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Coefficient inverse problem in the wave equation

In a smooth bounded domain €2 C R”, it writes for instance,

Ony(t,x) — Awy(tvx) +p*(m)y(t,x) = f(t,$>7 (t>$> € (Oa T) x €,
y(t,z) = g(t, ), (t,z) € (0,T) x O
(y((),x),aty(o,z)) = (y0($)7y1(x))7 z € Q.

e Given data: Source terms f,g ; initial data: (y°,y');
e Unknown: the potential p* = p*(z);
e Additional measurement : the flux 0,y(t, ) on (0,T") x ON.



Motivation

@ The determination in € of p* from an additional
measurement are inverse problems for which uniqueness and
stability are well-known and proved using Carleman estimates.

@ Classical reconstruction : from the measurement
d* = d,y[p*], calculate

. L. * |2
min J(p) = iH()uZ/[P} —d HZ

But J is not convex and may have several local minima, so
that the solution will depend on the initialization pyg.
Algorithms not guaranteed to converge to the global
minimum.

@ Kilibanov, Beilina and co-authors have worked a lot on related
questions...



The Carleman-based reconstruction algorithm

@ First goal : compute the PDE unknown coefficient with
convergence estimates and no a priori first guess.

@ Core idea : build a reconstruction algorithm (C-bRec)
e from the appropriate Carleman estimates to build the cost
functional,
e using the structure of the proof of stability to prove the global
convergence.
@ Until now, the idea was applied to three reconstruction cases:
e potential / wave speed in the wave equation ([Baudouin, de
Buhan, Ervedoza 2013, 2017], [Baudouin, de Buhan, Ervedoza,
Osses 2021]);
e source term in a non linear heat equation by [Boulakia, de
Buhan, Schwindt, 2020].



@ Presentation of the C-bRec algorithm

© C-bRec algorithm on a network
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Outline

@ Presentation of the C-bRec algorithm
@ Tools for the reconstruction of the potential
o ldea
@ New Algorithm



Determination of the potential in the wave equation

Ony — Ay +p'y = f, (0,T) x £,
Y=g, (0,T) x 09
((0),89(0)) = (°,9"), Q.

Is it possible to retrieve the potential p* = p*(x), © € Q from
measurement of the flux d* = 0,y[p*|(t,z) on (0,T) x Ty ?

@ Uniqueness: Given p; # p2, can we guarantee 9, y[p1] # dvy[p2] ?

@ Stability: If d,y[p1] ~ dvy[p2], can we guarantee that p1 ~ ps ?

@ Reconstruction: Given d* = 9, y[p*], can we compute p* ?
e Known results: Uniqueness ([Klibanov 92], stability ([Yamamoto 99],
[Imanuvilov, Yamamoto 01]), using Carleman estimates.

e Main question: Reconstruction : how to compute the potential from
the boundary measurement ?



Stability Result ([Yamamoto 99], [Baudouin, Puel 01])

To

Let 2o € RV \ Q and let I'g and T satisfy o0

{r€ed, (x —xp) -v(z) >0} CTy ; T >sup{|lz— x|}
e

Let the potential p, the initial data y° and the solution y[p] s.t.
[Pl Lo () < m, ggg{lyo(w)!} >y >0, ylp) € H'(0,T;L>(2)).

Then, one can prove uniqueness and local Lipschitz stability of the
inverse problem for the wave equation: Vg € L%om(Q),

lp — qHL2(Q) < C|0vylp] — aul/[cﬂHHl((o,T);LZ(Fo))'



Towards a (re)constructive approach

The idea is considering p* as the fix point of a contracting application
~ construct a sequence (¢*)ren converging towards p*.

Based on the Bukhgeim-Klibanov method, it is easy to check that
Z =0y (ylg*] — y[p*]) satisfies

0nZ — AN Z + ¢8(2)Z = (p* — ¢¥)owy[p*] =: h, (t,x) € (0,T) x Q,
Z(t,x) =0, (t,z) € (0,T) x 90
(2(0,2),0:2(0,x)) = (0, (p* — ¢")y"), z e Q.
One should notice that Z was built to be the unique minimizer of the
functional

T T

Ji(z) = / / e¥P|0yz — Apz+ ¢ (x)2—h]* + s/ / %10,z — 1" |?,
0JQ 0Jr,

where 1/* = 0, (0,y[q"] — 0,y[p*]) on Ty x (0,T).Then

* k
pr=q"+
y°

Be careful: A is unknown.
Idea: minimize another functional .J} associated to / = 0.



