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Abstract linear control problem

{y'(t) + Ay(t) = Bu(t), te (0,T),
y(0) = o.

o —A generates a C°-semigroup on the Hilbert space (X, ||-|)),
o The space of controls is the Hilbert space (U, ||-||;)-
e The control operator B: U — D(A*)". Assume (for simplicity) that

T 2
[lecfazam, veeow)
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Notion of solution

Wellposedness theorem

Let T > 0. For any yo € X and any u € L?(0,T;U), there exists a unique solution
y € C°([0,T], X) characterized by

(y(t),z) — <yo,e_t’4*z> = /Ot <u(7’),B*e_(t_TM*z>U dr,

for any ¢ € [0,T], and any z € X.
Moreover, there exists C' > 0 such that for any such yo, u, the solution satisfies

ly@Il < C (Ilyoll + llull 2 0,7501) , Yt € [0,T].

e Question : null controllability of a given yo at a given time T'> 0 ?
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Typical examples

o Boundary control of coupled equations

Ory1 — Ay +y2 = 0, in (0,7) x 9,
Oy2+ (— A+c(x))y2 =0, in (0,7) x Q,
Yoo =0, Y2190 = 1ru in (0,T) x 99,

y1(0,)) =w10, %2(0,)) = y2,0.

e Simultaneous controllability

Oryr — Ayr = 1,u, in (0,T) x Q,
oy + (= A+ c(@))y2 = L, in (0,T) x €,
Yljoa = Y2190 = 0 in (0,7) x 09,

y1(0,-) = y1,0, ¥2(0,-) = y2,0.
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@ Control of parabolic problems and moment problems
o Moment problems and biorthogonal families
o A limitation in the use of biorthogonal families

© The block moment method for scalar controls
@ Setting
@ The block moment problem and its resolution
o Biorthogonal family to divided differences of time exponentials

© The block moment method for general control operators
o Strategy of proof on an example
o Examples

@ Biorthogonal families in higher dimension
@ Setting and biorthogonal families
o Ingredients of proof
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e Control of parabolic problems and moment problems
@ Moment problems and biorthogonal families
@ A limitation in the use of biorthogonal families




Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (éx)rea the associated sequence of normalized eigenvectors and
we assume that it forms a complete family in X.
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (éx)rea the associated sequence of normalized eigenvectors and
we assume that it forms a complete family in X.

Definition of solutions: for all A € A,

(W(T), dx) — <yo,67w¢x> = /OT <u(t),e’A(T’t)B*¢A>U dt.
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (éx)rea the associated sequence of normalized eigenvectors and
we assume that it forms a complete family in X.

Definition of solutions: for all A € A,
T
T B —AT _ / ) e~ NT-0) g dt.
(Y(T), éx) <yo,€ <I5A> | <u( ),e ¢A>U
Hilbert basis of eigenvectors (¢x)rea :

y(T)=0 < /OT <u(t), e-*<T-f>B*¢A>U dt = — <yo, e-kT@)  VAEA
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (éx)rea the associated sequence of normalized eigenvectors and
we assume that it forms a complete family in X.

Definition of solutions: for all A € A,
T
T B —AT _ / ) e~ NT-0) g dt.
(Y(T), éx) <yo,€ <I5A> | <u( ),e ¢A>U
Hilbert basis of eigenvectors (¢x)rea :

y(T)=0 < /OT <u(t), e-*<T-f>B*¢A>U dt = — <yo, e-kT@)  VAEA

= [/OT (v(®)e B 6a) dt=—(yo,e 2}, WA € A}

with v := u(T — ).
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Reduction to a moment problem when dimU = 1

@ Scalar control (dimU = 1) with observable eigenvectors (B*¢x # 0)

y(T) =0 <= / RRCION N —<y0,e_AT¢>>\>,V)\€A
— B@/O Ay, < e Th), VAE A

— [/OTe_MU( < >,V/\6A]
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Resolution of the moment problem using a biorthogonal family

(2
B*px

Biorthogonal family (ga)xea to the exponentials associated with A in L?(0,T;R)

T
Find v such that / e My(t)dt = —e 7T <y07 > ,VAeA
0

T
/ e Mg (B)dt = 0, Ve A\{AL,
0
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Resolution of the moment problem using a biorthogonal family

T
Find v such that / e Mot)dt = —e <y0, 9 > ,VAeA
0 B*px

Biorthogonal family (ga)xea to the exponentials associated with A in L?(0,T;R)

T
/ e Mg (B)dt = 0, Ve A\{AL,
0

wartz 1
Existence of such biorthogonal family Scgmart Z Y < +o00.

