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The inverse source problem for the wave equation

Consider the wave equation with source term A(t)f°°""“¢(x),

w” — Aw + a(x)w = A(t)F""¢(x) forx e Q, t>0
w=20 on 09, t > 0,

w(0, x) = w9(x) for x € Q (1)
w'(0, x) = wl(x) for x € Q

Inverse source problem: Given T > 0, find the source term
fsource(x) from the following observation y°2 of a single solution:

yobs(t) = 8,,W'(t)‘ , te(0,7).

r

Here the initial data (w®, w'), the potential a(x), the intensity of
the source A(t) and the observation zone I' C 092 are known.
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Natural questions

obs

@ Uniqueness: Does the observation y°°° allow to determine

fsource ?

@ Stability: Find a constant ¢ > 0 such that

”fsource _ fsourceHB(Q) S C”yobs _ yObSHL2(|—><(07T))’

where y°Ps and y°P% are the observations associated to fsource

and f®°Y¢ respectively.

obs

© Reconstruction: Find a convergent numerical algorithm to
obtain !¢ from y©°bs,
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w” — Aw + aw = \(t)f(x) u'—Au+au=0
w(0,x) =0 = u(0,x) =0
w'(0,x) =0 u'(0,x) = f(x)

Linear Volterra equation of the second kind in u
(convolution equation)

Under the assumptions A € H*(0, T) and A\(0) # 0, the map
w’ — u is a linear and continuous in L2 :

T T
| 1ot ax<c [ [lom(en P ax
o Jr o Jr

Sorin Micu Inverse source problems approximation with mixed finite element:



IN

-
CTHinQ(Q) /0 /rlanu(t,x)\2 dx observability inequality

IN

-

C/ / ‘8nw'(t,x)‘2 dx  continuity of Volterra op.
o Jr

It follows that the stability property holds:

=~ Cr _
I = fllz) < 4/ THy — Yllezrx(o,1y)

y and y being the observations associated to f and 3 respectively.

The stability constant C—CT depends on the observability constant.
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Observability

Consider the homogeneous wave equation,

u'—Au+a(x)u=0 forxeQ, t>0
u=0 on 0, t>0, (2)
u(0,x) = u(x), u'(0,x)=ul(x) forxeQ

Observability: Given [ € 9Q2 and T > 0, find constant ¢ > 0 s. t.

02 12 2
[|u ||H3(Q) + w20y < cllOntlliar o, 1))
for all solutions of the homogeneous wave equation.

@ Observability implies stability of the inverse source problem
(Puel-Yamamoto 95');

@ Observability is known when a € L*°(Q) as long as (T,
satisfies the GCC.
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Understanding the observability: one-dimensional case

Observability is related with the speed of propagation. To observe
at x = 0 we have to be aware of all disturbances induced by the
initial data.

Let T >2and E(t

</ lu'( tx|2dx+/ ]uxtx\zdx+/| )||u tx\zdx>

E(0) < cleC2\/a<X>llL°°/ (£, 0)2 .
0
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Understanding the observability: proof (1)

The following proof for the continuous wave equation uses the
lateral energy argument (Zuazua, 1993). Consider for T > 2 and
1<p<T/2

T—pBx
F(x) = / E(s, x)ds,

where £(t,x) = 1 (Ju/ (£, %) + |ux(£, X)I + [[al] < [u(t, ) ).

1. Prove that, for some constant C > 0,

F'(x) < CF(x).

2. By Gronwall’s inequality:

.
F(x) < CiF(0) = C1/0 luy(t,0)|? dt.
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Understanding the observability: proof (I1)

o] 1 x (o] 1 x

3. Using the conservation of the energy prove that

(T —2B)E /T ﬁ/ E(t, x) dxdt</ F(x)dx.

