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Coefficient inverse problem in the wave equation

In a smooth bounded domain Ω ⊂ Rn, it writes for instance, ∂tty(t, x)−∆xy(t, x) + p∗(x)y(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω,
y(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω
(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ Ω.

Given data: Source terms f, g ; initial data: (y0, y1);

Unknown: the potential p∗ = p∗(x);

Additional measurement : the flux ∂νy(t, x) on (0, T )× ∂Ω.



Motivation

The determination in Ω of p∗ from an additional
measurement are inverse problems for which uniqueness and
stability are well-known and proved using Carleman estimates.

Classical reconstruction : from the measurement
d∗ = ∂νy[p

∗], calculate

min J(p) =
1

2
∥∂νy[p]− d∗∥2.

But J is not convex and may have several local minima, so
that the solution will depend on the initialization p0.
Algorithms not guaranteed to converge to the global
minimum.

Klibanov, Beilina and co-authors have worked a lot on related
questions...



The Carleman-based reconstruction algorithm

First goal : compute the PDE unknown coefficient with
convergence estimates and no a priori first guess.

Core idea : build a reconstruction algorithm (C-bRec)

from the appropriate Carleman estimates to build the cost
functional;
using the structure of the proof of stability to prove the global
convergence.

Until now, the idea was applied to three reconstruction cases:

potential / wave speed in the wave equation ([Baudouin, de
Buhan, Ervedoza 2013, 2017], [Baudouin, de Buhan, Ervedoza,
Osses 2021]);
source term in a non linear heat equation by [Boulakia, de
Buhan, Schwindt, 2020].
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Determination of the potential in the wave equation


∂tty −∆y + p∗y = f, (0, T )× Ω,
y = g, (0, T )× ∂Ω
(y(0), ∂ty(0)) = (y0, y1), Ω.

Is it possible to retrieve the potential p∗ = p∗(x), x ∈ Ω from
measurement of the flux d∗ = ∂νy[p

∗](t, x) on (0, T )× Γ0 ?

Uniqueness: Given p1 ̸= p2, can we guarantee ∂νy[p1] ̸= ∂νy[p2] ?

Stability: If ∂νy[p1] ≃ ∂νy[p2], can we guarantee that p1 ≃ p2 ?

Reconstruction: Given d∗ = ∂νy[p
∗], can we compute p∗ ?

• Known results: Uniqueness ([Klibanov 92], stability ([Yamamoto 99],
[Imanuvilov, Yamamoto 01]), using Carleman estimates.

• Main question: Reconstruction : how to compute the potential from
the boundary measurement ?



Stability Result ([Yamamoto 99], [Baudouin, Puel 01])

Let x0 ∈ RN \ Ω and let Γ0 and T satisfy

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 ; T > sup
x∈Ω

{|x− x0|}.

Let the potential p, the initial data y0 and the solution y[p] s.t.

∥p∥L∞(Ω) ≤ m, inf
x∈Ω

{|y0(x)|} ≥ γ > 0, y[p] ∈ H1(0, T ;L∞(Ω)).

Then, one can prove uniqueness and local Lipschitz stability of the
inverse problem for the wave equation: ∀q ∈ L∞

≤m(Ω),

∥p− q∥L2(Ω) ≤ C∥∂νy[p]− ∂νy[q]∥H1((0,T );L2(Γ0)).



Towards a (re)constructive approach

The idea is considering p∗ as the fix point of a contracting application

⇝ construct a sequence (qk)k∈N converging towards p∗.

Based on the Bukhgeim-Klibanov method, it is easy to check that
Z = ∂t

(
y[qk]− y[p∗]

)
satisfies ∂ttZ −∆xZ + qk(x)Z = (p∗ − qk)∂ty[p

∗] =: h, (t, x) ∈ (0, T )× Ω,
Z(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω
(Z(0, x), ∂tZ(0, x)) = (0, (p∗ − qk)y0), x ∈ Ω.