XEA
In this case,

u:t€ (0,T)— — Ze‘" <yo, BT;A > (T —1)

AEA

formally solves the moment problem.

Question: estimate B*¢x and ||gx|[12(0,7;r) to prove that the series converges in
L?(0,T;R).
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Some estimates on biorthogonal families

Under the gap condition (|A — u| > p, VA # up € A).
o H.O. Fattorini & D.L Russell (1974): [lgxllL2(0,13r) < Cere.
Uniform estimates with respect to A in a certain class.
e A. Benabdallah, F. Boyer, M. Gonzalez Burgos & G. Olive (2014)
Sharper estimates + dependency /T |lgrllr2¢0,7r) < CeC/TeCVA,

e P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)

e N. Cindea, S. Micu, I. Roventa & M.Tucsnak (2015)
Union of two sequences with gap condition plus a non-condensation assumption

e A. Benabdallah, F. Boyer & M. M. (2020)
e M. Gonzalez Burgos & L. Ouaili (2020)

Without any gap condition
o F. Ammar Khodja, A. Benabdallah, M. Gonzalez Burgos & L. de Teresa (2014)
Condensation index of the sequence.

e D. Allonsius, F. Boyer & M. Morancey (2021)
"Local" gap for each \.
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Perturbation of a Jordan-block: positive controllability result

Ay — —Oza 1 B— 0
vy= 0 — 0z + exp(adza) 4 ~ \_a nice scalar control operator ) °

Eigenvectors of —0yz: —0O0zzpr = kzgok. Thus,
A= {Ak,l =k M = K2 e ™ ke N*}

Complete family of associated eigenvectors of A* :

_ —ak? 0
Pra = < 61 )<Pk7 Pr,2 = (1) Pks

F. Ammar Khodja, A. Benabdallah, M. Gonzalez Burgos & L. de Teresa (2014):
there exists a biorthogonal family satisfying

1 a—e)\ a A
66( N < laxll 20, 7m) < Ceel®to,
£

— Direct application of moments method yields null controllability in time T" > a.
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Limitation in the use of biorthogonal families

Yet, we will see that the previous example is null controllable in any time 7" > O...
What is missed in the direct application of the moment method?

uite(0,T) Y e *T<yo,5ffq5 >qx( —1)
AEA

Only information on ||gx||: proof of normal convergence of the series in L?(0,T;R)
which is not the most subtle convergence...

an MORANCEY Block moment method




Limitation in the use of biorthogonal families

Yet, we will see that the previous example is null controllable in any time 7" > O...
What is missed in the direct application of the moment method?

uite(0,T) Y e *T<yo,8f¢ >qx( — )

AEA

Only information on ||gx||: proof of normal convergence of the series in L?(0,T;R)
which is not the most subtle convergence...

As A\i1 & Ag,2, it can be a good idea to consider the biorthogonal elements g1 and
qr,2 together. Especially if ¢x,1 = ¢r,2. In this case, we will rather consider the
control u in the form

wte0.0) 0= (S () -0

k>1 \j=1

and estimate

- O
Ze_kk] <y 0, B*¢ >qk7](T_ )

j=1

L2(0,T)
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© The block moment method for scalar controls
@ Setting
@ The block moment problem and its resolution
@ Biorthogonal family to divided differences of time exponentials
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Assumptions

A and B satisfy the assumptions for the wellposedness.

e Scalar control U = R.

o Eigenvalues of A*.

1
e A: positive simple eigenvalues of A* satisfying Z — < +o0.
AEA

o asymptotic behavior of the counting function:
Np(r) ;= Card{A € A; A <r} < wrf? with 6 € (0,1).

o (¢x)rea associated eigenvectors.

o complete family of eigenvectors in X.

o Ker(A* — X) N Ker B* = {0} for every A € R.

