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Abstract linear control problem

{
y′(t) +Ay(t) = Bu(t), t ∈ (0, T ),

y(0) = y0.

−A generates a C0-semigroup on the Hilbert space (X, ‖·‖),

The space of controls is the Hilbert space (U, ‖·‖U ).

The control operator B : U → D(A∗)′. Assume (for simplicity) that∫ T

0

∥∥∥B∗e−tA∗z∥∥∥2

U
dt ≤ C‖z‖, ∀z ∈ D(A∗).
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Notion of solution

Wellposedness theorem

Let T > 0. For any y0 ∈ X and any u ∈ L2(0, T ;U), there exists a unique solution
y ∈ C0([0, T ], X) characterized by

〈y(t), z〉 −
〈
y0, e

−tA∗z
〉

=

∫ t

0

〈
u(τ),B∗e−(t−τ)A∗z

〉
U

dτ,

for any t ∈ [0, T ], and any z ∈ X.
Moreover, there exists C > 0 such that for any such y0, u, the solution satisfies

‖y(t)‖ ≤ C
(
‖y0‖+ ‖u‖L2(0,T ;U)

)
, ∀t ∈ [0, T ].

Question : null controllability of a given y0 at a given time T > 0 ?
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Typical examples

Boundary control of coupled equations
∂ty1 −∆y1 + y2 = 0, in (0, T )× Ω,

∂ty2 +
(
−∆ + c(x)

)
y2 = 0, in (0, T )× Ω,

y1|∂Ω = 0, y2|∂Ω = 1Γu in (0, T )× ∂Ω,

y1(0, ·) = y1,0, y2(0, ·) = y2,0.

Simultaneous controllability
∂ty1 −∆y1 = 1ωu, in (0, T )× Ω,

∂ty2 +
(
−∆ + c(x)

)
y2 = 1ωu, in (0, T )× Ω,

y1|∂Ω = y2|∂Ω = 0 in (0, T )× ∂Ω,

y1(0, ·) = y1,0, y2(0, ·) = y2,0.
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Assumptions and moment problem

The setting
Assume that the operator A∗ admits a sequence of positive eigenvalues Λ.
We denote by (φλ)λ∈Λ the associated sequence of normalized eigenvectors and
we assume that it forms a complete family in X.

Definition of solutions: for all λ ∈ Λ,

〈y(T ), φλ〉 −
〈
y0, e

−λTφλ
〉

=

∫ T

0

〈
u(t), e−λ(T−t)B∗φλ

〉
U

dt.

Hilbert basis of eigenvectors (φλ)λ∈Λ :

y(T ) = 0 ⇐⇒
∫ T

0

〈
u(t), e−λ(T−t)B∗φλ

〉
U

dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ

⇐⇒

�



�
	

∫ T

0

〈
v(t), e−λtB∗φλ

〉
U

dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ

with v := u(T − ·).
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Reduction to a moment problem when dimU = 1

Scalar control (dimU = 1) with observable eigenvectors (B∗φλ 6= 0)

y(T ) = 0 ⇐⇒
∫ T

0

e−λt 〈v(t),B∗φλ〉U dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ

⇐⇒ B∗φλ
∫ T

0

e−λtv(t)dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ

⇐⇒

�



�
	

∫ T

0

e−λtv(t)dt = −e−λT
〈
y0,

φλ
B∗φλ

〉
, ∀λ ∈ Λ
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Resolution of the moment problem using a biorthogonal family

Find v such that
∫ T

0

e−λtv(t)dt = −e−λT
〈
y0,

φλ
B∗φλ

〉
, ∀λ ∈ Λ

Biorthogonal family (qλ)λ∈Λ to the exponentials associated with Λ in L2(0, T ;R)
∫ T

0

e−µtqλ(t)dt = 0, ∀µ ∈ Λ\{λ},∫ T

0

e−λtqλ(t)dt = 1.

Existence of such biorthogonal family Schwartz⇐⇒
∑
λ∈Λ

1

λ
< +∞.

In this case,

u : t ∈ (0, T ) 7→ −
∑
λ∈Λ

e−λT
〈
y0,

φλ
B∗φλ

〉
qλ(T − t)

formally solves the moment problem.