One should notice that Z was built to be the unique minimizer of the
functional

Jk
h (z) =

∫ T

0

∫
Ω

e2sφ|∂ttz−∆xz+ qk(x)z−h|2 + s

∫ T

0

∫
Γ0

e2sφ|∂νz− µk|2,

where µk = ∂t
(
∂νy[q

k]− ∂νy[p
∗]
)
on Γ0 × (0, T ).Then

p∗ = qk +
∂tZ(0)

y0

Be careful: h is unknown.
Idea: minimize another functional Jk

0 associated to h = 0.



Carleman estimate [Baudouin, de Buhan, Ervedoza 13]

Assuming q ∈ L∞
≤m(Ω), Lq = ∂tt −∆x + q(x), φ(t, x) = eλ(|x−x0|2−βt2)

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 , sup
x∈Ω

|x− x0| < βT

∃s0 > 0, λ > 0 and M = M(s0, λ, T, β, x0,m) > 0 such that

s

∫ T

0

∫
Ω
e2sφ

(
|∂tw|2 + |∇w|2 + s2|w|2

)
dxdt + s1/2

∫
Ω
e2sφ(0)|∂tw(0)|2 dx

≤ M

∫ T

0

∫
Ω
e2sφ|Lqw|2 dxdt+Ms

∫ T

0

∫
Γ0

e2sφ |∂νw|2 dσdt,

for all s > s0 and w ∈ L2(−T, T ;H1
0 (Ω)) satisfying Lqw ∈ L2(Ω× (0, T ))

∂νw ∈ L2((0, T )× Γ0),
w(0, x) = 0, ∀x ∈ Ω.

⇝ but also Imanuvilov, Zhang, Klibanov,...



Carleman based Reconstruction Algorithm

Initialization: q0 = 0 or any initial guess.
Iteration: Given qk,
1 - Compute y[qk] the solution of ∂2

t y −∆y + qky = f, in Ω× (0, T ),
y = g, on ∂Ω× (0, T ),
y(0) = y0, ∂ty(0) = y1, in Ω,

and set µk = ∂t
(
∂νy[qk]− ∂νy[p∗]

)
on

Γ0 × (0, T ).

2 - Introduce the functional

Jk
0 (z) =

∫ T

0

∫
Ω
e2sφ|Lqkz|

2+s

∫ T

0

∫
Γ0

e2sφ|∂νz−µk|2,

on the space
T k = {z ∈ L2(0, T ;H1

0 (Ω)), z(t = 0) = 0,
Lqkz ∈ L2(Ω× (0, T )), ∂νz ∈ L2(Γ0 × (0, T ))}.

Theorem
Assume some geometric and time
conditions. Then, ∀s > 0 and k ∈ N,
the functional Jk

0 is continuous,
strictly convex and coercive on T k

endowed with a suitable weighted
norm.

3 - Let Zk be the unique minimizer of
the functional Jk

0 , and then set

q̃k+1 = qk +
∂tZk(0)

y0

where y0 is the initial condition.
4 - Finally, set qk+1 = Tm(q̃k+1)
where

Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m.
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Algorithm’s convergence [Baudouin, de Buhan & Ervedoza 13]

Theorem

Assuming the geometric and time conditions (among others), there
exists a constant M > 0 such that ∀s ≥ s0(m) and k ∈ N,∫

Ω
e2sφ(0)(qk+1 − p∗)2 dx ≤ M√

s

∫
Ω
e2sφ(0)(qk − p∗)2 dx.

In particular, when s is large enough, the algorithm converges.

Remark : Convergence to the global minimum from any initial guess.



Proof

As proposed earlier, let us set vk = ∂t
(
y[qk]− y[p∗]

)
that solves ∂2

t v −∆v + qkv = fk, in Ω× (0, T ),
v = 0, on ∂Ω× (0, T ),
v(0) = 0, ∂tv(0) = (p∗ − qk)y0, in Ω,

where fk = (p∗ − qk)∂ty[p
∗].

By definition, µk = ∂νv
k on Γ0 × (0, T ), and we notice that vk is

the unique minimizer of the functional:

Jk
h (w) =

∫ T

0

∫
Ω
e2sφ|Lqkw − fk|2 + s

∫ T

0

∫
Γ0

e2sφ|∂νw − µk|2,

on the space T k = {w ∈ L2(0, T ;H1
0 (Ω)), w(t = 0) = 0,

Lqkw ∈ L2(Ω× (0, T )), ∂νw ∈ L2(Γ0 × (0, T ))}.