Extra assumption :

o Weak gap condition: there exists p > 0 and p € N* such that

Card (AN [p,p+p]) <p,  Yu=0.
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Groups of eigenvalues

Let p € N* and p > 0. The weak-gap condition ensures the existence of sets
(Gr)k>1 C P(A) such that

A= ]Gk, sup(G) < inf(Gri1),
k>1

with the additional properties that for every k > 1,

gk := #Gr < p, dist(Gk, Gr41) >, diam G < p.

with » =7, , > 0.

o Labelling the eigenelements
G = {)\k,l;...,)\k,gk} with )\k,l <0 <K )\khqk’

g = Oxag o Vk>1, V1 <j<gs.

o The analysis is insensitive to the particular choice of such a grouping.
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Divided differences in a given group Gy,

e For any j, set z[\;] := z;.

o Divided differences. For any i # j we set

z[Aj] — z[Ai]

iy o X
z[Ai, Aj] N — N €
and so on ... following the diagram
A ---- o =alAl
\
z[A1, A2]
/ \
A2 - - - - @2 = x[A2] x[A1, Az, As]
\ /
z[A2, As] x[A1, Az, Az, Ad]
/ \
M- o= = ol oDz N M
\ /
z[As, Ad
/
A - - @ =x[Ad]
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The block moment problem

T
y(T)=0 — / e M0y ()t = —e T <y0, 9 >,V>\GA
0 B*px

T
<— e_)‘(T—t)u(f)dt =—e (yo,¥x), VA€ A

Look for w in the form

where

T
/ e ity (t)dt = e 9T (yo, i), V> 1, V1 <5 < gi,
0

T
/ e Mup(t)dt =0, VA€ A\Gs.
0

The function vy solves the moment problem inside the group Gy.
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Resolution of the block moment problem

A. Benabdallah, F. Boyer & M. M. (2020)

Let T € (0, +oc]. For any € > 0, there exists a constant C' > 0 such that for any
k> 1, for any w1, ..,wk,q, € R, there exists vy, € L*(0, T;R) satisfying

T
/ e ity (t)dt = w5, V1<j<gk,
0

T
/ e Mo (t)dt =0, YA € A\Gy,
0

and

6
C/TT=9 CAf
/ e k1 max |(w[Ag1,--., Akl

lvkllL20,rsm) < Ce et

Moreover, up to the exponential factors, this last estimate is sharp.

Adaptation of H.O. Fattorini & D.L. Russell (1974) using the isomorphism of the
Laplace transform and refined estimates using Paley-Wiener theorem (F. Boyer - M2
lecture notes (HAL))
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Mo

lication of the resolution of block moment problems

o Sufficiently sharp estimates to characterize the minimal null control time

1<1<g

In ( max ||1/)[)\k,1, .. ")‘k,l]H>
k

To = lim sup
k—oo Ak,1

o Extension to complex eigenvalues in a sector of dominant real part.

o Uniform estimates: similar results for algebraically multiple eigenvalues (limit
process A, A+ h).

o Application
o K. Bhandari & F. Boyer (2021): boundary control, from Robin to Dirichlet
boundary conditions.
o F. Boyer & G. Olive (2023): 2D coupled heat equations with different constant
diffusion coefficient.
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Back to the academic example

o (0 1 5 0
Y= 0 — 0z + exp(adzq) Y ~ \ a nice scalar control operator / -

A= {)\k,l = k2, A2 1= K2 +67“k2 i ke N*} = #Gr =2

H Pk,2 Pk,1

To = lim sup —1 In max 1 1 56rz  Bdn
¢ koo Ak,1 |B*¢r1|’ |B*du,2|’ Ak,2 — Ak,1

_ —ak? O
Pra = ( el )<Pk7 Pr,2 = (1) Pks

a2
B ¢ri =B ¢po= nice and |pr2— el =e " =|Ap2— Aeal-

=0.

Indeed,

imply

The condensation of eigenvectors compensates the condensation of eigenvalues.
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A PDE example behaving as the academic example

For any c € L*(0,1;R)
@ possible presence of algebraically double eigenvalues;
@ possible strong condensation of eigenvalues;

o possible (finite number of) non observable modes.

There exists Yo C (H*(0,1;R))? with finite codimension such that

o if yo & Yo: not approximately controllable;

o if yo € Yo: null controllability in any time 7" > 0.
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Block moment problem and biorthogonal family to divided differences

For any s € C, let es : ¢ € R +— ™ %%,

M. Mehrenberger, M. M. (2025)

Solvability of block moment problems at cost

9k
||'Uk||L2(0,T) < (T, Gk) X Z |w I:)\k),la .. ~,/\k,j] |, Vk > 1,

—

Existence of a biorthogonal family (qg,m) e>1,1<m<g, to the divided differences in the

blocks of the time exponentials i.e. Vk, £ > 1,Vj:1<j < gk, Vm:1 <m < gp,

T
/ €t [)\k,h ey )\k,j] qz,m(t)dt = 6k£6jm
0

with

llge.mll 20,7y < €(T, Ge).
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Relation with Ingham-type results