Question: estimate B∗φλ and ‖qλ‖L2(0,T ;R) to prove that the series converges in
L2(0, T ;R).
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Some estimates on biorthogonal families

Under the gap condition (|λ− µ| > ρ, ∀λ 6= µ ∈ Λ).
H.O. Fattorini & D.L Russell (1974): ‖qλ‖L2(0,T ;R) ≤ Cε,T eελ.
Uniform estimates with respect to Λ in a certain class.
A. Benabdallah, F. Boyer, M. González Burgos & G. Olive (2014)
Sharper estimates + dependency /T : ‖qλ‖L2(0,T ;R) ≤ CeC/T eC

√
λ.

P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)
N. Cîndea, S. Micu, I. Roventa & M.Tucsnak (2015)
Union of two sequences with gap condition plus a non-condensation assumption
A. Benabdallah, F. Boyer & M. M. (2020)
M. González Burgos & L. Ouaili (2020)

Without any gap condition
F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014)
Condensation index of the sequence.
D. Allonsius, F. Boyer & M. Morancey (2021)
"Local" gap for each λ.
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Perturbation of a Jordan-block: positive controllability result

Ay =

(
−∂xx 1

0 −∂xx + exp(a∂xx)

)
y, B =

(
0

a nice scalar control operator

)
.

Eigenvectors of −∂xx: −∂xxϕk = k2ϕk. Thus,

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ∈ N∗
}

Complete family of associated eigenvectors of A∗ :

φk,1 =

(
−e−ak

2

1

)
ϕk, φk,2 =

(
0
1

)
ϕk,

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014):
there exists a biorthogonal family satisfying

1

Cε
e(a−ε)λ ≤ ‖qλ‖L2(0,T ;R) ≤ Cεe

(a+ε)λ.

−→ Direct application of moments method yields null controllability in time T > a.

Morgan MORANCEY Block moment method 11



Limitation in the use of biorthogonal families

Yet, we will see that the previous example is null controllable in any time T > 0...
What is missed in the direct application of the moment method?

u : t ∈ (0, T ) 7→ −
∑
λ∈Λ

e−λT
〈
y0,

φλ
B∗φλ

〉
qλ(T − t)

Only information on ‖qλ‖: proof of normal convergence of the series in L2(0, T ;R)
which is not the most subtle convergence...

As λk,1 ≈ λk,2, it can be a good idea to consider the biorthogonal elements qk,1 and
qk,2 together. Especially if φk,1 ≈ φk,2. In this case, we will rather consider the
control u in the form

u : t ∈ (0, T ) 7→ −
∑
k≥1

(
2∑
j=1

e−λk,jT
〈
y0,

φk,j
B∗φk,j

〉
qk,j(T − t)

)

and estimate ∥∥∥∥∥
2∑
j=1

e−λk,jT
〈
y0,

φk,j
B∗φk,j

〉
qk,j(T − ·)

∥∥∥∥∥
L2(0,T )

.
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Assumptions

A and B satisfy the assumptions for the wellposedness.

Scalar control U = R.

Eigenvalues of A∗.

Λ: positive simple eigenvalues of A∗ satisfying
∑
λ∈Λ

1

λ
< +∞.

asymptotic behavior of the counting function:
NΛ(r) := Card {λ ∈ Λ ; λ ≤ r} ≤ κrθ with θ ∈ (0, 1).

(φλ)λ∈Λ associated eigenvectors.

complete family of eigenvectors in X.

Ker(A∗ − λ) ∩KerB∗ = {0} for every λ ∈ R.

Extra assumption :

Weak gap condition: there exists ρ > 0 and p ∈ N∗ such that

Card (Λ ∩ [µ, µ+ ρ]) ≤ p, ∀µ ≥ 0.
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Groups of eigenvalues

Let p ∈ N∗ and ρ > 0. The weak-gap condition ensures the existence of sets
(Gk)k≥1 ⊂ P(Λ) such that

Λ =
⋃
k≥1

Gk, sup(Gk) < inf(Gk+1),

with the additional properties that for every k ≥ 1,

gk := #Gk ≤ p, dist(Gk, Gk+1) ≥ r, diamGk < ρ.

with r = rp,ρ > 0.

Labelling the eigenelements

Gk = {λk,1, . . . , λk,gk} with λk,1 < · · · < λk,gk ,

φk,j := φλk,j , ∀k ≥ 1, ∀1 ≤ j ≤ gk.