Carleman estimate [Baudouin, de Buhan, Ervedoza 13]

Assuming g € LY (Q), Lg =0 — Az +q(x), ¢t z)= eMlz=wo|?=pt%)

{z €99, (x —x0) -v(x) >0} C Ty, suplz—xo| < BT
z€Q
Jsg >0, A >0 and M = M(so, A\, T, 3,20, m) > 0 such that
T « " «
s// e**? (|ow]? + |[Vw|* + s*|w|?) dzdt + 51/2/ 50| 9,1(0)|? da:
0/ Q
T T
< M// e**?|Lyw|? dxdt + Ms // e |0,w|? dodt,
0/a 0/

for all s > sp and w € L2(—T,T; H}(Q)) satisfying

dyw € L2((0,T) x T'o),

Lgqw € L?(Q x (0,T))
{ w(0,z) =0, Yo € Q.

~> but also Imanuvilov, Zhang, Klibanov,...



Carleman based Reconstruction Algorithm

Initialization: ¢° = 0 or any initial guess.
Iteration: Given qk,
1 - Compute y[g*] the solution of

Ofy—Ay+dy=1, in Q2 x(0,7),
Y=g, on 99 x (0,7T),
y(0) =yo, Oy(0) =y1, ing,

and set p* = 9 (9,y[q"] — duy[p*]) on
T x (0, T)



Carleman based Reconstruction Algorithm

Initialization: ¢° = 0 or any initial guess.
Iteration: Given qk,
1 - Compute y[g*] the solution of

Ofy—Ay+dy=1, in Q2 x(0,7),
Y=g, on 99 x (0,7T),
y(0) =yo, Oy(0) =y1, ing,

and set p* = 9 (9,y[q"] — duy[p*]) on
T x (0, T)
- Introduce the functional

T T
B@= [ [ eeinpates [ [ @eppemut,
0Jq 0Jrg

on the space
T ={z € L*(0,T; H} (), 2(t = 0) = 0,
quzeLQ(Qx (0,7)),0,2 € L*(Ty x (0,T))}.



Carleman based Reconstruction Algorithm

Initialization: ¢° = 0 or any initial guess.
Iteration: Given qk,
1 - Compute y[g*] the solution of

Ofy—Ay+dy=1, in Q2 x(0,7),

y=g, on 0 x (0,T),

y(0) =yo, Oy(0) =y1, ing,

and set p* = 9 (9,y[q"] — duy[p*]) on
T x (0, T)
- Introduce the functional

T T
B@= [ [ eeinpates [ [ @eppemut,
0Jq 0Jrg

on the space

Tk ={z € L?(0,T; H}(Q)), 2(t = 0) = 0,

Loz € L2(Q x (0, T)), 8,2 € L2(To x (0,T))}.

Theorem

Assume some geometric and time
conditions. Then, Vs > 0 and k € N,
the functional Jgf is continuous,
strictly convex and coercive on T*
endowed with a suitable weighted
norm.




Carleman based Reconstruction Algorithm

Initialization: ¢° = 0 or any initial guess. Theorem
Iteration: Given g¥, Assume some geometric and time
1 - Compute y[g"*] the solution of conditions. Then, ¥s >0 and k € N,
the functional Jgf is continuous,
6t2y — Ay + ¢~y = f, in Qx (0,7), strictly convex and coercive on T*
y=g, on 0 x (0,T), endowed with a suitable weighted
y(0) =yo, O:y(0)=y1, inK, norm.