@ The resolution of block moment problems is the parabolic equivalent of
generalized Ingham-type results with weak gap condition obtained for hyperbolic
problems in
C. Baiocchi, V. Komornik & P. Loreti (2000, 2002)

S. A. Avdonin & S. A. Ivanov (2001).
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Relation with Ingham-type results

@ The resolution of block moment problems is the parabolic equivalent of
generalized Ingham-type results with weak gap condition obtained for hyperbolic
problems in

C. Baiocchi, V. Komornik & P. Loreti (2000, 2002)
S. A. Avdonin & S. A. Ivanov (2001).

e Following C. Laurent & M. Léautaud (2023) we provide an alternative proof for
the resolution of block moment problems:
o existence of a bounded biorthogonal family to the divided differences in the blocks
of the complex time exponentials coming from generalized Ingham-type results
o application of the transmutation transformation from S. Ervedoza & E. Zuazua
(2011) to the biorthogonal elements
o careful estimation of the divided differences

but under the (more restrictive) condition that v/A satisfies a weak-gap condition

M. Mehrenberger, M. M. (2025)

lge,mllp20.my < Ce®/TeVA1 W >1 ¥m:1<m< g
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e The block moment method for general control operators
@ Strategy of proof on an example
o Examples




Setting

Work with F. Boyer (2023, 2025).
o Exact same assumptions as in the scalar case except

o ‘dimU = 1’ replaced by ‘U a Hilbert space’;
o allow finite geometric multiplicity of eigenvalues.

For instance,
— Oz x 0
8ty(t7x) + ( 0 Egz)z) y(t7 117) = <1wu(t .’E)) )

w0 = (g). wen= ().

y(0,2) = yo().
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Setting

Work with F. Boyer (2023, 2025).
o Exact same assumptions as in the scalar case except

o ‘dimU = 1’ replaced by ‘U a Hilbert space’;
o allow finite geometric multiplicity of eigenvalues.

For instance,
— Oz x 0
8ty(t7x) + ( 0 Egz)z) y(t7 117) = <1wu(t x)) )

w0 = (g). wen= ().

y(0,2) = yo().

e The moment problem: y(7") = 0 if and only if u satisfies

/OT <u(T ), e—*t6*¢A>U at = — <y0, e—AT¢A> VA€ A.

n MORANCEY Block moment method



Strategy on an example - Setting

We consider X = L?(0,1;R)? and w C (0,1) a non empty open set. Let (¢x)x>1 be
an Hilbert basis of X such that infx>1 ||kl L2(w) > 0.

o Eigenelements of A*:

2
A= {)"%1 = k)2, )\k,2 = k2 +eiak ; k > 1}, Gy = {)\k,l, )\k,z},
0
Po1 = (i:) L (%) '

B:ueU:LQ(O,l;R)H< 0 )eX.

o Control operator:

1ou
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Strategy on an example - Setting

We consider X = L?(0,1;R)? and w C (0,1) a non empty open set. Let (¢x)x>1 be
an Hilbert basis of X such that infx>1 ||kl L2(w) > 0.

o Eigenelements of A*:

2
A= {)"%1 = k)2, )\k,2 = kQ +eiak ; k > 1}, Gy = {)\k,l, )\k,z},
0
Pr1 = <$:) ; Pr,2 = <¢k> .

B:ueU:LQ(O,lgR)H< 0 )eX.

o Control operator:
1ou
o Block moment problem: for any k > 1, find v, € L*(0,T;U) such that
/OT‘?_“*” (0r (1), B 0ns)y dt = =T (yo, dng), Vi€ {1,2},

T
/ e (ur(t), B*dr)y dt = 0, VA € A\Gy.
0
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Strategy on an example - Simplification of the block moment problem

T
/ eikk’jt <vk(t)7 B*¢k,j>U dt = _eikk’jT <y0a ¢k,j> ) V] € {1a 2}a
0

T
/ e M (uk(t), B ¢x)y dt =0, VA € A\Gk.