The analysis is insensitive to the particular choice of such a grouping.
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Divided differences in a given group Gk

For any j, set x[λj ] := xj .
Divided differences. For any i 6= j we set

x[λi, λj ] :=
x[λj ]− x[λi]

λj − λi
∈ X.

and so on ... following the diagram

λ1

λ2

λ3

λ4

x1 = x[λ1]

x2 = x[λ2]

x3 = x[λ3]

x4 = x[λ4]

x[λ1, λ2]

x[λ2, λ3]

x[λ3, λ4]

x[λ1, λ2, λ3]

x[λ2, λ3, λ4]

x[λ1, λ2, λ3, λ4]
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The block moment problem

y(T ) = 0 ⇐⇒
∫ T

0

e−λ(T−t)u(t)dt = −e−λT
〈
y0,

φλ
B∗φλ

〉
, ∀λ ∈ Λ

⇐⇒
∫ T

0

e−λ(T−t)u(t)dt = −e−λT 〈y0, ψλ〉 , ∀λ ∈ Λ

where ψλ :=
φλ
B∗φλ

.

Look for u in the form
u : t ∈ (0, T ) 7→ −

∑
k≥1

vk(T − t)

where 
∫ T

0

e−λk,jtvk(t)dt = e−λk,jT 〈y0, ψk,j〉 , ∀k ≥ 1, ∀1 ≤ j ≤ gk,∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk.

The function vk solves the moment problem inside the group Gk.
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Resolution of the block moment problem

A. Benabdallah, F. Boyer & M. M. (2020)

Let T ∈ (0,+∞]. For any ε > 0, there exists a constant C > 0 such that for any
k ≥ 1, for any ωk,1, . . . , ωk,gk ∈ R, there exists vk ∈ L2(0, T ;R) satisfying

∫ T

0

e−λk,jtvk(t)dt = ωk,j , ∀1 ≤ j ≤ gk,∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk,

and

‖vk‖L2(0,T ;R) ≤ Ce
C/T

θ
1−θ

eCλ
θ
k,1 max

1≤l≤gk

∣∣∣ω[λk,1, . . . , λk,l]
∣∣∣.

Moreover, up to the exponential factors, this last estimate is sharp.

Adaptation of H.O. Fattorini & D.L. Russell (1974) using the isomorphism of the
Laplace transform and refined estimates using Paley-Wiener theorem (F. Boyer - M2
lecture notes (HAL))
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Application of the resolution of block moment problems

Sufficiently sharp estimates to characterize the minimal null control time

T0 = lim sup
k→∞

ln

(
max

1≤l≤gk
‖ψ[λk,1, . . . , λk,l]‖

)
λk,1

.

Extension to complex eigenvalues in a sector of dominant real part.

Uniform estimates: similar results for algebraically multiple eigenvalues (limit
process λ, λ+ h).

Application
K. Bhandari & F. Boyer (2021): boundary control, from Robin to Dirichlet
boundary conditions.
F. Boyer & G. Olive (2023): 2D coupled heat equations with different constant
diffusion coefficient.
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Back to the academic example

Ay =

(
−∂xx 1

0 −∂xx + exp(a∂xx)

)
y, B =

(
0

a nice scalar control operator

)
.

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ∈ N∗
}

=⇒ #Gk = 2

T0 = lim sup
k→∞

1

λk,1
ln max

 1

|B∗φk,1|
,

1

|B∗φk,2|
,

∥∥∥ φk,2
B∗φk,2

− φk,1
B∗φk,1

∥∥∥
λk,2 − λk,1

 = 0.

Indeed,

φk,1 =

(
−e−ak

2

1

)
ϕk, φk,2 =

(
0
1

)
ϕk,

imply

B∗φk,1 = B∗φk,2 = nice and ‖φk,2 − φk,1‖ = e−ak
2

= |λk,2 − λk,1|.

The condensation of eigenvectors compensates the condensation of eigenvalues.
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A PDE example behaving as the academic example


∂ty(t, x) +

(
−∂xx 1

0 −∂xx + c(x)

)
y(t, x) =

(
0
0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) =

(
0
u(t)

)
, y(t, 1) =

(
0
0

)
, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 1),

For any c ∈ L2(0, 1;R)

possible presence of algebraically double eigenvalues;
possible strong condensation of eigenvalues;
possible (finite number of) non observable modes.

There exists Y0 ⊂ (H−1(0, 1;R))2 with finite codimension such that

if y0 6∈ Y0: not approximately controllable;
if y0 ∈ Y0: null controllability in any time T > 0.
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Block moment problem and biorthogonal family to divided differences

For any s ∈ C, let es : x ∈ R 7→ e−sx.