3 - Let Z* be the unique minimizer of

k _ ¢ 3 o[kl _ F *
and set 1" = & (d,,y[q I = dvylp D on the functional J(If, and then set

T x (0, T)
- Introduce the functional

e . OZF(0
G = gk 4 (0)

Jk _ T 2sp L 2 T 2s¢ 8, k|2 Yo
by = [ [ e einpalrs [ [ 2¢lo,—ut P2,
0J/Q 0JTo

where yq is the initial condition.
on the space
TF ={z € L*(0, T; 6(9)) z(t=10) =0,
Lz € L2(Q x (0,T)),0,2 € L?(Ty x (0,7))}.



Carleman based Reconstruction Algorithm

Initialization: ¢° = 0 or any initial guess. Theorem
Iteration: Given g¥, Assume some geometric and time
1 - Compute y[g"*] the solution of conditions. Then, ¥s >0 and k € N,
the functional Jgf is continuous,
6t2y — Ay + ¢~y = f, in Qx (0,7), strictly convex and coercive on T*
y=g, on 0 x (0,T), endowed with a suitable weighted
y(0) =yo, O:y(0)=y1, inK, norm.

3 - Let Z* be the unique minimizer of

k _ ¢ 3 o[kl _ F *
and set 1" = & (d,,y[q I = dvylp D on the functional J(If, and then set

T x (0, T)
- Introduce the functional

e . OZF(0
G = gk 4 (0)

Jk _ T 2sp L 2 T 2s¢ 8, k|2 Yo
by = [ [ e einpalrs [ [ 2¢lo,—ut P2,
0J/Q 0JTo

where yq is the initial condition.
k41 _ ~k+1
on the space 4 - Finally, set ¢ = T (gFT1)

Tk = {z € L2(0, T; HL(Q)), 2(t = 0) = 0, where

0
Lz € L2(Q % (0,T)),8,2 € L2(Ty x (0,T))}. _
q if || <m,

_ q,
”M*{s@@m if |g] > m.



Algorithm’s convergence  [Baudouin, de Buhan & Ervedoza 13]

Theorem

Assuming the geometric and time conditions (among others), there
exists a constant M > 0 such that Vs > sq(m) and k € N,

* M s *
/9625<p(0)(qk+1 —p )2 dr < \/5/962 <p(0)(qk —p )2 dz.

In particular, when s is large enough, the algorithm converges.

Remark : Convergence to the global minimum from any initial guess.




Proof

As proposed earlier, let us set v* = 9, (y[qk] — y[p*]) that solves

0?v — Av + ¢Fv = fF, in Qx(0,7),
v =0, on 92 x (0,T),
v(0) =0, 9w(0) = (p* — ¢")°, in Q,

where [ = (p —q" Fowy[p*).
By definition, ;¥ = 0,v" on Ty x (0,T), and we notice that v* is
the unique minimizer of the functional:

//2S“D|L rw — 52 +S//F e*?|0,w — p*|?,
0

on the space 7% = {w € L?(0,T; H}()), w(t = 0) = 0,
Lpwe L*(2x (0,T)),0,w € L2(r0 x (0,7))}.



Proof Il

Let us write the Euler Lagrange equations satisfied by:
ZF minimizer of Jé“

T T
//GQSqukszqkw+s// e*#(9,2" — i*)9,w = 0,
0Jo 0 /To

and v* minimizer of J,]f

T T
/ / e**? (Lgpv®— f*)Lpw + s / / > (90" — pF)dw =0,
0Ja 0 JIg

for all w € T*. Applying these to w = Z¥ — v* and subtracting the two
identities, we obtain:

T T T
// 628¢|quw|2 + S// e2sap‘8yw|2 — // eQSLPfk quw7
0Ja 0 /To 0%

implying (2ab < a2 + b?)