0

e A stronger orthogonality condition
T et A T
[ e 0B sy de = e T (o), V€ {1,2),
0

T
/ e Mug(t)dt =0, YA € A\Gh.
0
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Strategy on an example - Auxiliary vectorial block moment problem

T
/ eI vk (8), B pr )y dt = —e 9T (yo, b1 ), V5 € {1,2},
o (BMPb)

T
/ e Mug(t)dt =0, YA € A\Gh.
0

o Consider the auxiliary vectorial block moment problem set in the control space:
find v, € L2(0,T;U) such that

T
/ e Mty t)dt = Oy, W) € {1,2),
0
. (VBMPb)
/ e M (t)dt = 0, VA € A\Gh,
0

with Qx ; € U = L?((0,1); R) to be precised.
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Strategy on an example - Auxiliary vectorial block moment problem

T
/ eI vk (8), B pr )y dt = —e 9T (yo, b1 ), V5 € {1,2},
o (BMPb)

T
/ e Mug(t)dt =0, YA € A\Gh.
0

o Consider the auxiliary vectorial block moment problem set in the control space:
find v, € L2(0,T;U) such that

T
/ e Mty t)dt = Oy, W) € {1,2),
0
. (VBMPb)
/ e M (t)dt = 0, VA € A\Gh,
0

with Qx ; € U = L?((0,1); R) to be precised.
o Constraints: If Q ; € U satisfy
(g, B 0k3)y = 97 (yo, dhs)

then
v solution of (VBMPb) = v solution of (BMPb).
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on an example - Dealing with the constraints

e Since B*¢r,; # 0, there exists
Qk,l, Qk,z cU

such that
(s B bn)y = —e 97 (yo, bng) -
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Strategy on an example - Dealing with the constraints

e Since B*¢r,; # 0, there exists
Qk,l, Qk,z eU

such that
(s B bn)y = —e 97 (yo, bng) -

e Projection onto a finite dimensional subspace of U. There exists

Qk,l, ng S (Uk = Span {B*gf)k,l, B*tﬁk,z}]

such that
(s B i)y = —€ 97 (yo, brj) -
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Strategy on an example - Resolution of the auxiliary block moment

problem

o The space Uy := Span {B" ¢y, 1, B ¢pi,2} is of finite dimension !!

Solving scalar block moment problems (one for each component), for any
Qp.1, Q2 € Uy, there exists vy, € L*(0,T; U) solution of

T
/ e Mty (t)dt = iy, Vi€ {1,2},

0
T
/ e—)\tvk(t)dt — O7 YA S A\Gk7
0
such that
Hvk||2L2(o,T;U) < CCC/TCC\/KF(QI‘:,LQI@,ZL
with ?
Qpo—N
5 2 k,2 k,1
(1, Qi2) €U = (1Rl + Hm U
~—
:Q[/\ky1,)\k,2]
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Strategy on an example - Back to the original block moment problem

e Non-empty constraints + resolution of scalar block moment problems + isolate
the dependency with respect to T in the constaints + optimization :

F. Boyer & M. M. (2023)

For any k > 1, there exists vy € L?(0,T;U) solution of

T
/ 67>\k7jt <Uk(t)7 B*¢k7j>U dt = eikk’jT <y0a ¢k7j> ) Vj € {15 2}7
0

T
/ e Mg (t)dt =0, VA € A\Gx,
0
such that
lokl|Z 20,750y < CeC/T eV k1e™ 21T C(GYy,, o)

with

2 |G = S|
C(Gk,yo) := inf{ Hﬁm 4 ||[2E2 2L Oy € Uk such that

U Ak,2 — Ak,1

<§j,B*¢k,j>U = (Yo, Pr,5),Vj € {172}}

v
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Comments

o Uniform estimates in a given class of sequences, extension to complex
eigenvalues, algebraic and geometric multiplicity for eigenvalues.
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Comments

o Uniform estimates in a given class of sequences, extension to complex
eigenvalues, algebraic and geometric multiplicity for eigenvalues.

o Sufficiently sharp estimates to determine the minimal null control time with
respect to C(Gk, Yo).
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Comments

o Uniform estimates in a given class of sequences, extension to complex
eigenvalues, algebraic and geometric multiplicity for eigenvalues.

o Sufficiently sharp estimates to determine the minimal null control time with
respect to C(Gr, yo).

o Formulas to compute C(Gk, yo)

F. Boyer & M. M. (2023)

Assume that Gx = {Ak,1,...,Ak,g} is a group of simple eigenvalues. Then,

C(Gr,y0) = (M™'¢,E)ro

where

9k
M = Z GramU O, ey 0, B*Qf)[)\k,[], ey B*(ﬁ[)\]c,g, ooy )‘kvgk]

and

(Yo, B[ Ak,1])

<y07 ¢[)‘k,17" 0oy Ak,gk])
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Back to the academic example

o Eigenelements of A™:

A = {)\k,l = kz, )\k,2 = k2 —|— C_akz 5 ]{J Z 1}, Gk = {)\k,h )\k,Q},

Ok, = <Z§I;) ) Ok,2 = (£k> .