4. From 2. and 3. conclude that:

i
(T —28)E(0) < GiF(0) = Cl/o (£, 0)2 dt.
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Fourier approach a = 0 (no potential)

1 1
o E(0) =3 (I g0 + o' I3y = 5 D 1B
nezZ*
where a® are the Fourier coefficients of the initial data.

n
g a0d, et

T T
o/ |uX(t,0)\2dt:/
0 0 neZ*

where d,, are the normal derivatives of the eigenfunctions in 0.

2
dt,

@ Since |d,| > d and A1 — Ap > v (uniform positive gap),
Ingham’s inequality can be used to obtain that:

;
E(0) < cl/ |ux(t,0))? dt.
0
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Reconstruction Algorithm

© Replace the wave equation by a convergent discretization
depending on a parameter h — 0. Define F}, ~ f(x) and
Yh ~y.

@ Prove stability for the discrete inverse source problem:

|Fn = Fill < kall Yo — Y7

© Implement an inversion algorithm to recover Fj from Yp:
2

1
i i) = i 5 Y-

(least squares approximation)
@ This minimization problem has a unique solution F;, which is
an approximation of f:

li ﬁ _ [source|| _ .
lim 1By — £

Slnce FEOUfCe ~ fSOLJI’Ce' then Fh ~ fSOLII’Ce-
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Convergence proof (I)

Let Y,fbs be the discretization of the observation y°b* and Fpeuree
be the discretization of the source term f*°“"“¢. From the
convergence of the numerical scheme we have that:

‘o (3)

1
li [Fsourcey _ ~ | H Yobs __,0bs
hlno In(Fh ) 2 hTO h Y
Since Fp, is a minimizer of 7, from (3) we deduce that

lim 7i(Fy) = 0. (4)
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Convergence proof (II)

On the other hand, from the stability property, we obtain that
|1Fh = Fee|? < will Vi — Y212
< 4} (Tn(Fo) + Tn(Fr=) )
which, together with (3) and (4), implies that

li :E _ [source|| _ o 5
lim [[Fy — Fee] = 0 ©
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Convergence difficulty

Convergence of the algorithm relies on two properties
@ A convergent numerical approximation of the observation
Y ~ y (non-standard approximation result).

@ A uniform stability result (with respect to the discretization
parameter) that can be deduced from a uniform
observability result for the homogenous wave equation.

It turns out that a convergent discretization for the wave equation
does not always guarantee the convergence of the algorithm!

In the usual numerical schemes (finite differences, finite elements)
the observability constant blows up as h — 0!

This has been the object of active research in this and other
related problems as control and stabilization of PDE's.
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The mixed finite element method

Main idea (F. Brezzi and M. Fortin - 91): Q = (0,1), h= ﬁ
xp=hj, 1<j<N,

=

N
. o .
wewh =Y whdy, W wp =Y v,
=

j=1

N W1
i, _ "h
f ~ fhzzfi{wl” y = WX(O7 t)Nyh— T
j=1
0 v
(; XXX, ‘1 0 L 1
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MFE matrix formulation

MW/ (t) + KaWh(t) + Ly Wh(t) = AN(t)MipFp, t >0,
W;i(0) = WP,  W/(0) = W}

2 -1 0 0 2 1 0 0
1 -1 2 -1 0 h 1 2 1 0
Kp=— M, = —
h h h 4 )
0 0 0 2 0 0 O 2
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Understanding the case a = 0 (no potential)

In the 1-D case, the spectrum can be computed for the continuous
and discrete approximations (finite differences (FD) or mixed finite

elements (MFE)):

Continuous km T
2 kmh
FD Esin %
2 kmh

MFE | = tan (g) T
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Spectrums in the case a =0
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Figure: Spectrums compared
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Uniform observability in the case a =0

@ For a = 0 uniform observability holds if mixed finite elements
are used (C. Castro-SM 06', C. Castro-SM-A. Munch 08")!

Explicit eigenvalues = uniform gap = Ingham inequality =
uniform observability.

@ Question: Is this mixed finite elements approach robust
enough to deal with an L*°-potential?