1 T 2s 2 T 2sp 2 1 ’ 2s k|2
S| ] EFLpwl s [ | o< o [ [ e ft
2 0.Ja 0JTIy 2 0JQ



Proof Il

The LHS is precisely the RHS of the Carleman estimate. Hence:

: T
s1/2 / 2?0 9,w(0)|? dz < M/ / 25| ¥ dadt,
Ja 0o Jo
where 9;w(0) = 9;Z%(0) — 9;v*(0). Moreover,
0:Z7(0) = (¢ ="y’ 0.0M(0) = (0" —d")y°, [ = (0" —d")Duylp).
Therefore, since p(t) < ¢(0) for all t € (0,T") we have:
/2 [ O P P do < Mol s ma o [ €7l da.
Using the positivity condition on 3° and the fact that
" =" = T (@) = T (p*)| < 13— 97

because T, is Lipschitz and T,,(p*) = p*, we can deduce

2s¢(0) ( k+1 M . 25p(0)

2s¢p e P sp

e q dr < ( ) / q —p) dx. (]
/&2 ( ) \ﬁ Q ( )



In theory, it works. But in practice ?

Two remarks:
@ Discretizing the wave equation brings numerical artefacts...

@ Minimizing a strictly convex and coercive quadratic functional based
. . . A
on a Carleman estimate means dealing with e2°¢”" for large
parameters s and ...

New goal: propose a numerically efficient algorithm.
Ideas: We need an algorithm constructed with at least
@ a regularization term in the cost functional,

@ a single parameter Carleman estimate.

~~ [Baudouin, de Buhan, Ervedoza 2017]



New C-bRec algorithm [Baudouin, de Buhan, Ervedoza
2017]

The algorithm is also modified according to the following items :
@ Single parameter Carleman estimate ;

~> presence of an additional term on the right
83 // 825@‘2‘2
@]
@ Preconditioning of the cost functional ;
~> introduce the conjugate variable y = e*¢z
@ Splitting of the observations by cut-off ;
~ % = n90,(ylq"] - ylp*])

. and the convergence result remains the same.



Outline

© C-bRec algorithm on a network
@ Setting
@ Tools
@ Algorithm and convergence result
@ Numerical results



PDE on networks

Applications :

control or stabilize the vibrations of elastic structures (as bridges,
cranes,...),

regulate the height of water in networks of irrigation canals,

find the topography of the bottom in a network of irrigation canals,
detect water losses by measurements in nodes,

control gas flow in pipelines through compressors,

determine the blood pressure leaving the heart with a finger pressure
measurement,

control road traffic on a network of roads or the flow of blood in a
network of arteries,...



PDE on networks

On networks, the state is represented by several components

v ()

and the components are coupled together by boundary conditions.

If p < N is the number of controls/observations, it is therefore necessary
to pass the information on the remaining N — p branches.

Goals:

@ minimize the number of observations, feedbacks or controls,

@ choice of placement of observations, feedback mechanisms or
controls based on network topology and branch lengths.



An inverse problem on network

Figure: An 8 branches tree-shaped network R, with an unobserved root
node and 5 observed leaf nodes e.



Notations

Let us thus consider a finite tree-shaped network R.
@ J: the set of names of all branches of the network.

@ We define the name of the branches by recurrence:

e To the root branch, named 1, we associate its N7 children
branches denoted by 1, € N for i = 1..V;.

e From a branch named j € J we define the names of its N;
children branches by j; for i = 1..IV;.

@ /;: the length of the branch j.

® Jear ={j €J,N; =0}.

 Jim={jeJ,N; >0}

@ f;: the restriction of the function f on R to the branche j.

o [ 1 dasz/ e

IS

o [flj = 1) — iji(o), Vj € Tint-
=1



An inverse problem on network

On each branch j € J of the network, we consider the
one-dimensional wave equation system

{attuj (t, ) — Dpps(t, ) + pj(2)u;(t, x) = g;(t, x), (t,x) € (0,T) x (0,£;),
u;(0,x) = u?(x), O (0,z) = ul(w), xz € (0,¢;),

with
for ] = 1a Ul(t,O) = hl(t)v
'f] € jexta Uj(tvgj
If] € %nt, uj(t,Z'



Inverse problem on a network

Inverse problem

Knowing, for each branch j € 7, the source term g; and the initial
data (u u; ) for the root and for each leaf j € {1} U J. the
boundary source term hj, is it possible to identify the unknown
potentials p}(z) for any x € (0,¢;), from the only extra knowledge
of the flux of the solutions through the leaf nodes of the network,
meaning:

di(t) = Opuj(t, 4;), fori € Jeg and t € (0,7,

where w7 is the solution associated to potential p;?