Proof II

Let us write the Euler Lagrange equations satisfied by:
Zk minimizer of Jk

0∫ T

0

∫
Ω

e2sφLqkZ
k Lqkw + s

∫ T

0

∫
Γ0

e2sφ(∂νZ
k − µk)∂νw = 0,

and vk minimizer of Jk
h∫ T

0

∫
Ω

e2sφ(Lqkv
k−fk)Lqkw + s

∫ T

0

∫
Γ0

e2sφ(∂νv
k − µk)∂νw = 0,

for all w ∈ T k. Applying these to w = Zk − vk and subtracting the two
identities, we obtain:∫ T

0

∫
Ω

e2sφ|Lqkw|2 + s

∫ T

0

∫
Γ0

e2sφ|∂νw|2 =

∫ T

0

∫
Ω

e2sφfk Lqkw,

implying (2ab ≤ a2 + b2)

1

2

∫ T

0

∫
Ω

e2sφ|Lqkw|2 + s

∫ T

0

∫
Γ0

e2sφ|∂νw|2 ≤ 1

2

∫ T

0

∫
Ω

e2sφ|fk|2.



Proof III

The LHS is precisely the RHS of the Carleman estimate. Hence:

s1/2
∫
Ω

e2sφ(0)|∂tw(0)|2 dx ≤ M

∫ T

0

∫
Ω

e2sφ|fk|2 dxdt,

where ∂tw(0) = ∂tZ
k(0)− ∂tv

k(0). Moreover,

∂tZ
k(0) = (q̃k+1−qk)y0, ∂tv

k(0) = (p∗−qk)y0, fk = (p∗−qk)∂ty[p
∗].

Therefore, since φ(t) ≤ φ(0) for all t ∈ (0, T ) we have:

s1/2
∫
Ω

e2sφ(0)|y0|2|q̃k+1−p∗|2 dx ≤ M∥∂ty[p
∗]∥2L2(0,T ;L∞(Ω))

∫
Ω

e2sφ(0)|qk−p∗|2 dx.

Using the positivity condition on y0 and the fact that

|qk+1 − p∗| = |Tm(q̃k+1)− Tm(p∗)| ≤ |q̃k+1 − p∗|

because Tm is Lipschitz and Tm(p∗) = p∗, we can deduce∫
Ω

e2sφ(0)(qk+1 − p∗)2 dx ≤
(
M√
s

)k+1 ∫
Ω

e2sφ(0)(q0 − p∗)2 dx. □



In theory, it works. But in practice ?

Two remarks:

Discretizing the wave equation brings numerical artefacts...

Minimizing a strictly convex and coercive quadratic functional based

on a Carleman estimate means dealing with e2se
λψ

for large
parameters s and λ...

New goal: propose a numerically efficient algorithm.

Ideas: We need an algorithm constructed with at least

a regularization term in the cost functional,

a single parameter Carleman estimate.

⇝ [Baudouin, de Buhan, Ervedoza 2017]



New C-bRec algorithm [Baudouin, de Buhan, Ervedoza
2017]

The algorithm is also modified according to the following items :

Single parameter Carleman estimate ;

⇝ presence of an additional term on the right

s3
∫ ∫

O
e2sφ|z|2

Preconditioning of the cost functional ;

⇝ introduce the conjugate variable y = esφz

Splitting of the observations by cut-off ;

⇝ vk = ηφ∂t(y[q
k]− y[p∗])

... and the convergence result remains the same.
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PDE on networks

Applications :

control or stabilize the vibrations of elastic structures (as bridges,
cranes,...),

regulate the height of water in networks of irrigation canals,

find the topography of the bottom in a network of irrigation canals,

detect water losses by measurements in nodes,

control gas flow in pipelines through compressors,

determine the blood pressure leaving the heart with a finger pressure
measurement,

control road traffic on a network of roads or the flow of blood in a
network of arteries,...



