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Controllability of evolution equations

Dynamical system: u′ = f (u, p
↑↑↑
)

control function

Multiplicative (or bilinear) control problem:
u′ = Au + pBu
u = g |∂Ω
u(0) = u0
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ū0

T > 0, p̄ ∈ P

u(T ; ū0, p̄)
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Different kinds of control systems

The map ΦΦΦ : ppp 7→ u is

Boundary control: Locally distributed control: MultiplicativeMultiplicativeMultiplicative control:
u′ = Au + Bu
u = p|∂Ω
u(0) = 0


u′ = Au + Bu + p1ω
u = g |∂Ω
u(0) = 0


u′ = Au + pppBu
u = g |∂Ω
u(0) = u0

(*)

yyy
linear

yyy
linear

yyy
nonlinear

Theorem (Ball, Marsden, Slemrod 1982)

Let X be a Banach space with dim(X)=+∞. Let A generate a C 0-semigroup of bounded linear operators on X
and B : X → X be a bounded linear operator. Let u0 ∈ X be fixed, and let u(t; p, u0) denote the unique
solution of (??) for p ∈ L1

loc([0,+∞),R). The set of states accessible from u0 defined by

S(u0) = {u(t; p, u0); t ≥ 0, p ∈ Lr
loc([0,+∞),R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.
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Literature on exact bilinear controllability of hyperbolic pbms

Exact controllability of bilinear hyperbolic equations (nonexhaustive list):

• K. Beauchard, C. Laurent. “Local controllability of 1D linear and nonlinear Schrödinger equations with
bilinear control.” J. de Math. Pures et Appl. (2010)

⇝ controllability in H3
(0)(0, 1)

• K. Beauchard “Local controllability and non-controllability for a 1D wave equation with bilinear control.”
J. of Diff. Eq. (2011)

⇝ controllability in H3
(0)(0, 1)× H2

(0)(0, 1)

• M. Morancey. “Simultaneous local exact controllability of 1D bilinear Schrödinger equations.” Ann. de
l’Inst. Henri Poincare (C) Non Linear Analysis. (2014)

⇝ controllability in (H3
(0)(0, 1))

N

• A. Duca. “Global exact controllability of bilinear quantum systems on compact graphs and energetic
controllability.” SIAM J. on Contr. and Opt. (2020)

⇝ controllability in H2+d
G

• P. Cannarsa, P. Martinez, C Urbani. “Bilinear control of a degenerate hyperbolic equation.” SIAM J. of
Math. An., vol. 55, n. 6, pp 6517–6553 (2023)

⇝ controllability in H3
(α)(0, 1)× H2

(α)(0, 1)
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Controllability to eigensolutions

(X , ⟨·, ·⟩) separable Hilbert space.

Bilinear control problem: 
u′(t) +AAAu(t) + p(t)BBBu(t) = 0,

u(0) = u0.
(BCP)

AAA : D(AAA) ⊂ X → X densely defined linear operator:

(a) AAA is self-adjoint ,

(b) ∃σ > 0 : ⟨AAAx , x⟩ ≥ −σ ∥x∥2 , ∀x ∈ D(AAA),

(c) ∃λ > −σ such that (λI +AAA)−1 : X → X is compact,

(SAC)

⇒ the eigenfunctions of AAA, {φkφkφk}n∈N∗ , form an orthonormal basis of X , and the eigenvalues {λkλkλk}n∈N∗ can be
ordered as −σ ≤ λ1λ1λ1 ≤ λkλkλk → +∞.

BBB : D(BBB) ⊂ X → X bounded linear operator.

Trajectories: eigensolutions ψjψjψj = e−λjλjλj tφjφjφj : solutions of (BCP) for p = 0 and u0 = φjφjφj , for all j ∈ N∗.
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Controllability to eigensolutions

Definition

Let T > 0 and let AAA satisfy (SAC). The pair {AAA,BBB} is called jjj-null controllable in time TTT if there
exists a constant N(T ) > 0 such that for every y0 ∈ X one can find a control p ∈ L2(0,T ) satisfying
∥p∥L2(0,T ) ≤ N(T ) ∥y0∥ , and for which y(T ) = 0, where y(·) is the solution of{

y ′(t) +AAAy(t) + p(t)BBBφjφjφj = 0, t ∈ [0,T ]
y(0) = y0.