Lipschitz stability result [Baudouin, Crépeau, V. 2011]

Theorem

There exist a time Ty > 0 and a scalar cg > 0 such that if
@ Time condition: T > T,
@ Regularity condition: w € H'(0,T; L>°(R)),
© Sign condition: |u"| > " > 0 on the whole network R,

then for a fixed m > 0, there exists a positive constant
C = C(R,T,m) such that, if p and p* belong to
L (R) = {p € L*(R), |Ipllee(r) < m}, we have

P —])*Hiz(R) <C Z 102w (-, 4;) — am“;(':fi)nzl(oj)-
7‘,6:751;15

Proof: based on the Bukhgeim and Klibanov method and a two
parameters Carleman estimate.



Carleman weight function ¢

VieJd, pi(t,x) = (x —x;)% — B2+ M;, (t,z) € R x (0,4).
There exist (z;)jes € R™, (M;)jes € RT, 8€(0,1) and T > 0 satisfying
BT > sup({; — ;)
JjeET
such that it holds

(I) V.]e%nt:‘}gjz(t70):¢](tfj)7 VZG{LNJ}
(ii) The matrices A¥(t) satisfy for any j € Jint: Jai >0,8; >0, V€ € RN,

(A7 (1)&,€) > adli¢]?, Ve, < T = S
(A*(t) ) > aflIEl)? = Bilén, al?, Yt Ty <t < T;
where A7 (t) are (N; + 1) x (N; + 1) symmetric matrices defined by
#, (0) — @5 (€5)  —@j(€5) - —9;(¢;) —¢;(£5)[8];
A% (t) = .
s () —9;(¢;) :
bin, (0) = 85(65)  —¢;(&5)[0;
a;(t)

with ¢(z) := dop(t, ) and a;(t) = —¢;(4;)[8]F + [(10e(t)]® — |61*)¢] -



First tool: one-parameter Carleman estimate [Baudouin, de
Buhan, Crépeau, V. 2025]

Theorem
There exist C > 0, so > 0 such that for all s > sq , for allp € L3y (R),

T
st/? / 625'*5(0’“’)\@2“(0, x)|*dx + s/ / e (|(9tz|2 + 022> + 52|z|2) dzdt
JR -TJRr
T
< C/ / 625“’|8ttz — Opzz +pz|2dmdt
-TJRr
T
+C's Z / 3219 2 (¢, 0))2dt + Cs*I(z, 2),
i€Jeat” T
satisfied by all z € H*((=T,T); H}(R)) s.t. Ouz — uwz € L*((0,T) x R),
under Kirchhoff node condition and z(0,-) =0 in R, and where
T(z,2) = // ¢|oPdudt + 3 / 2593 (M) (¢ 0 2dt
(tl2)e0 e, Jieonr,

with O = U]'EJOJ' where O]‘ = {(t,m) S (O,T) X (0,4]')7 |.CL‘ — $j| — ﬂm < 0}
and Or; = {t € (0,T), |¢; — x;| — B|t| < 0} defined only for x = {;, j € Tint-




The domains O; and Or,

Figure: lllustration of domains O; and Or; for the branch (0,¢;),
denoting T; = |l; — z;|/B.



Second tool: properties of the cut-off function n¥

P = 0?0, (uF — u*) (with n¥ € C2((0,T) x R)) is solution of

{@tvk(t, x) — Opev® (t, ) 4+ pF(x)of (t,x) = f*(t,z), in (0,T) xR,
vP(0,2) =0, 9,0F(0,2) =17 (0,2)(p*(x) — p"(x))u’(z), inR,

where f* = n®(p* — pF)Ou* — [n%, Ost — Ors) Ot (uk — u*)

vF satisfies also the continuity and the Kirchhoff law at the internal

nodes, and the Dirichlet boundary condition at the external nodes.

v® is built to be the unique minimizer of the functional
1 [T
Fs[pk” fkaﬂk](2> = § / / ezswlattz - aﬁvzz +pk2 - fk|2 dxdt
0o JR

5 Z ’ (L)
2 250 (t,l;
+ 7 / e
1€ETeat

.3
Dpzilt, 05) — k(1) dt + 5 I(2, 2),

where we set, for all i € Jeur, ¥ (t) = nf (¢, 0:)0; (Ouul (¢, 6;) — di (1)).