PDE on networks

On networks, the state is represented by several components

Z(t) =


z1(t)
z2(t)
...

zN (t)


and the components are coupled together by boundary conditions.
If p < N is the number of controls/observations, it is therefore necessary
to pass the information on the remaining N − p branches.
Goals:

minimize the number of observations, feedbacks or controls,

choice of placement of observations, feedback mechanisms or
controls based on network topology and branch lengths.



An inverse problem on network

Figure: An 8 branches tree-shaped network R, with an unobserved root
node and 5 observed leaf nodes •.



Notations

Let us thus consider a finite tree-shaped network R.

J : the set of names of all branches of the network.

We define the name of the branches by recurrence:

To the root branch, named 1, we associate its N1 children
branches denoted by 1i ∈ N for i = 1..N1.
From a branch named j ∈ J we define the names of its Nj

children branches by ji for i = 1..Nj .

ℓj : the length of the branch j.

Jext = {j ∈ J , Nj = 0}.
Jint = {j ∈ J , Nj > 0}.
fj : the restriction of the function f on R to the branche j.∫
R
f(x)dx :=

∑
j∈J

∫ ℓj

0

fj(x)dx,

[f ]j := fj(ℓj)−
Nj∑
i=1

fji(0), ∀j ∈ Jint.



An inverse problem on network

On each branch j ∈ J of the network, we consider the
one-dimensional wave equation system{
∂ttuj(t, x)− ∂xxuj(t, x) + pj(x)uj(t, x) = gj(t, x), (t, x) ∈ (0, T )× (0, ℓj),

uj(0, x) = u0
j (x), ∂tuj(0, x) = u1

j (x), x ∈ (0, ℓj),

with 
for j = 1, u1(t, 0) = h1(t),

if j ∈ Jext, uj(t, ℓj) = hj(t),

if j ∈ Jint, uj(t, ℓj) = uji(t, 0), ∀i ∈ {1, · · · , Nj},
[∂xu]j(t) = 0,



Inverse problem on a network

Inverse problem

Knowing, for each branch j ∈ J , the source term gj and the initial
data (u0j , u

1
j ), for the root and for each leaf j ∈ {1} ∪ Jext the

boundary source term hj , is it possible to identify the unknown
potentials p∗j (x) for any x ∈ (0, ℓj), from the only extra knowledge
of the flux of the solutions through the leaf nodes of the network,
meaning:

d∗i (t) = ∂xu
∗
i (t, ℓi), for i ∈ Jext and t ∈ (0, T ),

where u∗i is the solution associated to potential p∗i ?



Lipschitz stability result [Baudouin, Crépeau, V. 2011]

Theorem

There exist a time T0 > 0 and a scalar α0 > 0 such that if

1 Time condition: T > T0,

2 Regularity condition: u ∈ H1(0, T ;L∞(R)),

3 Sign condition: |u0| ≥ α0 > 0 on the whole network R,

then for a fixed m > 0, there exists a positive constant
C = C(R, T,m) such that, if p and p∗ belong to
L∞
m (R) = {p ∈ L∞(R), ∥p∥L∞(R) ≤ m}, we have

∥p− p∗∥2L2(R) ≤ C
∑

i∈Jext

∥∂xui(·, ℓi)− ∂xu
∗
i (·, ℓi)∥2H1(0,T ).

Proof: based on the Bukhgeim and Klibanov method and a two
parameters Carleman estimate.



Carleman weight function φ

∀j ∈ J , φj(t, x) = (x− xj)
2 − βt2 +Mj , (t, x) ∈ R× (0, ℓj).