M. Mehrenberger, M. M. (2025)

Solvability of block moment problems at cost

‖vk‖L2(0,T ) ≤ C(T,Gk)×
gk∑
j=1

∣∣ω[λk,1, . . . , λk,j]∣∣, ∀k ≥ 1,

⇐⇒

Existence of a biorthogonal family
(
q`,m

)
`≥1,1≤m≤g`

to the divided differences in the
blocks of the time exponentials i.e. ∀k, ` ≥ 1, ∀j : 1 ≤ j ≤ gk, ∀m : 1 ≤ m ≤ g`,∫ T

0

et [λk,1, . . . , λk,j ] q`,m(t)dt = δk`δjm

with
‖q`,m‖L2(0,T ) ≤ C(T,G`).
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Relation with Ingham-type results

The resolution of block moment problems is the parabolic equivalent of
generalized Ingham-type results with weak gap condition obtained for hyperbolic
problems in
C. Baiocchi, V. Komornik & P. Loreti (2000, 2002)
S. A. Avdonin & S. A. Ivanov (2001).

Following C. Laurent & M. Léautaud (2023) we provide an alternative proof for
the resolution of block moment problems:

existence of a bounded biorthogonal family to the divided differences in the blocks
of the complex time exponentials coming from generalized Ingham-type results
application of the transmutation transformation from S. Ervedoza & E. Zuazua
(2011) to the biorthogonal elements
careful estimation of the divided differences

but under the (more restrictive) condition that
√

Λ satisfies a weak-gap condition

M. Mehrenberger, M. M. (2025)

‖q`,m‖L2(0,T ) ≤ Ce
C/T eC

√
λ`,1 , ∀` ≥ 1, ∀m : 1 ≤ m ≤ g`.
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M. Mehrenberger, M. M. (2025)

‖q`,m‖L2(0,T ) ≤ Ce
C/T eC

√
λ`,1 , ∀` ≥ 1, ∀m : 1 ≤ m ≤ g`.
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1 Control of parabolic problems and moment problems

2 The block moment method for scalar controls

3 The block moment method for general control operators
Strategy of proof on an example
Examples

4 Biorthogonal families in higher dimension
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Setting

Work with F. Boyer (2023, 2025).
Exact same assumptions as in the scalar case except

‘dimU = 1’ replaced by ‘U a Hilbert space’;
allow finite geometric multiplicity of eigenvalues.

For instance, 
∂ty(t, x) +

(
−∂xx q(x)

0 −∂xx

)
y(t, x) =

(
0

1ωu(t, x)

)
,

y(t, 0) =

(
0
0

)
, y(t, 1) =

(
0
0

)
,

y(0, x) = y0(x).

The moment problem: y(T ) = 0 if and only if u satisfies∫ T

0

〈
u(T − t), e−λtB∗φλ

〉
U

dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ.
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Strategy on an example - Setting

We consider X = L2(0, 1;R)2 and ω ⊂ (0, 1) a non empty open set. Let (ϕk)k≥1 be
an Hilbert basis of X such that infk≥1 ‖ϕk‖L2(ω) > 0.

Eigenelements of A∗:

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ≥ 1
}
, Gk := {λk,1, λk,2},

φk,1 :=

(
ϕk
ϕk

)
, φk,2 :=

(
0
ϕk

)
.

Control operator:

B : u ∈ U = L2(0, 1;R) 7→
(

0
1ωu

)
∈ X.

Block moment problem: for any k ≥ 1, find vk ∈ L2(0, T ;U) such that
∫ T

0

e−λk,jt 〈vk(t),B∗φk,j〉U dt = −e−λk,jT 〈y0, φk,j〉 , ∀j ∈ {1, 2},∫ T

0

e−λt 〈vk(t),B∗φλ〉U dt = 0, ∀λ ∈ Λ\Gk.
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Strategy on an example - Simplification of the block moment problem


∫ T

0

e−λk,jt 〈vk(t),B∗φk,j〉U dt = −e−λk,jT 〈y0, φk,j〉 , ∀j ∈ {1, 2},∫ T

0

e−λt 〈vk(t),B∗φλ〉U dt = 0, ∀λ ∈ Λ\Gk.

A stronger orthogonality condition
∫ T

0

e−λk,jt 〈vk(t),B∗φk,j〉U dt = −e−λk,jT 〈y0, φk,j〉 , ∀j ∈ {1, 2},∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk.
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Strategy on an example - Auxiliary vectorial block moment problem


∫ T

0

e−λk,jt 〈vk(t),B∗φk,j〉U dt = −e−λk,jT 〈y0, φk,j〉 , ∀j ∈ {1, 2},∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk.
(BMPb)

Consider the auxiliary vectorial block moment problem set in the control space:
find vk ∈ L2(0, T ;U) such that

∫ T

0

e−λk,jtvk(t)dt = Ωk,j , ∀j ∈ {1, 2},∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk,
(VBMPb)

with Ωk,j ∈ U = L2((0, 1);R) to be precised.

