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The inverse source problem for the wave equation

Consider the wave equation with source term λ(t)f source(x),
w ′′ −∆w + a(x)w = λ(t)f source(x) for x ∈ Ω, t > 0
w = 0 on ∂Ω, t > 0,
w(0, x) = w0(x) for x ∈ Ω
w ′(0, x) = w1(x) for x ∈ Ω

(1)

Inverse source problem: Given T > 0, find the source term
f source(x) from the following observation yobs of a single solution:

yobs(t) = ∂nw
′(t)∣∣

Γ

, t ∈ (0,T ).

Here the initial data (w0,w1), the potential a(x), the intensity of
the source λ(t) and the observation zone Γ ⊂ ∂Ω are known.
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Natural questions

1 Uniqueness: Does the observation yobs allow to determine
f source?

2 Stability: Find a constant c > 0 such that

∥f source − f̂ source∥L2(Ω) ≤ c∥yobs − ŷobs∥L2(Γ×(0,T )),

where yobs and ŷobs are the observations associated to f source

and f̂ source , respectively.

3 Reconstruction: Find a convergent numerical algorithm to
obtain f source from yobs .
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
w ′′ −∆w + aw = λ(t)f (x)
w(0, x) = 0
w ′(0, x) = 0

⇒


u′′ −∆u + au = 0
u(0, x) = 0
u′(0, x) = f (x)

w(t) =

∫ t

0
λ(t − s)u(s)ds.

w ′(t) = λ(0)u(t) +

∫ t

0
λ′(t − s)u(s)ds︸ ︷︷ ︸

Linear Volterra equation of the second kind in u
(convolution equation)

Under the assumptions λ ∈ H1(0,T ) and λ(0) ̸= 0, the map
w ′ → u is a linear and continuous in L2 :∫ T

0

∫
Γ
|∂nu(t, x)|2 dx ≤ C

∫ T

0

∫
Γ

∣∣∂nw ′(t, x)
∣∣2 dx .
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CT∥f ∥2L2(Ω) ≤
∫ T

0

∫
Γ
|∂nu(t, x)|2 dx observability inequality

≤ C

∫ T

0

∫
Γ

∣∣∂nw ′(t, x)
∣∣2 dx continuity of Volterra op.

It follows that the stability property holds:

∥f − f̂ ∥L2(Ω) ≤
√

CT

C
∥y − ŷ∥L2(Γ×(0,T )),

y and ŷ being the observations associated to f and f̂ , respectively.

The stability constant
√

CT
C depends on the observability constant.
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Observability

Consider the homogeneous wave equation,
u′′ −∆u + a(x)u = 0 for x ∈ Ω, t > 0
u = 0 on ∂Ω, t > 0,
u(0, x) = u0(x), u′(0, x) = u1(x) for x ∈ Ω

(2)

Observability: Given Γ ⊂ ∂Ω and T > 0, find constant c > 0 s. t.

∥u0∥2H1
0 (Ω) + ∥u1∥2L2(Ω) ≤ c∥∂nu∥2L2(Γ×(0,T )).

for all solutions of the homogeneous wave equation.

Observability implies stability of the inverse source problem
(Puel-Yamamoto 95’);

Observability is known when a ∈ L∞(Ω) as long as (T , Γ)
satisfies the GCC.
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Understanding the observability: one-dimensional case

Observability is related with the speed of propagation. To observe
at x = 0 we have to be aware of all disturbances induced by the
initial data.

Let T > 2 and E (t) =
1

2

(∫ 1

0
|u′(t, x)|2 dx +

∫ 1

0
|ux(t, x)|2 dx +

∫ 1

0
|a(x)||u(t, x)|2 dx

)
:

E (0) ≤ C1e
C2

√
∥a(x)∥L∞

∫ T

0
|ux(t, 0)|2 dt.
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Understanding the observability: proof (I)

The following proof for the continuous wave equation uses the
lateral energy argument (Zuazua, 1993). Consider for T > 2 and
1 < β < T/2

F (x) =

∫ T−βx

βx
E(s, x)ds,

where E(t, x) = 1
2

(
|u′(t, x)|2 + |ux(t, x)|2 + ∥a∥L∞ |u(t, x)|2

)
.

1. Prove that, for some constant C > 0,

F ′(x) ≤ CF (x).

2. By Gronwall’s inequality:

F (x) ≤ C1F (0) = C1

∫ T

0
|ux(t, 0)|2 dt.
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Understanding the observability: proof (II)

3. Using the conservation of the energy prove that

(T − 2β)E (0) ≤
∫ T−β

β

∫ 1

0
E(t, x)dxdt ≤

∫ 1

0
F (x)dx .

4. From 2. and 3. conclude that:

(T − 2β)E (0) ≤ C1F (0) = C1

∫ T

0
|ux(t, 0)|2 dt.
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Fourier approach a = 0 (no potential)

E (0) =
1

2

(
∥u0∥2H1

0 (Ω) + ∥u1∥2L(Ω)

)
=

1

2

∑
n∈Z∗

|a0n|2,

where a0n are the Fourier coefficients of the initial data.∫ T

0
|ux(t, 0)|2 dt =

∫ T

0

∣∣∣∣∣∑
n∈Z∗

a0ndne
iλnt

∣∣∣∣∣
2

dt,

where dn are the normal derivatives of the eigenfunctions in 0.