There exist (xj)j∈J ∈ R−, (Mj)j∈J ∈ R+, β ∈ (0, 1) and T > 0 satisfying

βT > sup
j∈J

(ℓj − xj)

such that it holds
(i) ∀j ∈ Jint, φji(t, 0) = φj(t, ℓj), ∀i ∈ {1, · · ·Nj}.
(ii) The matrices Aφ

j (t) satisfy for any j ∈ Jint: ∃α0
j > 0, βj > 0, ∀ξ ∈ RNj+1,

(Aφ
j (t)ξ, ξ) ≥ α0

j∥ξ∥2, ∀t, |t| ≤ Tj :=
ℓj−xj

β
;

(Aφ
j (t)ξ, ξ) ≥ α0

j∥ξ∥2 − βj |ξNj+1|2, ∀t, Tj ≤ |t| ≤ T ;

where Aφ
j (t) are (Nj + 1)× (Nj + 1) symmetric matrices defined by

Aφ
j (t) :=



ϕj1 (0)− ϕj(ℓj) −ϕj(ℓj) · · · −ϕj(ℓj) −ϕj(ℓj)[ϕ]j
. . .

. . .
...

...

. . . −ϕj(ℓj)
...

ϕjNj
(0)− ϕj(ℓj) −ϕj(ℓj)[ϕ]j

aj(t)


with ϕ(x) := ∂xφ(t, x) and aj(t) = −ϕj(ℓj)[ϕ]

2
j +

[
(|∂tφ(t)|2 − |ϕ|2)ϕ

]
j
.



First tool: one-parameter Carleman estimate [Baudouin, de

Buhan, Crépeau, V. 2025]

Theorem
There exist C > 0, s0 > 0 such that for all s ≥ s0 , for all p ∈ L∞

m (R),

s1/2
∫
R
e2sφ(0,x)|∂tz(0, x)|2dx+ s

∫ T

−T

∫
R
e2sφ

(
|∂tz|2 + |∂xz|2 + s2|z|2

)
dxdt

≤ C

∫ T

−T

∫
R
e2sφ|∂ttz − ∂xxz + pz|2dxdt

+Cs
∑

i∈Jext

∫ T

−T

e2sφi(t,ℓi)|∂xzi(t, ℓi)|2dt+ Cs3I(z, z),

satisfied by all z ∈ H1((−T, T );H1
0 (R)) s.t. ∂ttz − ∂xxz ∈ L2((0, T )×R),

under Kirchhoff node condition and z(0, ·) = 0 in R, and where

I(z, z) =
∫∫

(|t|,x)∈O
e2sφ|z|2dxdt+

∑
j∈Jint

∫
|t|∈OTj

e2sφj(t,ℓj)|zj(t, ℓj)|2dt

with O = ∪j∈JOj where Oj = {(t, x) ∈ (0, T )× (0, ℓj), |x− xj | − β|t| < 0}
and OTj = {t ∈ (0, T ), |ℓj − xj | − β|t| < 0} defined only for x = ℓj , j ∈ Jint.



The domains Oj and OTj

0 ℓj

φj
=
Mj

, s
lop

e
1√ β

|x
− x j

| −
β|t

| =
0,
slo
pe

1
β

Oj

xj x

Tj
OTj

T

t

Figure: Illustration of domains Oj and OTj for the branch (0, ℓj),
denoting Tj = |lj − xj |/β.



Second tool: properties of the cut-off function ηφ

vk = ηφ∂t
(
uk − u∗) (with ηφ ∈ C2((0, T )×R)) is solution of{

∂ttv
k(t, x)− ∂xxv

k(t, x) + pk(x)vk(t, x) = fk(t, x), in (0, T )×R,

vk(0, x) = 0, ∂tv
k(0, x) = ηφ(0, x)(p∗(x)− pk(x))u0(x), in R,

where fk := ηφ(p∗ − pk)∂tu
∗ − [ηφ, ∂tt − ∂xx]∂t

(
uk − u∗).

vk satisfies also the continuity and the Kirchhoff law at the internal
nodes, and the Dirichlet boundary condition at the external nodes.

vk is built to be the unique minimizer of the functional

Fs[p
k, fk, µk](z) =

1

2

∫ T

0

∫
R
e2sφ|∂ttz − ∂xxz + pkz − fk|2 dxdt

+
s

2

∑
i∈Jext

∫ T

0

e2sφi(t,ℓi)|∂xzi(t, ℓi)− µk
i (t)|2dt+

s3

2
I(z, z),

where we set, for all i ∈ Jext, µ
k
i (t) = ηφi (t, ℓi)∂t

(
∂xu

k
i (t, ℓi)− d∗i (t)

)
.