N(T ) > 0 is called the control cost.

Theorem (of Stabilization. Alabau-Boussouira, Cannarsa, Urbani 2021)

Let {AAA,BBB} be a j-null controllable pair. Then, (BCP) is superexponentially stabilizable to ψjψjψj :

∥u(t)−ψjψjψj(t)∥ ≤ Me−ρeωt

∀t ≥ 0.

Theorem (of Controllability. Alabau-Boussouira, Cannarsa, U. 2022)

Let {AAA,BBB} be a j-null controllable pair and N(τ) ≤ eC/τ for τ small. Then, for any T > 0, (BCP) is
exactly controllable to ψjψjψj : u(T ) = ψjψjψj(T ).
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Sufficient conditions for j-null controllability

Theorem (Alabau-Boussouira, Cannarsa, Urbani 2021)

Let AAA : D(AAA) ⊂ X → X satisfy (SAC) and be such that ∃α > 0 for which its eigenvalues fulfill the gap
condition √

λk+1λk+1λk+1 − λ1λ1λ1 −
√
λkλkλk − λ1λ1λ1 ≥ α, ∀ k ∈ N∗. (GAP)

Let BBB : X → X be a bounded linear operator such that

i) ⟨BBBφjφjφj ,φkφkφk⟩ ̸= 0, ∀ k ∈ N∗,

ii) ∃ τ > 0 :
∑
k∈N∗

e−2λkλkλkτ

|⟨BBBφjφjφj ,φkφkφk⟩|2
< +∞.

Then, the pair {AAA,BBB} is j-null controllable.

Theorem (Alabau-Boussouira, Cannarsa, Urbani 2022)
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⟨BBBφjφjφj ,φjφjφj⟩ ̸= 0 and |λkλkλk − λ1λ1λ1|q|⟨BBBφjφjφj ,φkφkφk⟩| ≥ b, ∀ k ̸= j .

Then, the pair {AAA,BBB} is j-null controllable in any time T > 0 with control cost N(·) that satisfies
N(τ) ≤ eC/τ , for τ small.
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Semi-global controllability to the ground state

Theorem (Alabau-Boussouira, Cannarsa, Urbani 2022)

Let AAA and BBB satisfy the hypotheses of Exact Controllability Theorem. Then, there exists a constant
r1 > 0 such that for any R > 0 there exists TR > 0 such that for all u0 ∈ X that satisfy

|⟨u0,φ1φ1φ1⟩ − 1| < r1,
||u0 − ⟨u0,φ1φ1φ1⟩φ1φ1φ1|| ≤ R,

problem (BCP) is exactly controllable to the ground state solution ψ1(t) = e−λ1λ1λ1tφ1φ1φ1 in time TR .

φ1ψ1(TR)

R

−R

r1

u0
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û0

QR
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Setting of the problem

Let Td = Rd/2πZd , d ∈ N∗ and consider

∂tψ(t, x) = ∆ψ(t, x)− κψp+1(t, x) + ⟨u(t),Q(x)⟩ψ(t, x), x ∈ Td , t > 0,

ψ(0, x) = ψ0(x),
(NHE)

with

p ∈ N, κ ∈ R
Q = (Q1, . . . ,Qq, µ1, µ2) : Td → Rq+2 potentials, q ∈ N, q ≥ 2d + 1,

u ∈ L2
loc(R+,Rq+2) controls

We prove:

global approximate controllability in small time on Td

local exact controllability in T
global exact controllability in small time on T

More precisely...
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Main results

Proposition (Duca, Pozzoli, Urbani 2025)

(assumptions)

(i) Let ψ0, ψ1 ∈ Hs(Td ,R) be such that sign(ψ0) = sign(ψ1). For any ϵ > 0 and T > 0, there exist
τ ∈ (0,T ] and u ∈ L2((0, τ),Rq+2) such that the solution ψ(t;ψ0, u) of (NHE) satisfies

∥ψ(τ ;ψ0, u)− ψ1∥L2 < ϵ

(ii) Let ψ0, ψ1 ∈ Hs(Td ,R) be such that ψ0, ψ1 > 0 (or ψ0, ψ1 < 0). For any ϵ > 0 and T > 0, there
exists u ∈ L2((0,T ),Rq+2) such that the solution ψ(t;ψ0, u) of (NHE)

∥ψ(T ;ψ0, u)− ψ1∥Hs < ϵ.