Since |dn| > d and λn+1 − λn > γ (uniform positive gap),
Ingham’s inequality can be used to obtain that:

E (0) ≤ C1

∫ T

0
|ux(t, 0)|2 dt.

Sorin Micu Inverse source problems approximation with mixed finite elements



Reconstruction Algorithm

1 Replace the wave equation by a convergent discretization
depending on a parameter h → 0. Define Fh ∼ f (x) and
Yh ∼ y .

2 Prove stability for the discrete inverse source problem:

∥Fh − F ∗
h ∥ ≤ κh∥Yh − Y ∗

h ∥
3 Implement an inversion algorithm to recover Fh from Yh:

min
Fh

Jh(Fh) := min
Fh

1

2

∥∥∥Yh − yobs
∥∥∥2

(least squares approximation)
4 This minimization problem has a unique solution F̂h which is

an approximation of f :

lim
h→0

∥F̂h − F source
h ∥ = 0.

Since F source
h ≈ f source , then F̂h ≈ f source .
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Convergence proof (I)

Let Y obs
h be the discretization of the observation yobs and F source

h

be the discretization of the source term f source . From the
convergence of the numerical scheme we have that:

lim
h→0

Jh(F
source
h ) =

1

2
lim
h→0

∥∥∥Y obs
h − yobs

∥∥∥2 = 0. (3)

Since F̂h is a minimizer of Jh, from (3) we deduce that

lim
h→0

Jh(F̂h) = 0. (4)
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Convergence proof (II)

On the other hand, from the stability property, we obtain that

∥F̂h − F source
h ∥2 ≤ κ2h∥Ŷh − Y obs

h ∥2

≤ 4κ2h

(
Jh(F̂h) + Jh(F

source
h )

)
,

which, together with (3) and (4), implies that

lim
h→0

∥F̂h − F source
h ∥ = 0. (5)
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Convergence difficulty

Convergence of the algorithm relies on two properties

A convergent numerical approximation of the observation
Yh ∼ y (non-standard approximation result).

A uniform stability result (with respect to the discretization
parameter) that can be deduced from a uniform
observability result for the homogenous wave equation.

It turns out that a convergent discretization for the wave equation
does not always guarantee the convergence of the algorithm!

In the usual numerical schemes (finite differences, finite elements)
the observability constant blows up as h → 0!

This has been the object of active research in this and other
related problems as control and stabilization of PDE’s.
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The mixed finite element method

Main idea (F. Brezzi and M. Fortin - 91): Ω = (0, 1), h = 1
N+1 ,

xj = hj , 1 ≤ j ≤ N,

w ∼ wh =
N∑
j=1

w j
hϕj , w ′ ∼ w ′

h =
N∑
j=1

v jhψj ,

f ∼ fh =
N∑
j=1

f jhψk , y = wx(0, t) ∼ yh =
w1
h

h
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MFE matrix formulation

{
MhW

′′
h (t) + KhWh(t) + LhWh(t) = λ(t)MhFh, t > 0,

Wh(0) = W 0
h , W ′

h(0) = W 1
h .

Kh =
1

h


2 −1 0 ... 0
−1 2 −1 ... 0
... ... ... ... ...
0 0 0 ... 2

 , Mh =
h

4


2 1 0 ... 0
1 2 1 ... 0
... ... ... ... ...
0 0 0 ... 2

 ,

Lh = h


a1 0 0 ..... 0
0 a2 0 ..... 0
... ... ... ..... ...
0 0 0 ..... aN

 , Wh =


w1
h

w2
h

...
wN
h

 , Fh =


f 1h
f 2h
...
f Nh

 .

aj = a(xj), 1 ≤ j ≤ N.
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Understanding the case a = 0 (no potential)

In the 1-D case, the spectrum can be computed for the continuous
and discrete approximations (finite differences (FD) or mixed finite
elements (MFE)):

Continuous kπ π

FD
2

h
sin

(
kπh

2

)
h

MFE
2

h
tan

(
kπh

2

)
π
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Spectrums in the case a = 0

Figure: Spectrums compared

Sorin Micu Inverse source problems approximation with mixed finite elements



Uniform observability in the case a = 0

For a = 0 uniform observability holds if mixed finite elements
are used (C. Castro-SM 06’, C. Castro-SM-A. Munch 08’)!

Explicit eigenvalues ⇒ uniform gap ⇒ Ingham inequality ⇒
uniform observability.

Question: Is this mixed finite elements approach robust
enough to deal with an L∞-potential?