Properties expected from vk

Encoding (pk − p∗), which is the information we seek, through the
initial speed data ∂tv

k(0, ·) = ηφ(0, ·)(p∗ − pk)u0

⇝ ηφj (0, ·) = 1.

Vanishing in the domains O and OTj so that I(vk, vk) = 0

⇝ ηφj = 0 on some domain greater than O ∪
(
∪j∈JintOTj × {ℓj}

)
.

Allowing the source term fk solved by vk to be manageable. We
will ask for ηφ to vary (between 0 and 1) only in a small region of
(0, T )×R. Actually, on each (0, T )× (0, ℓj), it will be specifically
possible (meaning manageable) where Mj < φj < x2

j +Mj .

But it also has to be done properly across each internal node to
ensure continuity and Kirchhoff law for vk at those nodes.



Context of application of the cut-off functions ηφ over two
consecutive branches j and ji.

0 ℓj 0 ℓji

φj
=

Mj

φj
=

x
2
j
+

Mj

φji
=
Mji

φji
=
x
2
ji
+
MjiOj

Oji

ηφ = 1

ηφ = 0

xjxji

x

Tj

Tji

OTj

OTji

T
t



Third tool: properties of the cost functional Fs

Lemma

For all s > 0 large enough, p ∈ L∞(R), f ∈ L2(0, T ;L2(R)) and
µ ∈ L2(0, T ), the functional Fs[p, f, µ] recalled here

Fs[p, f, µ](z) =
1

2

∫ T

0

∫
R
e2sφ|∂ttz − ∂xxz + pz − f |2 dxdt

+
s

2

∑
i∈Jext

∫ T

0

e2sφi(t,ℓi)|∂xzi(t, ℓi)− µi(t)|2dt+
s3

2
I(z, z),

is continuous, strictly convex and coercive on T defined by

T =
{
z ∈ C0([0, T ];H1

0 (R))∩C1([0, T ];L2(R)), ∂ttz−∂xxz ∈ L2((0, T )×R),

z(0, ·) = 0 in R, and [∂xz]j(t) = 0, ∀j ∈ Jint, t ∈ (0, T )
}

and equipped with an appropriate weighed norm.
Thenceforth, the functional Fs[p, f, µ] admits a unique minimizer on the
set T .



The C-bRec algorithm on a network

Knowing, for each branch j ∈ J , gj , hj and (u0
j , u

1
j ), we have the extra measured

information at the leaves of the network R:

d∗i (t) = ∂xu
∗
i (t, ℓi), for i ∈ Jext and t ∈ (0, T ).

Initialisation: Choose any initial guess p0 ∈ L∞
m (R).

Iteration: Knowing pk ∈ L∞
m (R),

1 Calculate the solution uk associated to pk, and set

∀i ∈ Jext, ∀t ∈ (0, T ), µk
i (t) = ηφi (t, ℓi)∂t

(
∂xu

k
i (t, ℓi)− d∗i (t)

)
.

2 Minimize the functional Fs[pk, 0, µk] defined by on the space T and denote wk

its unique minimizer.
3 Then set

p̃k+1 = pk +
∂twk(0, ·)

u0
, on R.

4 Finally, construct

pk+1 = Tm(p̃k+1) :=

{
p̃k+1, if |p̃k+1| ≤ m,
sign(p̃k+1)m, if |p̃k+1| > m.

Stopping criterion: Choose ϵ > 0 and K ∈ N∗ and stop the iterative loop as soon as

sup
j∈Jext

∥∥∥∂xuk
i (t, ℓi)− d∗j

∥∥∥
2

∥d∗j∥2
≤ ϵ, or sup

j∈J

∥pk+1
j − pkj ∥∞

m
≤ ϵ,

or when the maximal number of iterations K is reached.



Convergence result [Baudouin, de Buhan, Crépeau, V. 25]

Theorem

Assume that p∗ ∈ L∞
m (R). Then there exists a constant C > 0

such that for all s large enough and for all k ∈ N, it holds∫
R
e2sφ(0)|pk − p∗|2 dx ≤

(
C

s1/2

)k ∫
R
e2sφ(0)|p0 − p∗|2 dx.