Constraints: If Ωk,j ∈ U satisfy

〈Ωk,j ,B∗φk,j〉U = −e−λk,jT 〈y0, φk,j〉 ,

then
vk solution of (VBMPb) =⇒ vk solution of (BMPb).
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Strategy on an example - Dealing with the constraints

Since B∗φk,j 6= 0, there exists

Ωk,1,Ωk,2 ∈ U

such that
〈Ωk,j ,B∗φk,j〉U = −e−λk,jT 〈y0, φk,j〉 .

Projection onto a finite dimensional subspace of U . There exists

Ωk,1,Ωk,2 ∈
�� ��Uk := Span {B∗φk,1,B∗φk,2}

such that
〈Ωk,j ,B∗φk,j〉U = −e−λk,jT 〈y0, φk,j〉 .
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Strategy on an example - Resolution of the auxiliary block moment
problem

The space Uk := Span {B∗φk,1,B∗φk,2} is of finite dimension !!

Solving scalar block moment problems (one for each component), for any
Ωk,1,Ωk,2 ∈ Uk, there exists vk ∈ L2(0, T ;U) solution of

∫ T

0

e−λk,jtvk(t)dt = Ωk,j , ∀j ∈ {1, 2},∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk,

such that
‖vk‖2L2(0,T ;U) ≤ Ce

C/T eC
√
λk,1F (Ωk,1,Ωk,2),

with

F : (Ωk,1,Ωk,2) ∈ U2 7→ ‖Ωk,1‖2U +

∥∥∥∥Ωk,2 − Ωk,1
λk,2 − λk,1

∥∥∥∥2

U︸ ︷︷ ︸
=Ω[λk,1,λk,2]

.

Morgan MORANCEY Block moment method 30



Strategy on an example - Back to the original block moment problem

Non-empty constraints + resolution of scalar block moment problems + isolate
the dependency with respect to T in the constaints + optimization :

F. Boyer & M. M. (2023)

For any k ≥ 1, there exists vk ∈ L2(0, T ;U) solution of
∫ T

0

e−λk,jt 〈vk(t),B∗φk,j〉U dt = e−λk,jT 〈y0, φk,j〉 , ∀j ∈ {1, 2},∫ T

0

e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk,

such that
‖vk‖2L2(0,T ;U) ≤ Ce

C/T eC
√
λk,1e−2λk,1T C(Gk, y0)

with

C(Gk, y0) := inf

{∥∥∥Ω̃k,1

∥∥∥2

U
+

∥∥∥∥∥ Ω̃k,2 − Ω̃k,1
λk,2 − λk,1

∥∥∥∥∥
2

U

; Ω̃k,j ∈ Uk such that

〈
Ω̃j ,B∗φk,j

〉
U

= 〈y0, φk,j〉 , ∀j ∈ {1, 2}
}
.
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Comments

Uniform estimates in a given class of sequences, extension to complex
eigenvalues, algebraic and geometric multiplicity for eigenvalues.

Sufficiently sharp estimates to determine the minimal null control time with
respect to C(Gk, y0).
Formulas to compute C(Gk, y0)

F. Boyer & M. M. (2023)

Assume that Gk = {λk,1, . . . , λk,g} is a group of simple eigenvalues. Then,

C(Gk, y0) = 〈M−1ξ, ξ〉Rg

where

M =

gk∑
`=1

GramU

0, . . . , 0︸ ︷︷ ︸
`−1

,B∗φ[λk,`], . . . ,B∗φ[λk,`, . . . , λk,gk ]


and

ξ =

 〈y0, φ[λk,1]〉
...

〈y0, φ[λk,1, . . . , λk,gk ]〉

 .
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Back to the academic example

Eigenelements of A∗:

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ≥ 1
}
, Gk := {λk,1, λk,2},

φk,1 :=

(
ϕk
ϕk

)
, φk,2 :=

(
0
ϕk

)
.

Resolution of block moment problems at cost

‖vk‖2L2(0,T ;U) ≤ Ce
C/T eC

√
λk,1e−2λk,1T C(Gk, y0)

with

C(Gk, y0) =
1

‖ϕk‖2L2(ω)

〈
y0,

(
0
ϕk

)〉2

+
e2aλk,1

‖ϕk‖2L2(ω)

〈
y0,

(
ϕk
0

)〉2

.

