

Inverse source problems approximation with mixed finite elements

Sorin Micu

University of Craiova

Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy (ISMMA)

Control of PDEs and related topics
Institut de Mathématiques de Toulouse
June 30 to July 4, 2025

Joint work with **Carlos Castro** (Univ. Politécnica de Madrid)

The inverse source problem for the wave equation

Consider the wave equation with source term $\lambda(t)f^{source}(x)$,

$$\begin{cases} w'' - \Delta w + a(x)w = \lambda(t)f^{source}(x) & \text{for } x \in \Omega, t > 0 \\ w = 0 & \text{on } \partial\Omega, t > 0, \\ w(0, x) = w^0(x) & \text{for } x \in \Omega \\ w'(0, x) = w^1(x) & \text{for } x \in \Omega \end{cases} \quad (1)$$

Inverse source problem: Given $T > 0$, find the source term $f^{source}(x)$ from the following observation y^{obs} of a single solution:

$$y^{obs}(t) = \partial_n w'(t) \Big|_{\Gamma}, \quad t \in (0, T).$$

Here the initial data (w^0, w^1) , the potential $a(x)$, the intensity of the source $\lambda(t)$ and the observation zone $\Gamma \subset \partial\Omega$ are known.

- ➊ **Uniqueness:** Does the observation y^{obs} allow to determine f^{source} ?
- ➋ **Stability:** Find a constant $c > 0$ such that

$$\|f^{source} - \hat{f}^{source}\|_{L^2(\Omega)} \leq c \|y^{obs} - \hat{y}^{obs}\|_{L^2(\Gamma \times (0, T))},$$

where y^{obs} and \hat{y}^{obs} are the observations associated to f^{source} and \hat{f}^{source} , respectively.

- ➌ **Reconstruction:** Find a convergent numerical algorithm to obtain f^{source} from y^{obs} .

References

- Yamamoto, M., *Well - posedness of some inverse hyperbolic problem by the Hilbert Uniqueness Method*, J. Inverse and Ill-posed Problems, 2(1994), 349-368.
- Yamamoto, M., *Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method*, Inverse Problems, 11(1995), 481-496.
- Puel, J.-P. and Yamamoto, M., *Applications de la controlabilite exacte a quelques problemes inverses hyperboliques*, C. R. Acad. Sci. Paris Ser.I Math., 320(1995), 1171-1176.
- Puel, J.-P. and Yamamoto, M., *On a global estimate in a linear inverse hyperbolic problem*, Inverse Problems 12(1996), 995-1002.
- Alves C., Silvestre A.-L., Takahashi T. and Tucsnak M., *Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation*, SIAM J. Control Optim. 48 (2009), 1632-1659.

$$\begin{cases} w'' - \Delta w + aw = \lambda(t) \mathbf{f}(x) \\ w(0, x) = 0 \\ w'(0, x) = 0 \end{cases} \Rightarrow \begin{cases} u'' - \Delta u + au = 0 \\ u(0, x) = 0 \\ u'(0, x) = \mathbf{f}(x) \end{cases}$$

$$w(t) = \int_0^t \lambda(t-s) u(s) \, ds.$$

$$w'(t) = \underbrace{\lambda(0)u(t) + \int_0^t \lambda'(t-s)u(s) \, ds}_{\text{Linear Volterra equation of the second kind in } u}$$

Linear Volterra equation of the second kind in u
(convolution equation)

Under the assumptions $\lambda \in H^1(0, T)$ and $\lambda(0) \neq 0$, the map $w' \rightarrow u$ is a linear and continuous in L^2 :

$$\int_0^T \int_{\Gamma} |\partial_n u(t, x)|^2 \, dx \leq C \int_0^T \int_{\Gamma} |\partial_n w'(t, x)|^2 \, dx.$$

$$C_T \|f\|_{L^2(\Omega)}^2 \leq \int_0^T \int_{\Gamma} |\partial_n u(t, x)|^2 \, dx \quad \text{observability inequality}$$

$$\leq C \int_0^T \int_{\Gamma} |\partial_n w'(t, x)|^2 \, dx \quad \text{continuity of Volterra op.}$$

It follows that **the stability property holds**:

$$\|f - \hat{f}\|_{L^2(\Omega)} \leq \sqrt{\frac{C_T}{C}} \|y - \hat{y}\|_{L^2(\Gamma \times (0, T))},$$

y and \hat{y} being the observations associated to f and \hat{f} , respectively.