Theorem (Duca, Pozzoli, Urbani 2025)

(assumptions), then (NHE-1D) is locally exactly controllable to the ground state solution c0 in any
positive time: for any T > 0 there exists RT > 0 such that, for any

ψ0 ∈ {ψ ∈ H3(T,R) : ∥ψ − c0∥H1 < RT},

there exists u ∈ H1((0,T ),Rq+2) such that ψ(T ;ψ0, u) = c0.
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Local well-posedness

Proposition (D-P-U 2025)

Let s > d/2 and Q ∈ Hs(Td ,Rq+2). For any ψ0 ∈ Hs(Td ,R) and u ∈ L2
loc(R+,Rq+2) there exists a

maximal time T = T(ψ0, u) > 0 and a unique mild solution ψ ∈ C 0([0,T ],Hs(Td ,R)), ∀T < T, of
(NHE) represented by

ψ(t;ψ0, u) = et∆ψ0 +

∫ t

0

e(t−s)∆
(
⟨u(s),Q(x)⟩ψ(s, x)− κψ(s, x)p+1

)
ds.

If T < +∞, then ∥ψ(t)∥Hs → +∞ as t → T−.

Moreover,

i. if ψ0, ϕ0 ∈ BHs (Td ,R)(0,R), with R > 0, and u, v ∈ L2
loc(R+,Rq+2), then for any

0 ≤ T ≤ min{T(ψ0, u),T(ϕ0, v)}, there exists C = C(u, v) such that

sup
0≤t≤T

∥ψ(t;ψ0, u)− ψ(t;ϕ0, v)∥Hs ≤ C
(
∥ψ0 − ϕ0∥Hs + ∥u − v∥L2

)
;

ii. set K = ∥ψ∥C([0,T ],Hs ) + ∥ψ0∥Hs + ∥u∥L2 . There exists δ = δ(T(ψ0, u),K) > 0 such that, for any

ψ̂0 ∈ Hs(Td ,R) and û ∈ L2((0,T ),Rq+2) satisfying

∥ψ̂0 − ψ0∥Hs + ∥û − u∥L2 < δ,

problem (NHE) admits a unique mild solution ψ̂ ∈ C
(
[0,T ],Hs(Td ,R)

)
with initial condition ψ̂0

and control û.
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Cristina Urbani (Universitas Mercatorum) Small-time bilinear control for a class of nonlinear parabolic evolution eqts 02/07/2025 14 | 29



Outline

1. Introduction to bilinear control problems

2. Local/semi-global controllability to eigensolutions for bilinear parabolic problems

3. Controllability in small time of nonlinear parabolic problems
3.1 Setting and local well-posedness
3.2 Global approximate controllability in small time
3.3 Local exact controllability
3.4 Global small time exact controllability

Cristina Urbani (Universitas Mercatorum) Small-time bilinear control for a class of nonlinear parabolic evolution eqts 02/07/2025 15 | 29



Small-time limit of conjugated dynamics

Define the non-linear operator

B(φ)(x) =
d∑

j=1

(
∂xjφ(x)

)2
, ∀φ ∈ C 1(Td ,R).

Proposition (D-P-U 2025)

Let s > d/2 and (Q1, ...,Qq) ∈ H2s(Td ,Rq). Assume that ψ0 ∈ Hs(Td ,R), (u1, ..., uq) ∈ Rq, and
φ ∈ H2s+2(Td ,R) is non-negative. Then, there exists a constant δ0 > 0 such that, for any δ ∈ (0, δ0),

the solution ψ(t; e−δ−1/2φψ0, δ
−1u) of (NHE) with u = (u1, ..., uq, 0, 0) is well-defined in [0, δ] and

eδ
−1/2φψ(δ; e−δ−1/2φψ0, δ

−1u) → eB(φ)+⟨u,Q⟩ψ0 in Hs , as δ → 0+.