Then, the minimal time to control to 0 any y0 ∈ X for this example is

T0(X) = a.
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A system with different diffusion coefficients and two boundary controls

D(A) = H2(0, 1;R) ∩H1
0 (0, 1;R), A• = −∂x

(
γ∂x •

)
+ c•,

with c ∈ L∞(0, 1;R) satisfying c ≥ 0 and γ ∈ C1([0, 1];R) satisfying inf
[0,1]

γ > 0.


∂ty +

(
A 1
0 dA

)
y = 0, t ∈ (0, T ), x ∈ (0, 1),

y(t, 0) =

(
u0(t)
u0(t)

)
, y(t, 1) =

(
0

u1(t)

)
.

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014).
Assume that A = −∂xx, u0 ≡ 0 and

√
d 6∈ Q. Then,

T0

(
H−1(0, 1;R)2) = lim sup

k→+∞

− ln |λk+1 − λk|
λk

,

and for any τ ∈ [0,+∞], there exists d ∈ (0,+∞) such that T0 = τ .
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A system with different diffusion coefficients and two boundary controls

D(A) = H2(0, 1;R) ∩H1
0 (0, 1;R), A• = −∂x

(
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(
A 1
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y(t, 0) =

(
u0(t)
u0(t)

)
, y(t, 1) =

(
0

u1(t)

)
.

F. Boyer & M. M. (2023).
Using both controls u0 and u1, for any d > 0, there exists Y0 ⊂ (H−1(0, 1;R))2

with finite codimension such that
if y0 6∈ Y0: not approximately controllable;
if y0 ∈ Y0: null controllability in any time T > 0.

Morgan MORANCEY Block moment method 34



Space varying zero order coupling term

F. Boyer & M. M. (2025)
General expression of the minimal null control time for∂ty +

(
A q(x)
0 A

)
y =

(
0

1ω(x)u(t, x)

)
, t ∈ (0, T ), x ∈ (0, 1),

y(t, 0) = y(t, 1) = 0.

(Sq)

For example, with A = −∂xx and q(x) =
(
x− 1

2

)
1( 1

4
, 3
4 )(x):

F. Boyer & G. Olive (2014). If

0 1

ω

Supp(q)

then the problem is not approximately controllable (for any time T > 0).

If

0 1

ωω

Supp(q)

then T0

(
L2(0, 1;R)2

)
= 0.
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Space varying zero order coupling term

F. Boyer & M. M. (2025)
General expression of the minimal null control time for∂ty +

(
A q(x)
0 A

)
y =

(
0

1ω(x)u(t, x)

)
, t ∈ (0, T ), x ∈ (0, 1),

y(t, 0) = y(t, 1) = 0.

(Sq)

For example, with A = −∂xx, for any τ ∈ [0,+∞], there exists q, q̃ ∈ L∞(0, 1;R) such
that

systems (Sq) and (Sq̃) are null controllable in any time T > 0 ;
the minimal time for simultaneous null controllability of systems (Sq) and (Sq̃) is
τ .
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1 Control of parabolic problems and moment problems

2 The block moment method for scalar controls

3 The block moment method for general control operators

4 Biorthogonal families in higher dimension
Setting and biorthogonal families
Ingredients of proof
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An example

Simultaneous controllability on Ω = (0, 1)× (0, 1).
∂ty +

(
−∆ 0
0 −∆ + c(x)

)
y = 0,

y|∂Ω =

(
1Γu
1Γu

)
.

The function c satisfies ∂x′c = 0. Γ = {0} × (a, b).
Eigenelements:

(
− ∂xx + c(x)

)
ϕck(x) = λckϕ

c
k(x).

Eigenvalues of A∗: Assume λck 6= j2π2, ∀k, j ≥ 1.

Λ =
{
k2π2 +m2π2 ; k,m ≥ 1

}
∪
{
λck +m2π2 ; k,m ≥ 1

}
.

L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary
condition at x = 0) given by the condensation index of the eigenvalues

T0(c) = lim sup
k→+∞

− ln |k2π2 − λck|
k2π2

.

2D setting: same minimal time with Γ = {0} × (0, 1). But Γ = {0} × (a, b) ??
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The multi-D moment problem

Back to the moment problem

y(T ) = 0 ⇐⇒
∫ T

0

〈
u(T − t), e−λtB∗φλ

〉
U

dt = −
〈
y0, e

−λTφλ
〉
, ∀λ ∈ Λ.