The stability constant $\sqrt{\frac{C_T}{C}}$ depends on the **observability constant**.

Observability

Consider the homogeneous wave equation,

$$\begin{cases} u'' - \Delta u + a(x)u = 0 & \text{for } x \in \Omega, \quad t > 0 \\ u = 0 & \text{on } \partial\Omega, \quad t > 0, \\ u(0, x) = u^0(x), \quad u'(0, x) = u^1(x) & \text{for } x \in \Omega \end{cases} \quad (2)$$

Observability: Given $\Gamma \subset \partial\Omega$ and $T > 0$, find constant $c > 0$ s. t.

$$\|u^0\|_{H_0^1(\Omega)}^2 + \|u^1\|_{L^2(\Omega)}^2 \leq c \|\partial_n u\|_{L^2(\Gamma \times (0, T))}^2.$$

for all solutions of the homogeneous wave equation.

- Observability implies stability of the inverse source problem (Puel-Yamamoto 95');
- Observability is known when $a \in L^\infty(\Omega)$ as long as (T, Γ) satisfies the GCC.

Understanding the observability: one-dimensional case

Observability is related with the speed of propagation. To observe at $x = 0$ we have to be aware of all disturbances induced by the initial data.



Let $T > 2$ and $E(t) =$

$$\frac{1}{2} \left(\int_0^1 |u'(t, x)|^2 dx + \int_0^1 |u_x(t, x)|^2 dx + \int_0^1 |a(x)| |u(t, x)|^2 dx \right):$$

$$E(0) \leq C_1 e^{C_2 \sqrt{\|a(x)\|_{L^\infty}}} \int_0^T |u_x(t, 0)|^2 dt.$$

Understanding the observability: proof (I)

The following proof for the continuous wave equation uses the lateral energy argument (Zuazua, 1993). Consider for $T > 2$ and $1 < \beta < T/2$

$$F(x) = \int_{\beta x}^{T-\beta x} \mathcal{E}(s, x) \, ds,$$

where $\mathcal{E}(t, x) = \frac{1}{2} (|u'(t, x)|^2 + |u_x(t, x)|^2 + \|a\|_{L^\infty} |u(t, x)|^2)$.

1. Prove that, for some constant $C > 0$,

$$F'(x) \leq CF(x).$$

2. By Gronwall's inequality:

$$F(x) \leq C_1 F(0) = C_1 \int_0^T |u_x(t, 0)|^2 \, dt.$$

Understanding the observability: proof (II)



3. Using the conservation of the energy prove that

$$(T - 2\beta)E(0) \leq \int_{\beta}^{T-\beta} \int_0^1 \mathcal{E}(t, x) \, dx \, dt \leq \int_0^1 F(x) \, dx.$$

4. From 2. and 3. conclude that:

$$(T - 2\beta)E(0) \leq C_1 F(0) = C_1 \int_0^T |u_x(t, 0)|^2 \, dt.$$

Fourier approach $a = 0$ (no potential)

- $E(0) = \frac{1}{2} \left(\|u^0\|_{H_0^1(\Omega)}^2 + \|u^1\|_{L(\Omega)}^2 \right) = \frac{1}{2} \sum_{n \in \mathbb{Z}^*} |a_n^0|^2,$

where a_n^0 are the Fourier coefficients of the initial data.

- $\int_0^T |u_x(t, 0)|^2 dt = \int_0^T \left| \sum_{n \in \mathbb{Z}^*} a_n^0 d_n e^{i \lambda_n t} \right|^2 dt,$

where d_n are the normal derivatives of the eigenfunctions in 0.