@ Resolution of block moment problems at cost

||Uk||2L?(0,T;U) < CﬁC/T@C v Ak’leiwk’ch(Gka o)

1 0\\*, e er)\
cGnm = (2)) 1 o ()Y
lekllZz () Pr k)l 2 0

e Then, the minimal time to control to 0 any yo € X for this example is

with

TQ(X) =aqa.
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A system with different diffusion coefficients and two boundary controls

D(A) = H*(0,1;R) N Hy(0,1;R), Ae=—0,(y0, @) +ceo,
with ¢ € L>(0, 1;R) satisfying ¢ > 0 and v € C* ([0, 1]; R) satisfying [ionlf] v > 0.

A 1
aty+<0 dA>y=0, t€(0,7),z¢€(0,1),

0= (100). v = ()

o F. Ammar Khodja, A. Benabdallah, M. Gonzéalez Burgos & L. de Teresa (2014).
Assume that A = —0.4, uo = 0 and Vd Z Q. Then,
—In A1 — Akl

To (Hfl(O, 1;R)2) = limsup \
k——+oo k

’

and for any 7 € [0, +00], there exists d € (0, 400) such that To = 7.
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A system with different diffusion coefficients and two boundary controls

D(A) = H*(0,1;R) N Hy(0,1;R), Ae=—0,(y0, @) +ceo,
with ¢ € L>(0, 1;R) satisfying ¢ > 0 and v € C* ([0, 1]; R) satisfying [ionlf] v > 0.

A 1
aty+<0 dA>y=0, t€(0,7),z¢€(0,1),

0= (100). v = ()

o F. Boyer & M. M. (2023).
Using both controls ug and uy, for any d > 0, there exists Yo € (H~'(0,1;R))?
with finite codimension such that

o if yo & Yo: not approximately controllable;
o if yo € Yp: null controllability in any time T > 0.
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Space varying zero order coupling term

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

ey + (61 qgff)> . (1“;(93)(;(15, a:)) CEODee0D

y(t,0) = y(t,1) = 0.

For example, with A = —0,, and q(z) = (w — %) 1(
e F. Boyer & G. Olive (2014). If

0 Supp(q) 1

then the problem is not approximately controllable (for any time T > 0).

o If

then Ty (L(0,1;R)?) = 0.
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Space varying zero order coupling term

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

Ory + <‘3 qgff)> y= (1W(x)%(t, x)> , t€(0,T),z € (0,1), )
y(t,0) =y(t, 1) =0.

For example, with A = —0,,, for any 7 € [0, +00], there exists ¢, € L*(0, 1;R) such
that

o systems (S;) and (Sg) are null controllable in any time 7" > 0 ;

o the minimal time for simultaneous null controllability of systems (S;) and (Sg) is
T.
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e Biorthogonal families in higher dimension
@ Setting and biorthogonal families
@ Ingredients of proof




An example

Simultaneous controllability on Q = (0,1) x (0, 1). ,

x

8ty+< 0 _A_’_C(l,))y 07 1

b

1r‘u
Yoo = 1ru)”

The function c¢ satisfies 9,,¢ = 0. I' = {0} x (a,b). @

Eigenelements: ( — 9z + c(2)) 9% (x) = Aipi (). 0 1 Z
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An example

Simultaneous controllability on Q = (0,1) x (0, 1). ,

x

8ty+< 0 _A_’_C(w))y 07 1

b

11“’U,
Yoo = 1ru)”

The function c¢ satisfies 9,,¢ = 0. I' = {0} x (a,b). @

Eigenelements: ( — 9z + c(2)) 9% (x) = Aipi (). 0 1 Z

o Eigenvalues of A*: Assume A§ # j°n%, Vk,j > 1.
A= {k2ﬂ2+m27r2; k,m>1}U {)\z+m27r2; k,m>1}.

o L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary
condition at = 0) given by the condensation index of the eigenvalues