Properties expected from v*

@ Encoding (p* — p*), which is the information we seek, through the
initial speed data 9,v%(0,-) = 1¥(0,-)(p* — p*)u°

~1n7(0,-) = 1.
@ Vanishing in the domains O and Or, so that Z(v*,v%) =0

~ 17 = 0 on some domain greater than O U (Ujedin: O, x {4;}).

@ Allowing the source term f* solved by v* to be manageable. We
will ask for n¥ to vary (between 0 and 1) only in a small region of
(0,T) x R. Actually, on each (0,T) x (0,¢;), it will be specifically
possible (meaning manageable) where M; < ¢; < x? + M;.

@ But it also has to be done properly across each internal node to
ensure continuity and Kirchhoff law for v* at those nodes.



Context of application of the cut-off functions n¥ over two
consecutive branches j and j;.

t




Third tool: properties of the cost functional Fj

Lemma

For all s > 0 large enough, p € L>(R), f € L*(0,T; L*(R)) and
w € L2(0,T), the functional Fy[p, f, u] recalled here

[pv f7 / / 25<P|8tt2’ — a,acz + pz — f|2 dxdt
— 250, (t,4;) ) N, 2 s”
+2i§ /0 20|93 (1, 43) — g (1)t + 5 I(z,z),
ext

is continuous, strictly convex and coercive on T defined by

T = {z e ([0, T); HA(R)NC ([0, T]; L*(R)), et 2—Buwz € L*((0, T)xR)
2(0,-)=0inR, and [0u2];(t) =0, Vj € Tint,t € (o,T)}

and equipped with an appropriate weighed norm.
Thenceforth, the functional Fy[p, f, u] admits a unique minimizer on the
set T.

v

—_———— == =




The C-bRec algorithm on a network
Knowing, for each branch j € 7, g;, h; and (u?,ujl) we have the extra measured
information at the leaves of the network R:
di (t) = Oguf(t,£;), for i € Jextr and t € (0,T).

Initialisation: Choose any initial guess p® € L9 (R).
Iteration: Knowing p* € L (R),
@ Calculate the solution u¥ associated to pk, and set

Vi € Jeat, VE € (0,T), b (t) = nf (t,£)0 (9wl (t,6:) — d; ().

@ Minimize the functional Fi[p¥,0, 1*] defined by on the space 7 and denote w*
its unique minimizer.

© Then set .
L _ Opw™(0, -
pk+l = pk —+ 75] ’ ), on R.
u
© Finally, construct
Skt1 if 155+ <
k+1 _ o (skt1y . p s ! |P \ sm,
p m (P ) { sign(ﬁk+1)m, if |ﬁk+1‘ > m.

Stopping criterion: Choose € > 0 and K € N* and stop the iterative loop as soon as
k+1 _  k
Hpj p; lloo

sup ‘%2 <e or  sup —— < ¢,
§€Text lld7 2 JeT m

Duuf (t,4;) — d

or when the maximal number of iterations K is reached.



Convergence result [Baudouin, de Buhan, Crépeau, V. 25]

Theorem

Assume that p* € L9(R). Then there exists a constant C' > 0
such that for all s large enough and for all k € N, it holds

. C\* .
/ e?scp(O) |pk —p |2 dr < <1/2> / e25go(0)‘p0 —p |2 dr.
R s R

In particular, if s is large enough, the sequence (p*)ren given by
the algorithm converges towards p* when k tends to infinity.




Numerical example

Figure: First setting - a 3 branches network, with observations at e.



Numerical

values
U U1 g h m
(2,2,2) (0,0,0) |(0,0,0) | (222) 2
45 I5] s €1 €9
(0.5,1,0.75) 0.99 1 1073 1072
x; M; T N, N,
(-0.3,-2.89,-2.89) | (7.71,0,0) | 3.9 | 100%¢; | 110% T

Table: Numerical values of the variables used for all the numerical

examples.