- Since $|d_n| > d$ and $\lambda_{n+1} - \lambda_n > \gamma$ (uniform positive gap), Ingham's inequality can be used to obtain that:

$$E(0) \leq C_1 \int_0^T |u_x(t, 0)|^2 dt.$$

Reconstruction Algorithm

- ① Replace the wave equation by a convergent discretization depending on a parameter $h \rightarrow 0$. Define $F_h \sim f(x)$ and $Y_h \sim y$.
- ② Prove stability for the discrete inverse source problem:

$$\|F_h - F_h^*\| \leq \kappa_h \|Y_h - Y_h^*\|$$

- ③ Implement an inversion algorithm to recover F_h from Y_h :

$$\min_{F_h} \mathcal{J}_h(F_h) := \min_{F_h} \frac{1}{2} \|Y_h - y^{obs}\|^2$$

(least squares approximation)

- ④ This minimization problem has a unique solution \hat{F}_h which is an approximation of f :

$$\lim_{h \rightarrow 0} \|\hat{F}_h - F_h^{source}\| = 0.$$

Since $F_h^{source} \approx f^{source}$, then $\hat{F}_h \approx f^{source}$.

Convergence proof (I)

Let Y_h^{obs} be the discretization of the observation y^{obs} and F_h^{source} be the discretization of the source term f^{source} . From the convergence of the numerical scheme we have that:

$$\lim_{h \rightarrow 0} \mathcal{J}_h(F_h^{source}) = \frac{1}{2} \lim_{h \rightarrow 0} \|Y_h^{obs} - y^{obs}\|^2 = 0. \quad (3)$$

Since \widehat{F}_h is a minimizer of \mathcal{J}_h , from (3) we deduce that

$$\lim_{h \rightarrow 0} \mathcal{J}_h(\widehat{F}_h) = 0. \quad (4)$$

Convergence proof (II)

On the other hand, from the stability property, we obtain that

$$\begin{aligned}\|\widehat{F}_h - F_h^{source}\|^2 &\leq \kappa_h^2 \|\widehat{Y}_h - Y_h^{obs}\|^2 \\ &\leq 4\kappa_h^2 \left(\mathcal{J}_h(\widehat{F}_h) + \mathcal{J}_h(F_h^{source}) \right),\end{aligned}$$

which, together with (3) and (4), implies that

$$\lim_{h \rightarrow 0} \|\widehat{F}_h - F_h^{source}\| = 0. \quad (5)$$

Convergence difficulty

Convergence of the algorithm relies on two properties

- A **convergent numerical approximation** of the observation $Y_h \sim y$ (non-standard approximation result).
- A **uniform stability result** (with respect to the discretization parameter) that can be deduced from a **uniform observability** result for the homogenous wave equation.

It turns out that a convergent discretization for the wave equation does not always guarantee the convergence of the algorithm!

In the usual numerical schemes (finite differences, finite elements) the observability constant blows up as $h \rightarrow 0$!

This has been the object of active research in this and other related problems as control and stabilization of PDE's.

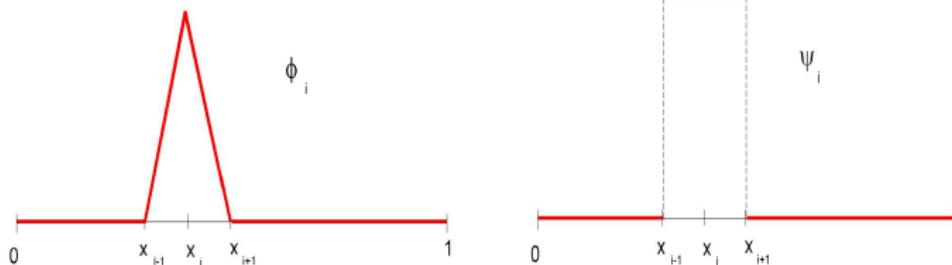
- Baudouin and Ervedoza 2013: 1-d finite difference approximation with Tychonoff regularization using Carleman estimates.
- Baudouin, Ervedoza and Osses 2015: Extension to rectangular domains in higher dimensions.
- Baudouin, Buhan and Ervedoza 2017: Improved algorithm based on a suitable penalization from the Carleman estimate.
- Cîndea and Münch 2015: Mixed formulation with a finite elements space-time discretization of the wave equation.