Eigenvalues λ0
k,m = k2π2 +m2π2 and λck,m = λck +m2π2 with eigenvectors

(x, x′) 7→
(
ϕ0
k(x) sin(mπx′)

0

)
and (x, x′) 7→

(
0

ϕck(x) sin(mπx′)

)
.

Moment problem: find v ∈ L2((0, T )× (a, b)) such that for all k,m ≥ 1,
(ϕ0
k)′(0)

∫ T

0

∫ b

a

e−λ
0
k,mt sin(mπx′)v(t, x′)dx′dt = −e−λk,mT

〈
y0, φ

0
k,m

〉
,

(ϕck)′(0)

∫ T

0

∫ b

a

e−λ
c
k,mt sin(mπx′)v(t, x′)dx′dt = −e−λk,mT

〈
y0, φ

c
k,m

〉
.
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k,mt sin(mπx′)v(t, x′)dx′dt = −e−λk,mT

〈
y0, φ

c
k,m

〉
.
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The multi-D biorthogonal family
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∫ b
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e−λ
c
k,mt sin(mπx′)v(t, x′)dx′dt = −e−λk,mT

〈
y0, φ

c
k,m

〉
.

Look for a biorthogonal family in L2((0, T )× (a, b)) to
{F pk,m ; p ∈ {0, c}, k,m ≥ 1} with

F pk,m : (t, x′) 7→ e
−λp

k,m
t
sin(mπx′).

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

Construction of such biorthogonal family for any T > 0 with estimate

‖Qpk,m‖L2((0,T )×(a,b)) ≤ Ce
C/T e

C
√
λ
p
k,m

1

|λck − k2π2| .

=⇒ Same minimal null control time as in the 1D setting.
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First step: a nice biorthogonal family in L2((0, T )× (0, 1))

As λpk,m = λpk +m2π2, for any fixed m ≥ 1, biorthogonal family
(
qpk,m

)
in

L2(0, T ;R) to
t ∈ (0, T ) 7→ e

−λp
k,m

t
, k ≥ 1,

with estimate

‖qpk,m‖ ≤ Ce
C/T eC

√
λk,m 1

|λck − k2π2| , ∀k,m ≥ 1, p ∈ {0, c}.

Orthogonality in L2((0, 1);R) of (sin(mπ·))m≥1 implies that

Qpk,m : (t, x′) 7→ qpk,m(t) sin(mπx′)

forms a biorthogonal family in L2((0, T )× (0, 1)) to

F pk,m : (t, x′) 7→ e
−λp

k,m
t
sin(mπx′), ∀k,m ≥ 1

with estimate

‖Qpk,m‖L2((0,T )×(0,1)) ≤ Ce
C/T e

C
√
λ
p
k,m

1

|λck − k2π2| , ∀k,m ≥ 1, p ∈ {0, c}.

Same construction as F. Boyer & G. Olive (2023).
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Second step: the restriction operator from (0, 1) to (a, b)

Prove that the restriction in space operator

R : Span{F pk,m}
L2
ρ((0,T )×(0,1))

→ Span{F pk,m}
L2((0,T )×(a,b))

F 7→ F|(a,b)

is an isomorphism.

Follows from∫ T

0

∫ 1

0

ρ(t)
∣∣PN (t, x′)

∣∣2 dx′dt ≤ C
∫ T

0

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′dt

for any

PN (t, x′) =

N∑
k=1

N∑
m=1

a0
k,me

−λ0
k,mt sin(mπx′) + ack,me

−λck,mt sin(mπx′).
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PN (t, x′) =

N∑
k=1

N∑
m=1

(
a0
k,me

−λ0
k,mt + ack,me

−λck,mt
)

sin(mπx′)

1D spectral inequality in the variable x′∫ 1

0

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′ ≤ eβλ
∫ b

a

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′

with a frequency cut depending on t (inspired by L. Miller (2010)).

Let t ∈ (0, T ) and m ≥ 1 be fixed. Let qtk,m be the solution of the block moment
problem

∫ T

0

qtk,m(s)e−λ
0
k,msds = e−λ

0
k,mt,

∫ T

0

qtk,m(s)e−λ
c
k,msds = e−λ

c
k,mt,∫ T

0

qtk,m(s)e−λ
p
j,msds = 0, ∀j 6= k, p ∈ {0, c}.