We consider the following homogeneous discrete equation and
look for a uniform observability result:

MpU(t) + KnUn(t) + LyUn(t) =0, t >0,
Un(0) = U2,  U;(0) = U}
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Main result: Uniform observability in the case a # 0

Theorem (C. Castro-SM 24")

Assume Ly, is positive defined. There exist constants C, Tg > 0,
independent of h, such that for any T > Tog we have

En(0) = (</\//,,U1 UY) + (Kn U2, U°) + (LpU°, U®))
FAOIRICAL0 )
¢ /( V(0] g

2
@ The observability constant C = C(a, T) is uniform with
respect to h!

@ The time T should be sufficiently large!

@ There are two terms in the observation!
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Uniform observability in the case a # 0: the proof
At the discrete level, define

+1(s) — wi(s) | +1Y (s Y (s (s i(s
é-J_(s)_’U”()h W(s) '(UJ )()2+(UJ)() U’+()2+U’()

Consider also T > 2, 1 < 8 < T/2 and discrete version of F(x):

1 T—ﬁXj
F; = 2/ Ei(s)ds.
B

Xj

The following discrete version of F'(x) < cF(x) holds

Fj _h'l:j—l < C(a/\//) (FJ +2,:j—1

2

2

+aso ‘

+%W@H/ﬂT6&O,

L L E(s— AR+ E()
Aﬂhl%amw— : |
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Uniform observability in the case a # 0: the proof
The proof from the continuous case does not work directly! :(

Let g >0, s > 0 and v1, v» be two real numbers such that,

s

O<wvp—1v < ——-. 6
S TERS) (©)
Then, the following estimate holds
f f 1 [ste
elrfletd) 2 [ rwar, ™)
&g Js

for any function f(r) of the form

f(r) = |bie™" + bae™"|*, by, by € C.
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Uniform observability in the case a # 0: the proof

The lemma is an immediate consequence of Hermite-Hadamard
inequality:
e Note that (7) holds (with equality) if by or by is zero.
@ Therefore, it is sufficient to show (7) for functions of the form
f(s) = |be*s + 1}2 = b? + 1+ 2bcos((s).
e Under the hypothesis (6), f is a concave function in [s,s + g]
and, consequently, (7) holds.
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Uniform observability in the case a # 0: the proof

For particular solutions having only two frequencies A, A\, with

™
|)\n - )\m| < ﬁ’
we have F_F £ F
J _h Jj—1 < c(aM) J "’2 Jj—1

and the uniform observability inequality is proved!

This is not enough to prove the uniform observability inequality for
arbitrary initial data, but implies that there exists a uniform
constant v > 0 such that:

Ant1—An > (0<|n| <N). (8)

Now we can apply Ingham'’s inequality to show the uniform
observability.
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The inverse source problem

The approximate observation for the inverse source problem is:

(wy)'(t)
h wy(t,0)
Yy = ~Yy = ) t€(07T)'
(w;)"(t) 0
2
w(t,0)
Given an observation y°bs = associated to an
0
unknown source term f, define the least-squares functional:
1 2
Fp) == ‘Y — yobs .
Tn(Fn) 2 17 =Y oy
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Convergence

There exists Tg such that for any T > Ty, the functional Jp has a
unique minimizer F, € CN. Moreover, if we further assume that
a € C[0,1], we have

N
£ = Z Fl4; tends to f € L2(0,1) as h — 0.
j=1

.
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Numerical experiments: MFE

12 1
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Figure: The two different source terms considered: a discontinuous one
fi(x) (left) and a smooth one f(x) (right).
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Error estimates

MFE with a(x) = 2 4 cos(2mx). Error estimate: e = O(h)

h A — fhn b — fop
L2 L2
1001 34%x102 | 6.2x10°3
1072 6.1x103 | 1.1x10°*

1073 | 74x107% | 3.4x10°°

Table: Error in the numerical reconstruction of the source term for
different values of h and for two different source terms.

Inverse source problems approximation with mixed finite elements

Sorin Micu



Time experiments
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Figure: Reconstruction of the source f(x) for different time observations

T.
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Thank you very much for your attention!
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