Corollary (D-P-U 2025)

Let s > d/2 and 1 ∈ span{Q1, ...,Qq}. Let ψ0 ∈ Hs(Td ,R). For any ϵ,T > 0 there exists a constant
control u ∈ Rq+2 such that the solution ψ(t;ψ0, u) of (NHE) is defined in [0,T ] and

∥ψ(T ;ψ0, u)∥Hs < ϵ.

Apply the limit of conjugate dynamics with φ = 0 and −c =
∑q

j=1 ujQj small enough.
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An intermediate controllability result

Given Q1, . . . ,Qq ∈ C∞(Td ,R), q ∈ N∗, define the vector space

H0 = spanR{Q1, . . . ,Qq}.

Define Hj , j ∈ N∗, as the largest vector space whose elements ψ can be written as

ψ = φ0 +
n∑

k=1

B(φk), φ0, . . . , φn ∈ Hj−1, n ∈ N,

and

H∞ =
∞⋃
j=0

Hj .

Proposition (D-P-U 2025)

Let s > d/2 and (Q1, ...,Qq) ∈ C∞(Td ,Rq) be such that 1 ∈ H0. Assume that H∞ is dense in
Hs(Td ,R). Let ψ0 ∈ Hs(Td ,R) and φ ∈ Hs(Td ,R). For any ϵ,T > 0, there exist τ ∈ [0,T ) and
(u1, ..., uq) ∈ L2((0, τ),Rq) such that the solution ψ(t;ψ0, u) of (NHE) with control u = (u1, ..., uq, 0, 0)
is defined in [0, τ ] and

∥ψ(τ ;ψ0, u)− eφψ0∥Hs < ϵ.
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An intermediate controllability result

To prove the Proposition:

• validity for every n ∈ N of

(Pn) for any ψ0 ∈ Hs(Td ,R), ϕ ∈ Hn, and any ε,T > 0, there exist τ ∈ [0,T ) and
(u1, ..., uq) : [0, τ ] → Rq piecewise constant such that the solution of (NHE) with the initial
condition ψ0 and the control u = (u1, ..., uq, 0, 0) satisfies∥∥∥ψ(τ ;ψ0, u)− eϕψ0

∥∥∥
Hs (Td )

< ε

limit of conjugated dynamics
(Pn−1)
point i. and ii. of well-posedness

• density of H∞ in Hs(Td ,R) :

∀ ε > 0, ∀φ ∈ Hs(Td ,R), ∃ ζ ∈ H∞ such that

∥φ− ζ∥Hs (Td ) < ε =⇒
∥∥∥eφψ0 − eζψ0

∥∥∥
Hs (Td )

< Cε

ζ ∈ H∞ =⇒ ∃ n ∈ N : ζ ∈ Hn =⇒ ζ = ϕ0 +
m∑
j=1

B(ϕj), ϕ0, . . . , ϕm ∈ Hn−1
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Small time global approximate controllability

Theorem (D-P-U 2025)

Let s > d/2 and let (Q1, ...,Qq) ∈ C∞(Td ,Rq) be such that 1 ∈ H0 and H∞ is dense in Hs(Td ,R).
(i) Let ψ0, ψ1 ∈ Hs(Td ,R) be such that sign(ψ0) = sign(ψ1). For any ϵ > 0 and T > 0, there exist

τ ∈ (0,T ] and (u1, ..., uq) ∈ L2((0, τ),Rq) for which the solution ψ(t;ψ0, u) of (NHE) with
control u = (u1, ..., uq, 0, 0) is defined in [0, τ ] and satisfies

∥ψ(τ ;ψ0, u)− ψ1∥L2 < ϵ

(ii) Let ψ0, ψ1 ∈ Hs(Td ,R) be such that ψ0, ψ1 > 0 (or ψ0, ψ1 < 0). For any ϵ > 0 and T > 0, there
exists (u1, ..., uq) ∈ L2((0,T ),Rq) such that the solution ψ(t;ψ0, u) of (NHE) with control
u = (u1, ..., uq, 0, 0) is defined in [0,T ] and satisfies

∥ψ(T ;ψ0, u)− ψ1∥Hs < ϵ.