In particular, if s is large enough, the sequence (pk)k∈N given by
the algorithm converges towards p∗ when k tends to infinity.



Numerical example

0 ℓ1 = 0.5

ℓ11 = 1

ℓ12 = 0.75

Figure: First setting - a 3 branches network, with observations at •.



Numerical values

u0 u1 g h m

(2,2,2) (0,0,0) (0,0,0) (2,2,2) 2

ℓj β s ϵ1 ϵ2
(0.5,1,0.75) 0.99 1 10−3 10−2

xj Mj T Nxj Nt

(-0.3,-2.89,-2.89) (7.71,0,0) 3.9 100 ∗ ℓj 110 ∗ T

Table: Numerical values of the variables used for all the numerical
examples.



Simulations from data without noise

(a)
p∗1(x) = −1[0.3,0.8](x/ℓ1)

(b)
p∗11(x) = sin(2πx/ℓ11)

(c)
p∗12(x) = sin(5πx/ℓ12)

Figure: Top line: Convergence history of the reconstruction process.
Bottom line: final reconstruction result (dotted black line) and exact
coefficient (red line) for the three branches.



Simulations with several levels of noise: θ = 1%, θ = 2%,
θ = 5% noise in the data



Wrong choices of the parameters: T = 1.5, T = 1.25,
without projection



A more complex network

0 ℓa = 0.2

ℓaa = 0.6

ℓab = 0.3

ℓac = 0.6

ℓab1 = 0.2

ℓab3 = 0.4

ℓab4 = 0.3

ℓac2 = 0.1

ℓac5 = 0.5

Figure: Second setting - an 9 branches network, with observation at •.



Numerical values for the nine-branches network

u0 u1 m

(2,2,2,2,2,2,2,2,2) (0,0,0,0,0,0,0,0,0) 2

g ℓj β

(0,0,0,0,0,0,0,0,0) (0.2,0.6,0.3,0.2,0.4,0.3,0.6,0.1,0.5) 0.99

h xj ε1
(2,2,2,2,2,2,2,2,2) -(0.01,1.2,1.2,8.7,8.7,8.7,1.2,6.5,6.5) 10−3

s Mj ε2
1 (74.1,72.6,72.6,0,0,0,72.6,33.4,33.4) 10−2

T Nxj Nt

9.15 100 ∗ ℓj 110 ∗ T

Table: Numerical values of the variables used for the numerical examples
of the nine-branches network.



Simulations of the nine-branches network



Conclusion

Reconstruction of potentials on networks of wave equations.

The C-bRec approach seems quite adaptable, even if it is to
the price of appropriate one-parameter Carleman estimates.

Other examples of network?

Other equations? KdV equation?



Discretization of the algorithm

Discretization of the system: finite differences (explicit centered
scheme) in space and time.

Minimization of Fs[p
k, 0, µk]: resolution of a variational formulation

approximation of the integrals using rectangle quadrature rules
and standard centered finite differences,
attention must be paid to the discretization process of T ,
add viscosity terms to guarantee coercivity property uniformly
with respect to discretization parameters (to handle high
frequency spurious waves).

Presence of large exponential factors in Fs[p
k, 0, µk]:

to work on the conjugate variable (ykj )
n
i = (wk

j )
n
i e

sφj(t
n,xi)

that acts as a preconditioner of the linear system,
there are still exponential factors in the right hand side vector
⇝ develop a progressive process to compute the solution as
the aggregation of several problems localized in subdomains in
which the exponential factors are all of the same order.



Simulations from data without noise: other potentials

(a) p∗1(x) = sin(2πx/ℓ1) (b) p
∗
11(x) =

−1[0.3,0.8](x/ℓ11)

(c)
p∗12(x) = sin(5πx/ℓ12)

(d)
p∗1(x) = −1[0.3,0.8](x/ℓ1)

(e) p∗11(x) =
1 + sin(2πx/ℓ11)

(f)
p∗12(x) = sin(5πx/ℓ12)
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