1 2.2 _ e

e 2D setting: same minimal time with I" = {0} x (0,1). But I' = {0} x (a,b) 77
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The multi-D moment problem

o Back to the moment problem

y(T)=0 <= /T <u(T —1), e_AtB*¢A>U dt = — <yo, e_AT¢A> VA EA.
0

an MORANCEY Block moment method



The multi-D moment problem

o Back to the moment problem

y(T)=0 <= / —“B¢> dt=—<yo,6_)‘T¢A>,V>\€A.

o Kigenvalues A%m = k*n? + m?n? and Nem = g + m27? with eigenvectors

©% () sin(mmz’)

(x,x')r—)( : ) and (z,2) — (SO2 (x)sig(mm,)).

o Moment problem: find v € L?((0,T) x (a,b)) such that for all k,m > 1,
/ / AR mt sin(mma)u(t, z")dz'dt = —e MemT <yo, ¢27m> ,
)/(0)/ / e Memt sin(mra’Yu(t, o' )da'dt = —e Mo T (Yo, Bt ) -
0 a
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The multi-D biorthogonal family

(o) (0 / / Akt sin(mrz)o(t, 2’)da'dt = —e ™" (yo, op ),

(502)/(0)/0 / e Mkum? sin(mzz’)v(t, z’)dz'dt = —e M T <yo, ¢2,m> .

e Look for a biorthogonal family in L*((0,T) x (a,b)) to
{F,f,m ; p€{0,c}, k,m > 1} with

FP o (ta') — e~ Mm® sin(maa’). J
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The multi-D biorthogonal family

@) (0 / / Mt sin(mra'Yo(t, 2 )da'dt = —e =T (yo, ¢,

(@2)/(0)/0 / e Mkum? sin(mzz’)v(t, z’)dz'dt = —e M T <y0, ¢2,m> .

e Look for a biorthogonal family in L*((0,T) x (a,b)) to
{F,f,m ; p€{0,c}, k,m > 1} with

Fp .. (2 — e Memt sin(mmz’). J

F. Ammar Khodja, A. Benabdallah, M. Gonzalez Burgos, M. M. & L. de Teresa (?7?)

Construction of such biorthogonal family for any 7" > 0 with estimate

/T C
QK mll22((0,7)x(a,y) < Ce Fm

— Same minimal null control time as in the 1D setting.
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First step: a nice biorthogonal family in L2((0,7) x (0,1))

o As A, = AL+ m?2x?, for any fixed m > 1, biorthogonal family (qz’m) in
L?(0,T;R) to
€(0,T) s e Mmt, f>1,

with estimate

g} ]l < Ce/T OV b Vk,m > 1,p € {0,¢}.

[A¢ — k27r2|
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First step: a nice biorthogonal family in L2((0,7) x (0,1))

o As Ay, =L+ m?2x?, for any fixed m > 1, biorthogonal family (qz’m) in
L?(0,T;R) to
€(0,T) s e Mmt, f>1,

with estimate

g} ]l < Ce/T OV b Vk,m > 1,p € {0,¢}.

|)\c _ k2 2|

o Orthogonality in L2((0,1);R) of (sin(mm-))m>1 implies that
oom 1 (62) = qh () sin(maa’)
forms a biorthogonal family in Z?((0,T) x (0,1)) to
) O s efkiymtsin(mﬂ'ac'), Vk,m > 1
with estimate

N
Q% ll 20,1y x (0,1)) < Ce“"e Vk,m > 1,p € {0,c}.

|)\c _ k2 2|

Same construction as F. Boyer & G. Olive (2023).
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Second step: the restriction operator from (0, 1) to (a,b)

@ Prove that the restriction in space operator

L2((0,7)x(0,1)) L2((0,T)x (a,b))

R : Span{F}, } — Span{F} }
F — Fl(a,b)

is an isomorphism.
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Second step: the restriction operator from (0, 1) to (a,b)

@ Prove that the restriction in space operator

L2((0,7)%(0,1)) L2((0,T)x (a,b))

R : Span{F}, } — Span{F} }
F — Fl(a,b)
is an isomorphism.

o Follows from

T 1 T b
/ / p(t) | Pn(t,2')|* dz’dt < c/ / | Py (t,2")|* da’dt
0 0 0 a

for any

N N
0
Py(t,2') = Z Z ap me hmsin(mrz’) 4 ai,me_ki’mt sin(mmz”).
k=1m=1
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N N )
0 A ¢ ALt o
Py(t,z") = E E (ak,me km® 4 gp me” Em ) sin(mmx’)

o 1D spectral inequality in the variable 2’
2 2

1 b
/ Z Ay sin(mrz’)| dz’ < eBA/ Z Apsin(mrz’)| da’