The mixed finite element method

Main idea (F. Brezzi and M. Fortin - 91): $\Omega = (0, 1)$, $h = \frac{1}{N+1}$,
 $x_j = hj$, $1 \leq j \leq N$,

$$w \sim w_h = \sum_{j=1}^N w_h^j \phi_j, \quad w' \sim w'_h = \sum_{j=1}^N v_h^j \psi_j,$$

$$f \sim f_h = \sum_{j=1}^N f_h^j \psi_j, \quad y = w_x(0, t) \sim y_h = \frac{w_h^1}{h}$$



MFE matrix formulation

$$\begin{cases} M_h W_h''(t) + K_h W_h(t) + L_h W_h(t) = \lambda(t) M_h F_h, & t > 0, \\ W_h(0) = W_h^0, \quad W_h'(0) = W_h^1. \end{cases}$$

$$K_h = \frac{1}{h} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 2 \end{pmatrix}, \quad M_h = \frac{h}{4} \begin{pmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 2 \end{pmatrix},$$

$$L_h = h \begin{pmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_N \end{pmatrix}, \quad W_h = \begin{pmatrix} w_h^1 \\ w_h^2 \\ \dots \\ w_h^N \end{pmatrix}, \quad F_h = \begin{pmatrix} f_h^1 \\ f_h^2 \\ \dots \\ f_h^N \end{pmatrix}.$$

$$a_j = a(x_j), \quad 1 \leq j \leq N.$$

Understanding the case $a = 0$ (no potential)

In the 1-D case, the spectrum can be computed for the continuous and discrete approximations (finite differences (FD) or mixed finite elements (MFE)):

Continuous	$k\pi$	π
FD	$\frac{2}{h} \sin\left(\frac{k\pi h}{2}\right)$	h
MFE	$\frac{2}{h} \tan\left(\frac{k\pi h}{2}\right)$	π

Spectrums in the case $a = 0$

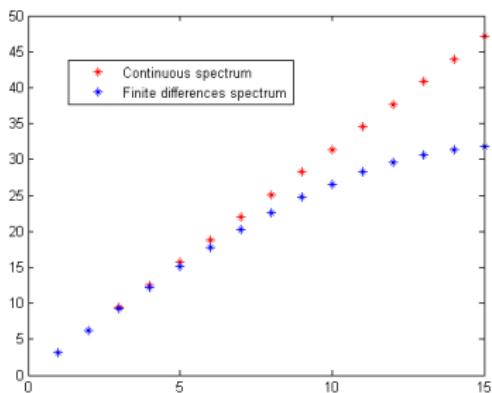
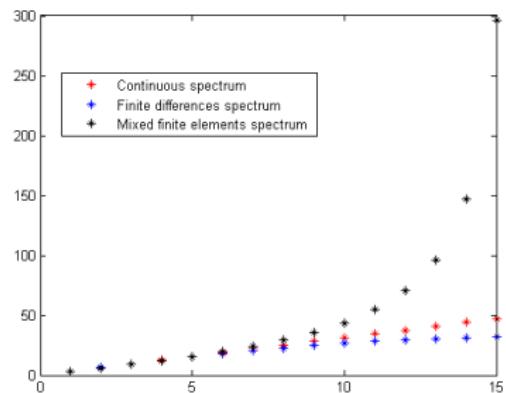


Figure: Spectrums compared

Uniform observability in the case $a = 0$

- For $a = 0$ uniform observability holds if mixed finite elements are used (C. Castro-SM 06', C. Castro-SM-A. Munch 08')!

Explicit eigenvalues \Rightarrow uniform gap \Rightarrow Ingham inequality \Rightarrow uniform observability.

- Question:** Is this mixed finite elements approach robust enough to deal with an L^∞ -potential?