Simulations from data without noise

(a) (b) (c)
pi(z) = —li.3,0.8/(x/01) pi1(x) = sin(2mx/l11) pia(x) = sin(5mx/l2)

Figure: Top line: Convergence history of the reconstruction process.
Bottom line: final reconstruction result (dotted black line) and exact
coefficient (red line) for the three branches.



Simulations with several levels of noise: 8 = 1%, 6 = 2%,
0 = 5% noise in the data

rrrrrrrrrr

Costticient on branch 11 . Coeticient an brancn
o p—— 1 et
0s{ 4 N o5
o5 o5
s s
Cosflicient on branch 11 N Costicient an brancs
1o [ e 4




Wrong choices of the parameters: T'= 1.5, T' = 1.25,
without projection

KKKKKKKKK

cldlc




A more complex network

Lapa = 0.3

lac2 = 0.1
loes = 0.5

Figure: Second setting - an 9 branches network, with observation at e.



Numerical values for the nine-branches network

ug ul m
(2,2,2,2,2,2,2,2,2) (0,0,0,0,0,0,0,0,0) 2
g ¢ B
(0,0,0,0,0,0,0,0,0) | (0.2,0.6,0.3,0.2,0.4,0.3,0.6,0.1,0.5) 0.99
h Zj €1
(2,2,2,2,2,2,2,2,2) | -(0.01,1.2,1.2,8.7,8.7,8.7,1.2,6.56.5) | 1073
S Mj £9
1 (74.1,72.6,72.6,0,0,0,72.6,33.4,33.4) | 1072
Noj Ny
9.15 100 * £; 110+ T

Table: Numerical values of the variables used for the numerical examples
of the nine-branches network.



Simulations of the nine-branches network

Coefficient on branch a Coefficient on branch aa Coeficient on branch ab
15 recovered s recovered 2 - recovered
00 00 10
15 s o5
20 10
Coefficient on branch abl Coefficient on branch ab3 Coefficient on branch abd
20 0 20
s covered s ecovered s - recovered
05 03 05
o0 s 10 00
1o 20 10
us s s
20 s E
B0 o0 om0 007 010 o1z o150 0175 0200 Yoo ops olo o1 o o 0% o3 os0 b om0l o1 om0
Coeffcient on branch ac Coefficient on branch ac2 Coefficient on branch acs
—— —— [y
s meovered s ecovered 15 - recovered
10 10 10
os os o5
05 03 o5
10 10 10
) o o o o o0 o o0 o2 0bs 056 ot 010 ) o w2 o o o




Conclusion

@ Reconstruction of potentials on networks of wave equations.

@ The C-bRec approach seems quite adaptable, even if it is to
the price of appropriate one-parameter Carleman estimates.

@ Other examples of network?
@ Other equations? KdV equation?



Discretization of the algorithm

@ Discretization of the system: finite differences (explicit centered
scheme) in space and time.

@ Minimization of Fy[p*,0, 1u*]: resolution of a variational formulation

e approximation of the integrals using rectangle quadrature rules
and standard centered finite differences,

e attention must be paid to the discretization process of T,

e add viscosity terms to guarantee coercivity property uniformly
with respect to discretization parameters (to handle high
frequency spurious waves).

@ Presence of large exponential factors in F,[p”, 0, u*]:

o to work on the conjugate variable (yF)!" = (wk)pess (")
that acts as a preconditioner of the linear system,

o there are still exponential factors in the right hand side vector
~> develop a progressive process to compute the solution as
the aggregation of several problems localized in subdomains in
which the exponential factors are all of the same order.



Simulations from data without noise: other potentials

(a) pi(z) = sin(2wz /1) (b) pii(x) = (c)
_1[0.3,048](7«’/[11) piz(z) = sin(5mw/l12)

(d) (e) pii(z) = (f)
pi(x) = —ljo.3,0.8 (/1) 1 + sin(27wx/11) pia(z) = sin(bmx/l12)
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