2((0, T) \times (0, 1))$ to

$$F_{k,m}^p : (t, x') \mapsto e^{-\lambda_{k,m}^p t} \sin(m\pi x'), \quad \forall k, m \geq 1$$

with estimate

$$\|Q_{k,m}^p\|_{L^2((0, T) \times (0, 1))} \leq C e^{C/T} e^{C\sqrt{\lambda_{k,m}^p}} \frac{1}{|\lambda_k^c - k^2\pi^2|}, \quad \forall k, m \geq 1, p \in \{0, c\}.$$

Same construction as F. Boyer & G. Olive (2023).

Second step: the restriction operator from $(0, 1)$ to (a, b)

- Prove that the restriction in space operator

$$\mathcal{R} : \overline{\text{Span}\{F_{k,m}^p\}}^{L_p^2((0,T) \times (0,1))} \rightarrow \overline{\text{Span}\{F_{k,m}^p\}}^{L^2((0,T) \times (a,b))}$$
$$F \quad \mapsto \quad F|_{(a,b)}$$

is an isomorphism.

Second step: the restriction operator from $(0, 1)$ to (a, b)

- Prove that the restriction in space operator

$$\mathcal{R} : \overline{\text{Span}\{F_{k,m}^p\}}^{L^2((0,T) \times (0,1))} \rightarrow \overline{\text{Span}\{F_{k,m}^p\}}^{L^2((0,T) \times (a,b))}$$
$$F \quad \mapsto \quad F|_{(a,b)}$$

is an isomorphism.

- Follows from

$$\int_0^T \int_0^1 \rho(t) |P_N(t, x')|^2 dx' dt \leq C \int_0^T \int_a^b |P_N(t, x')|^2 dx' dt$$

for any

$$P_N(t, x') = \sum_{k=1}^N \sum_{m=1}^N a_{k,m}^0 e^{-\lambda_{k,m}^0 t} \sin(m\pi x') + a_{k,m}^c e^{-\lambda_{k,m}^c t} \sin(m\pi x').$$

$$P_N(t, x') = \sum_{k=1}^N \sum_{m=1}^N \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

- 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx' \leq e^{\beta \lambda} \int_a^b \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by [L. Miller \(2010\)](#)).

$$P_N(t, x') = \sum_{k=1}^N \sum_{m=1}^N \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

- 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx' \leq e^{\beta \lambda} \int_a^b \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by [L. Miller \(2010\)](#)).

- Let $t \in (0, T)$ and $m \geq 1$ be fixed. Let $q_{k,m}^t$ be the solution of the block moment problem

$$\begin{cases} \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^0 s} ds = e^{-\lambda_{k,m}^0 t}, & \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^c s} ds = e^{-\lambda_{k,m}^c t}, \\ \int_0^T q_{k,m}^t(s) e^{-\lambda_{j,m}^p s} ds = 0, & \forall j \neq k, p \in \{0, c\}. \end{cases}$$

$$P_N(t, x') = \sum_{k=1}^N \sum_{m=1}^N \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

- 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx' \leq e^{\beta \lambda} \int_a^b \left| \sum_{m \leq \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by [L. Miller \(2010\)](#)).

- Let $t \in (0, T)$ and $m \geq 1$ be fixed. Let $q_{k,m}^t$ be the solution of the block moment problem

$$\begin{cases} \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^0 s} ds = e^{-\lambda_{k,m}^0 t}, & \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^c s} ds = e^{-\lambda_{k,m}^c t}, \\ \int_0^T q_{k,m}^t(s) e^{-\lambda_{j,m}^p s} ds = 0, & \forall j \neq k, p \in \{0, c\}. \end{cases}$$

Then,

$$\langle q_{k,m}^t \sin(m\pi \cdot), P_N \rangle_{L^2((0,T) \times (0,1))} = a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t}$$

and

$$\|q_{k,m}^t\|_{L^2(0,T;\mathbb{R})} \leq C e^{C/T} e^{C \sqrt{\lambda_{k,m}^0} t} e^{-\lambda_{k,m}^0 t}$$

Another example

Simultaneous controllability on $\Omega = (0, 1) \times (0, 1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta + c(x) \end{pmatrix} y = \begin{pmatrix} \mathbf{1}_{\omega \times (a,b)} u \\ \mathbf{1}_{\omega \times (a,b)} u \end{pmatrix}, \\ y|_{\partial\Omega} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'} c = 0$.

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

Construction of a suitable biorthogonal family with estimate

$$\|Q_{k,m}^p\|_{L^2((0,T) \times \omega \times (a,b))}^2 \leq C e^{C/T} e^{C \sqrt{\lambda_{k,m}^p}} \frac{1}{\det \mathcal{G}_k + |\lambda_k^c - k^2 \pi^2|^2}$$

where

$$\mathcal{G}_k = \text{Gram}_{L^2(\omega)} (\varphi_k^0, \varphi_k^c).$$

⇒ Minimal null control time if both eigenvalues and eigenvectors on ω condensate.

A general result

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

- Cylindrical geometry and tensorized operators
- $\Lambda = \left\{ \lambda_k + \mu_m ; k, m \geq 1 \right\}$
- On the direction associated with λ_k : nice 1D assumptions (to solve block moment problems) on the eigenvalues.
- On the direction associated with μ_m : asymptotic of μ_m + Riesz-basis property for the eigenvectors + spectral inequality for the eigenvectors.

\implies construction and estimate of a space-time biorthogonal family for any time $T > 0$.

Conclusion:

The block resolution of moment problems

- gives sharper results than the use of biorthogonal families ;
- allows to characterize the minimal null control time (of a given initial condition) for many parabolic-type one dimensional control problems for any admissible control operators ;
- is the parabolic equivalent of Ingham-type results for hyperbolic problems by [C. Baiocchi, V. Komornik & P. Loreti](#) ;
- is a key tool to construct and estimate space-time biorthogonal families in higher dimension tensorized problems.

Perspectives:

- The problem for non tensorized geometries or operators remains completely open...

Conclusion:

The block resolution of moment problems

- gives sharper results than the use of biorthogonal families ;
- allows to characterize the minimal null control time (of a given initial condition) for many parabolic-type one dimensional control problems for any admissible control operators ;
- is the parabolic equivalent of Ingham-type results for hyperbolic problems by C. Baiocchi, V. Komornik & P. Loreti ;
- is a key tool to construct and estimate space-time biorthogonal families in higher dimension tensorized problems.

Perspectives:

- The problem for non tensorized geometries or operators remains completely open...

Thank you for your attention