We consider the following homogeneous discrete equation and look for a uniform observability result:

$$\begin{cases} M_h U_h''(t) + K_h U_h(t) + L_h U_h(t) = 0, & t > 0, \\ U_h(0) = U_h^0, \quad U_h'(0) = U_h^1. \end{cases}$$

Theorem (C. Castro-SM 24')

Assume L_h is positive defined. There exist constants $C, T_0 > 0$, independent of h , such that for any $T > T_0$ we have

$$\begin{aligned} E_h(0) &= \frac{1}{2} (\langle M_h U^1, U^1 \rangle + \langle K_h U^0, U^0 \rangle + \langle L_h U^0, U^0 \rangle) \\ &\leq C \int_0^T \left(\left| \frac{u_h^1(t)}{h} \right|^2 + \left| \frac{(u_h^1)'(t)}{2} \right|^2 \right) dt \end{aligned}$$

- The observability constant $C = C(a, T)$ is uniform with respect to h !
- The time T should be sufficiently large!
- There are two terms in the observation!

Uniform observability in the case $a \neq 0$: the proof

At the discrete level, define

$$\mathcal{E}_j(s) = \left| \frac{u^{j+1}(s) - u^j(s)}{h} \right|^2 + \left| \frac{(u^{j+1})'(s) + (u^j)'(s)}{2} \right|^2 + a_\infty \left| \frac{u^{j+1}(s) + u^j(s)}{2} \right|^2.$$

Consider also $T > 2$, $1 < \beta < T/2$ and discrete version of $F(x)$:

$$F_j = \frac{1}{2} \int_{\beta x_j}^{T - \beta x_j} \mathcal{E}_j(s) ds.$$

Lemma

The following discrete version of $F'(x) \leq cF(x)$ holds

$$\frac{F_j - F_{j-1}}{h} \leq c(a_M) \left(\frac{F_j + F_{j-1}}{2} + R_j(\beta x_j) + R_j(T - \beta x_j) \right),$$

$$R_j(s) = \frac{1}{h} \int_{s-\beta h}^s \mathcal{E}_j(r) dr - \frac{\mathcal{E}_j(s - \beta h) + \mathcal{E}_j(s)}{2}.$$

Uniform observability in the case $a \neq 0$: the proof

The proof from the continuous case does not work directly! :(

Lemma

Let $g > 0$, $s \geq 0$ and ν_1, ν_2 be two real numbers such that,

$$0 < \nu_2 - \nu_1 \leq \frac{\pi}{2(s+g)}. \quad (6)$$

Then, the following estimate holds

$$\frac{f(s) + f(s+g)}{2} \leq \frac{1}{g} \int_s^{s+g} f(r) \, dr, \quad (7)$$

for any function $f(r)$ of the form

$$f(r) = |b_1 e^{i\nu_1 r} + b_2 e^{i\nu_2 r}|^2, \quad b_1, b_2 \in \mathbb{C}.$$

The lemma is an immediate consequence of Hermite-Hadamard inequality:

- Note that (7) holds (with equality) if b_1 or b_2 is zero.
- Therefore, it is sufficient to show (7) for functions of the form $f(s) = |be^{i\zeta s} + 1|^2 = b^2 + 1 + 2b \cos(\zeta s)$.
- Under the hypothesis (6), f is a concave function in $[s, s + g]$ and, consequently, (7) holds.

Uniform observability in the case $a \neq 0$: the proof

For particular solutions having only two frequencies λ_n, λ_m with

$$|\lambda_n - \lambda_m| < \frac{\pi}{2T},$$

we have

$$\frac{F_j - F_{j-1}}{h} \leq c(a_M) \frac{F_j + F_{j-1}}{2}$$

and the uniform observability inequality is proved!

This is not enough to prove the uniform observability inequality for arbitrary initial data, but implies that there exists a uniform constant $\gamma > 0$ such that:

$$\lambda_{n+1} - \lambda_n > \gamma \quad (0 < |n| \leq N). \quad (8)$$

Now we can apply Ingham's inequality to show the uniform observability.