Idea of the proof of point (i):

define Z = {x ∈ Td : ψ0(x) = ψ1(x) = 0} and Zη = {x ∈ Td : dist(x ,Z) < η}
define ϕη = 1Z c

η
log(ψ1/ψ0) ∈ L2(Td)L2(Td)L2(Td)

observe that ∥eϕηψ0 − ψ1∥L2(Td ) ≤ ∥ψ0 − ψ1∥L2(Zη) <
ε
3
for η small enough
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Small time global approximate controllability
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Small time global approximate controllability

• observe that H1(Td) is dense in L2(Td) =⇒ ∃ ϕ̃η ∈ H1(Td) such that ∥eϕ̃ηψ0 − eϕηψ0∥L2(Td ) <
ε
3

• we apply the intermediate controllability result with φ = ϕ̃η: ∥ψ(τ ;ψ0, u)− eφψ0∥L2(Td ) <
ε
3
.

Where does this method come from?

• Jurdjevic, Kupka ”Polynomial control systems”, 1985 (finite dimensional control systems)

• Agrachev, Sarychev ”Navier-Stokes equations: controllability by means of low modes forcing”, 2005
(infinite dimensional control systems)

• Agrachev, Sarychev ”Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing”, 2006
(infinite dimensional control systems)

• Shirikyan ”Approximate controllability of three-dimensional Navier-Stokes equations”, 2006

• Shirikyan ”Approximate controllability of the viscous Burgers equation on the real line”, 2014

• Glatt-Holtz, Herzog, Mattingly ”Scaling and saturation in infinite-dimensional control problems with
applications to stochastic partial differential equations”, 2018

• Nersesyan, ”Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension”, 2021

• Duca, Nersesyan ”Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation”,
2025 (bilinear controls)
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Small time global approximate controllability

...going back to the density of H∞:

Theorem (Duca, Nersesyan 2025)

Assume that
{Q1, . . . ,Qq} = {1, sin⟨k, x⟩), cos⟨k, x⟩}k∈L,

for some L ⊂ Zd . Then, H∞ is dense in Hs(Td ,R), s ≥ 0, if and only if

• L is a generator,
• for any l ,m ∈ L, there exists {nj}rj=1 ⊂ L such that l ̸⊥ n1, nj ̸⊥ nj+1, j = 1, . . . , r − 1, and nr ̸⊥ m.

In our result we assume that Q1, . . . ,Qq ∈ C∞(Td ,R) and{
1, cos⟨k, x⟩, sin⟨k, x⟩

}
k∈L

⊂ H0,

with
L = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1, 0), (1, . . . , 1)} ⊂ Zd .
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Outline

1. Introduction to bilinear control problems

2. Local/semi-global controllability to eigensolutions for bilinear parabolic problems

3. Controllability in small time of nonlinear parabolic problems
3.1 Setting and local well-posedness
3.2 Global approximate controllability in small time
3.3 Local exact controllability
3.4 Global small time exact controllability
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Properties of the operator and assumptions

� 1-dimensional case: T

The ordered eigenvalues {λk}k∈N of the Laplacian −∆

λk = k2, ∀ k ∈ N

UU Except for the first one λ0 = 0, all the eigenvalues are double UU

Denote by {c0, ck , sk}k∈N the corresponding orthonormal eigenfunctions of −∆

c0 =
1√
2π
, ck(x) =

1√
π
cos(kx), sk(x) =

1√
π
sin(kx), ∀ k ∈ N∗,

which form a Hilbert basis of L2(T,R).

Reference trajectory: the ground state solution c0c0c0,solution of∂tψ(t, x) = ∆ψ(t, x)− κψp+1(t, x) + ⟨u(t),Q(x)⟩ψ(t, x), x ∈ T, t > 0,

ψ(0, x) = ψ0(x),
(NHE-1D)
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Properties of the operator and assumptions

To avoid the problem of double eigenvalues, we assume:

Assumptions on Q: Q1 = 1, µ1, µ2 ∈ H3(T,R) and
⟨µ1, c0⟩L2(T) ̸= 0, ⟨µ2, c0⟩L2(T) = 0,

∃ b1, q1 > 0 : λq1
k

∣∣⟨µ1, ck⟩L2(T)
∣∣ ≥ b1, and ⟨µ1, sk⟩L2(T) = 0, ∀ k ∈ N∗,

∃ b2, q2 > 0 : λq2
k

∣∣⟨µ2, sk⟩L2(T)
∣∣ ≥ b2, and ⟨µ2, ck⟩L2(T) = 0, ∀ k ∈ N∗

Example:
µ1(x) = x3(2π − x)3, µ2(x) = x3(x − π)3(x − 2π)3

We need the solution to be globally (in time) defined:

Proposition (D-P-U 2025)

Let p ∈ 2N, ψ0 ∈ H3(T,R), Q ∈ H3(T,Rq+2), u ∈ H1
loc((0,+∞),Rq+2) and κ ≥ 0. Then, for any T > 0

there exists a unique mild solution ψ ∈ C 0([0,T ],H3(T,R)) of (NHE-1D).
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To avoid the problem of double eigenvalues, we assume:

Assumptions on Q: Q1 = 1, µ1, µ2 ∈ H3(T,R) and
⟨µ1, c0⟩L2(T) ̸= 0, ⟨µ2, c0⟩L2(T) = 0,

∃ b1, q1 > 0 : λq1
k

∣∣⟨µ1, ck⟩L2(T)
∣∣ ≥ b1, and ⟨µ1, sk⟩L2(T) = 0, ∀ k ∈ N∗,

∃ b2, q2 > 0 : λq2
k

∣∣⟨µ2, sk⟩L2(T)
∣∣ ≥ b2, and ⟨µ2, ck⟩L2(T) = 0, ∀ k ∈ N∗

Example:
µ1(x) = x3(2π − x)3, µ2(x) = x3(x − π)3(x − 2π)3

We need the solution to be globally (in time) defined:

Proposition (D-P-U 2025)

Let p ∈ 2N, ψ0 ∈ H3(T,R), Q ∈ H3(T,Rq+2), u ∈ H1
loc((0,+∞),Rq+2) and κ ≥ 0. Then, for any T > 0

there exists a unique mild solution ψ ∈ C 0([0,T ],H3(T,R)) of (NHE-1D).
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Local controllability to the ground state solution

Theorem (D-P-U 2025)

Let κ ≥ 0 and p ∈ 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution c0, in any positive time. In other words, for any T > 0 there
exists RT > 0 such that, for any

ψ0 ∈ {ψ ∈ H3(T,R) : ∥ψ − c0∥H1 < RT},

there exists (u1, u2) ∈ H1((0,T ),R2) such that ψ(T ;ψ0, u) = c0, where u = ( κ
c
p
0
, 0, ..., 0, u1, u2).

Steps of the proof:

• linearization of the problem

• resolution of a moment problem to prove controllability of the linearized system

▶ decoupling of the moment problem into two (Assumptions on Q)
▶ construction of a smooth control

• use such control in the non-linear system and estimate of the distance of the solution w.r.t. the target

• iteration of the procedure in a suitable sequence of time steps, whose series converges

• proof that the distance of the solution w.r.t. the target is zero a time T
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Global small time controllability to the ground state solution

Theorem (D-P-U 2025)

Let d = 1, κ ≥ 0 and p ∈ 2N. Suppose that Q1, . . . ,Qq ∈ C∞(T,R) and{
1, cos x , sin x

}
⊂ H0.

Assume moreover that Q1 = 1, µ1, µ2 ∈ H3(T,R) and
⟨µ1, c0⟩L2(T) ̸= 0, ⟨µ2, c0⟩L2(T) = 0,

∃ b1, q1 > 0 : λq1
k

∣∣⟨µ1, ck⟩L2(T)
∣∣ ≥ b1, and ⟨µ1, sk⟩L2(T) = 0, ∀ k ∈ N∗,

∃ b2, q2 > 0 : λq2
k

∣∣⟨µ2, sk⟩L2(T)
∣∣ ≥ b2, and ⟨µ2, ck⟩L2(T) = 0, ∀ k ∈ N∗

Then, (NHE-1D) is exactly controllable to the ground state solution c0 in any positive time from any
positive state. More precisely, for any T > 0 and ψ0 ∈ H3(T,R) such that ψ0 > 0, there exists
u ∈ L2((0,T ),Rq+2), such that

ψ(T ;ψ0, u) = c0.

Example of a suitable potential:

Q(x) = (1, cos x , sin x , x3(2π − x)3, x3(x − π)3(x − 2π)3).
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