We consider the following homogeneous discrete equation and
look for a uniform observability result:{

MhU
′′
h (t) + KhUh(t) + LhUh(t) = 0, t > 0,

Uh(0) = U0
h , U ′

h(0) = U1
h .
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Main result: Uniform observability in the case a ̸= 0

Theorem (C. Castro-SM 24’)

Assume Lh is positive defined. There exist constants C ,T0 > 0,
independent of h, such that for any T > T0 we have

Eh(0) =
1

2

(
⟨MhU

1,U1⟩+ ⟨KhU
0,U0⟩+ ⟨LhU0,U0⟩

)
≤ C

∫ T

0

(∣∣∣∣u1h(t)h

∣∣∣∣2 + ∣∣∣∣(u1h)′(t)2

∣∣∣∣2
)
dt

The observability constant C = C (a,T ) is uniform with
respect to h!

The time T should be sufficiently large!

There are two terms in the observation!
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Uniform observability in the case a ̸= 0: the proof
At the discrete level, define

Ej(s) =
∣∣∣∣uj+1(s)− uj(s)

h

∣∣∣∣2+∣∣∣∣ (uj+1)′(s) + (uj)′(s)

2

∣∣∣∣2+a∞

∣∣∣∣uj+1(s) + uj(s)

2

∣∣∣∣2 .
Consider also T > 2, 1 < β < T/2 and discrete version of F (x):

Fj =
1

2

∫ T−βxj

βxj

Ej(s)ds.

Lemma

The following discrete version of F ′(x) ≤ cF (x) holds

Fj − Fj−1

h
≤ c(aM)

(
Fj + Fj−1

2
+Rj(βxj) + Rj(T − βxj)

)
,

Rj(s) =
1

h

∫ s

s−βh
Ej(r)dr −

Ej(s − βh) + Ej(s)
2

.
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Uniform observability in the case a ̸= 0: the proof

The proof from the continuous case does not work directly! :(

Lemma

Let g > 0, s ≥ 0 and ν1, ν2 be two real numbers such that,

0 < ν2 − ν1 ≤
π

2(s + g)
. (6)

Then, the following estimate holds

f (s) + f (s + g)

2
≤ 1

g

∫ s+g

s
f (r) dr , (7)

for any function f (r) of the form

f (r) =
∣∣b1e iν1r + b2e

iν2r
∣∣2 , b1, b2 ∈ C.
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Uniform observability in the case a ̸= 0: the proof

The lemma is an immediate consequence of Hermite-Hadamard
inequality:

Note that (7) holds (with equality) if b1 or b2 is zero.

Therefore, it is sufficient to show (7) for functions of the form

f (s) =
∣∣be iζs + 1

∣∣2 = b2 + 1 + 2b cos(ζs).

Under the hypothesis (6), f is a concave function in [s, s + g ]
and, consequently, (7) holds.
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Uniform observability in the case a ̸= 0: the proof

For particular solutions having only two frequencies λn, λm with

|λn − λm| <
π

2T
,

we have
Fj − Fj−1

h
≤ c(aM)

Fj + Fj−1

2

and the uniform observability inequality is proved!

This is not enough to prove the uniform observability inequality for
arbitrary initial data, but implies that there exists a uniform
constant γ > 0 such that:

λn+1 − λn > γ (0 < |n| ≤ N). (8)

Now we can apply Ingham’s inequality to show the uniform
observability.
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The inverse source problem

The approximate observation for the inverse source problem is:

Yh =


(w1

h )
′(t)

h

(w1
h )

′′(t)

2

 ∼ y =

w ′
x(t, 0)

0

 , t ∈ (0,T ).

Given an observation yobs =

w ′
x(t, 0)

0

 associated to an

unknown source term f , define the least-squares functional:

Jh(Fh) =
1

2

∥∥∥Yh − yobs
∥∥∥2
[L2(0,T )]2

.
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Convergence

Theorem

There exists T0 such that for any T > T0, the functional Jh has a
unique minimizer F̂h ∈ CN . Moreover, if we further assume that
a ∈ C [0, 1], we have

f̂h =
N∑
j=1

F̂ j
h ψj tends to f ∈ L2(0, 1) as h → 0.
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Numerical experiments: MFE

Figure: The two different source terms considered: a discontinuous one
f1(x) (left) and a smooth one f2(x) (right).
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Error estimates

MFE with a(x) = 2 + cos(2πx). Error estimate: e = O(h)

h
∣∣∣f̂1 − f̂1,h

∣∣∣
L2

∣∣∣f̂2 − f̂2,h

∣∣∣
L2

10−1 3.4× 10−2 6.2× 10−3

10−2 6.1× 10−3 1.1× 10−4

10−3 7.4× 10−4 3.4× 10−5

Table: Error in the numerical reconstruction of the source term for
different values of h and for two different source terms.
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Time experiments

Figure: Reconstruction of the source f2(x) for different time observations
T .
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Thank you very much for your attention!
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