Then, 〈
qtk,m sin(mπ·), PN

〉
L2((0,T )×(0,1))

= a0
k,me

−λ0
k,mt + ack,me

−λck,mt

and
‖qtk,m‖L2(0,T ;R) ≤ Ce

C/T e
C
√
λ0
k,me−λ

0
k,mt

Morgan MORANCEY Block moment method 42



PN (t, x′) =

N∑
k=1

N∑
m=1

(
a0
k,me

−λ0
k,mt + ack,me

−λck,mt
)

sin(mπx′)

1D spectral inequality in the variable x′∫ 1

0

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′ ≤ eβλ
∫ b

a

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′

with a frequency cut depending on t (inspired by L. Miller (2010)).
Let t ∈ (0, T ) and m ≥ 1 be fixed. Let qtk,m be the solution of the block moment
problem

∫ T

0

qtk,m(s)e−λ
0
k,msds = e−λ

0
k,mt,

∫ T

0

qtk,m(s)e−λ
c
k,msds = e−λ

c
k,mt,∫ T

0

qtk,m(s)e−λ
p
j,msds = 0, ∀j 6= k, p ∈ {0, c}.

Then, 〈
qtk,m sin(mπ·), PN

〉
L2((0,T )×(0,1))

= a0
k,me

−λ0
k,mt + ack,me

−λck,mt

and
‖qtk,m‖L2(0,T ;R) ≤ Ce

C/T e
C
√
λ0
k,me−λ

0
k,mt

Morgan MORANCEY Block moment method 42



PN (t, x′) =

N∑
k=1

N∑
m=1

(
a0
k,me

−λ0
k,mt + ack,me

−λck,mt
)

sin(mπx′)

1D spectral inequality in the variable x′∫ 1

0

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′ ≤ eβλ
∫ b

a

∣∣∣∣∣∣
∑
m≤λ

Am sin(mπx′)

∣∣∣∣∣∣
2

dx′

with a frequency cut depending on t (inspired by L. Miller (2010)).
Let t ∈ (0, T ) and m ≥ 1 be fixed. Let qtk,m be the solution of the block moment
problem

∫ T

0

qtk,m(s)e−λ
0
k,msds = e−λ

0
k,mt,

∫ T

0

qtk,m(s)e−λ
c
k,msds = e−λ

c
k,mt,∫ T

0

qtk,m(s)e−λ
p
j,msds = 0, ∀j 6= k, p ∈ {0, c}.

Then, 〈
qtk,m sin(mπ·), PN

〉
L2((0,T )×(0,1))

= a0
k,me

−λ0
k,mt + ack,me

−λck,mt

and
‖qtk,m‖L2(0,T ;R) ≤ Ce

C/T e
C
√
λ0
k,me−λ

0
k,mt

Morgan MORANCEY Block moment method 42



Another example

Simultaneous controllability on Ω = (0, 1)× (0, 1).
∂ty +

(
−∆ 0
0 −∆ + c(x)

)
y =

(
1ω×(a,b)u
1ω×(a,b)u

)
,

y|∂Ω =

(
0
0

)
.

The function c satisfies ∂x′c = 0.

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

Construction of a suitable biorthogonal family with estimate

‖Qpk,m‖
2
L2((0,T )×ω×(a,b)) ≤ Ce

C/T e
C
√
λ
p
k,m

1

detGk + |λck − k2π2|2

where
Gk = GramL2(ω)

(
ϕ0
k, ϕ

c
k

)
.

=⇒ Minimal null control time if both eigenvalues and eigenvectors on ω condensate.
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A general result

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (??)

Cylindrical geometry and tensorized operators

Λ =
{
λk + µm ; k,m ≥ 1

}
On the direction associated with λk: nice 1D assumptions (to solve block
moment problems) on the eigenvalues.
On the direction associated with µm: asymptotic of µm + Riesz-basis property
for the eigenvectors + spectral inequality for the eigenvectors.

=⇒ construction and estimate of a space-time biorthogonal family for any time
T > 0.
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Conclusion and perspectives

Conclusion:
The block resolution of moment problems

gives sharper results than the use of biorthogonal families ;
allows to characterize the minimal null control time (of a given initial condition)
for many parabolic-type one dimensional control problems for any admissible
control operators ;
is the parabolic equivalent of Ingham-type results for hyperbolic problems by
C. Baiocchi, V. Komornik & P. Loreti ;
is a key tool to construct and estimate space-time biorthogonal families in higher
dimension tensorized problems.

Perspectives:

The problem for non tensorized geometries or operators remains completely
open...

Thank you for your attention
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