0 |m<a a Im<a

with a frequency cut depending on ¢ (inspired by L. Miller (2010)).
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o 1D spectral inequality in the variable 2’
2 2

1 b
/ Z Ay sin(mrz’)| dz’ < em/ Z Apsin(mrz’)| da’

0 |m<a a Im<a

with a frequency cut depending on ¢ (inspired by L. Miller (2010)).
o Let ¢t € (0,T) and m > 1 be fixed. Let g}, ,, be the solution of the block moment
problem

r t A0 s A0 r t —A§ s —AG .t
Qk,m(s)e km®ds = e k,m , Qk,m(s)e kEm®dg = ¢ “k.m ,
0 0

T
/ Ghm(s)em*ds =0, Vi#k pe{0,c).
0
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Py(t,z') =)
k=

N

0 =2 .t “Afmt) o '
E (ak,me kot 4 ogp me *W)sm(mﬂ'x)
1m=

1

o 1D spectral inequality in the variable 2’
2 2

1 b
/ Z Ay sin(mrz’)| dz’ < em/ Z Apsin(mrz’)| da’

0 |m<a a Im<a

with a frequency cut depending on ¢ (inspired by L. Miller (2010)).
o Let ¢t € (0,T) and m > 1 be fixed. Let g}, ,, be the solution of the block moment
problem

r t A0 s A0 r t —A§ s —AG .t
Qk,m(s)e km®ds = e k,m , Qk,m(s)e kEm®ds = e k,m ,
0 0

T
[ (e s =0, ¥iZk pe {ore,
0

Then,

t . 0 A9 ¢ c —AE ot
. = k, k,
(Gk,m sin(ma), PN>L2((0,T)x<0,1)) Ayme TET A Apme TR

and
0 0
Ikl 22 0.1y < CeC/T eV kim e Nemt
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Another example
Simultaneous controllability on 2 = (0,1) x (0,1).
—A 0 _ 1wx(ayb)u
Oy + ( 0 —-A+ c(ac)) y= (lux(a’b)u ’

o= (%)

The function c satisfies 9,,¢c = 0.

F. Ammar Khodja, A. Benabdallah, M. Gonzalez Burgos, M. M. & L. de Teresa (?7?)

Construction of a suitable biorthogonal family with estimate

D 1
C/TeC\/Ak,m

det Gi, + |\ — k2m2)?

2
Q% | 22((0,7) xwx (a,0)) < Ce

where
Gk = Gra'mLZ(w) (@27 QDZ) o

— Minimal null control time if both eigenvalues and eigenvectors on w condensate.
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A general result

F. Ammar Khodja, A. Benabdallah, M. Gonzélez Burgos, M. M. & L. de Teresa (?77)

o Cylindrical geometry and tensorized operators
° A:{/\k—i—um; k,le}

@ On the direction associated with Ax: nice 1D assumptions (to solve block
moment problems) on the eigenvalues.

@ On the direction associated with p.,: asymptotic of un + Riesz-basis property
for the eigenvectors + spectral inequality for the eigenvectors.

— construction and estimate of a space-time biorthogonal family for any time
T > 0.
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Conclusion and perspectives

Conclusion:
The block resolution of moment problems

o gives sharper results than the use of biorthogonal families ;

o allows to characterize the minimal null control time (of a given initial condition)
for many parabolic-type one dimensional control problems for any admissible
control operators ;

o is the parabolic equivalent of Ingham-type results for hyperbolic problems by
C. Baiocchi, V. Komornik & P. Loreti ;

@ is a key tool to construct and estimate space-time biorthogonal families in higher
dimension tensorized problems.

Perspectives:

o The problem for non tensorized geometries or operators remains completely
open...
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Conclusion and perspectives

Conclusion:
The block resolution of moment problems

o gives sharper results than the use of biorthogonal families ;

o allows to characterize the minimal null control time (of a given initial condition)
for many parabolic-type one dimensional control problems for any admissible
control operators ;

o is the parabolic equivalent of Ingham-type results for hyperbolic problems by
C. Baiocchi, V. Komornik & P. Loreti ;

@ is a key tool to construct and estimate space-time biorthogonal families in higher
dimension tensorized problems.

Perspectives:

o The problem for non tensorized geometries or operators remains completely
open...

Thank you for your attention
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