The inverse source problem

The approximate observation for the inverse source problem is:

$$Y_h = \begin{pmatrix} \frac{(w_h^1)'(t)}{h} \\ \frac{(w_h^1)''(t)}{2} \end{pmatrix} \sim y = \begin{pmatrix} w_x'(t, 0) \\ 0 \end{pmatrix}, \quad t \in (0, T).$$

Given an observation $y^{obs} = \begin{pmatrix} w_x'(t, 0) \\ 0 \end{pmatrix}$ associated to an unknown source term f , define the least-squares functional:

$$\mathcal{J}_h(\mathcal{F}_h) = \frac{1}{2} \| Y_h - y^{obs} \|_{[L^2(0, T)]^2}^2.$$

Theorem

There exists T_0 such that for any $T > T_0$, the functional \mathcal{J}_h has a unique minimizer $\widehat{F}_h \in \mathbb{C}^N$. Moreover, if we further assume that $a \in C[0, 1]$, we have

$$\widehat{f}_h = \sum_{j=1}^N \widehat{F}_h^j \psi_j \text{ tends to } f \in L^2(0, 1) \text{ as } h \rightarrow 0.$$

Numerical experiments: MFE

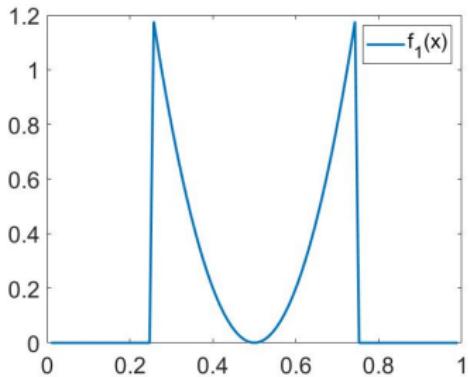
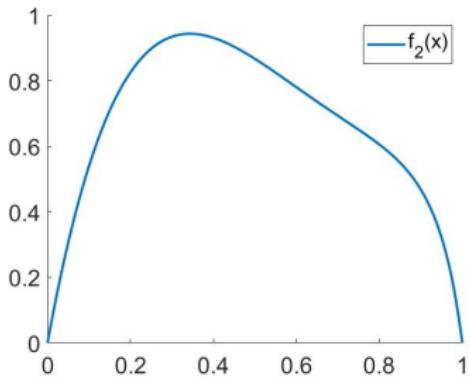


Figure: The two different source terms considered: a discontinuous one $f_1(x)$ (left) and a smooth one $f_2(x)$ (right).

Error estimates

MFE with $a(x) = 2 + \cos(2\pi x)$. Error estimate: $e = \mathcal{O}(h)$

h	$\ \hat{f}_1 - \hat{f}_{1,h}\ _{L^2}$	$\ \hat{f}_2 - \hat{f}_{2,h}\ _{L^2}$
10^{-1}	3.4×10^{-2}	6.2×10^{-3}
10^{-2}	6.1×10^{-3}	1.1×10^{-4}
10^{-3}	7.4×10^{-4}	3.4×10^{-5}

Table: Error in the numerical reconstruction of the source term for different values of h and for two different source terms.

Time experiments

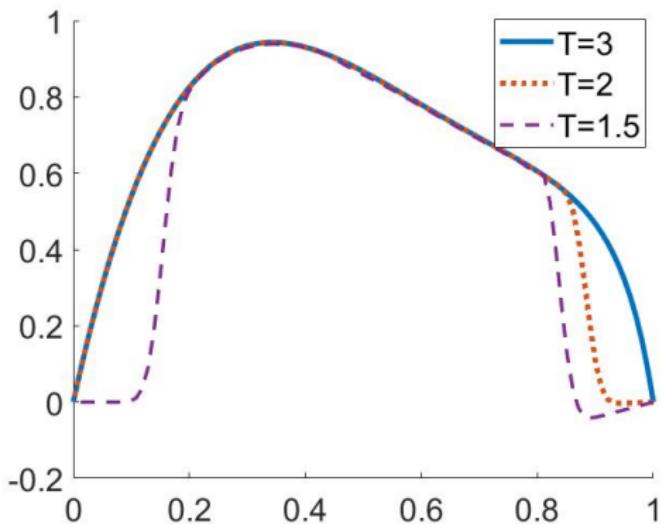


Figure: Reconstruction of the source $f_2(x)$ for different time observations T .

Thank you very much for your attention!