Convex-analytic techniques for constrained reachability of linear control problems

Ivan Hasenohr, *Camille Pouchol*, Yannick Privat, Emmanuel Trélat, Christophe Zhang

MAP5, Université Paris Cité

Control of PDEs and related topics, July 1st 2025

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Given a final time T > 0, $y_0 \in X$ and a target $y_f \in X$, can one find $u \in E$ steering y_0 to y_f (or at least close to y_f), at time T?

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Given a final time T > 0, $y_0 \in X$ and a target $y_f \in X$, can one find $u \in E$ steering y_0 to y_f (or at least close to y_f), at time T?

Main notions of reachability

- ♦ exact: does there exist $u \in E$ s.t. $y(T) = y_f$?
- \diamond approximate: does there exist, for all $\varepsilon > 0$, $u_{\varepsilon} \in E$ s.t. $||y(T) y_f||_X \le \varepsilon$?

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Given a final time T > 0, $y_0 \in X$ and a target $y_f \in X$, can one find $u \in E$ steering y_0 to y_f (or at least close to y_f), at time T?

Main notions of reachability

- ♦ exact: does there exist $u \in E$ s.t. $y(T) = y_f$?
- \diamond approximate: does there exist, for all $\varepsilon > 0$, $u_{\varepsilon} \in E$ s.t. $||y(T) y_f||_X \le \varepsilon$?

If so, how to compute them? → looking for constructive approaches.

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Given a final time T > 0, $y_0 \in X$ and a target $y_f \in X$, can one find $u \in E_{\mathcal{U}} := L^2(0, T; \mathcal{U})$ steering y_0 to y_f (or at least close to y_f), at time T?

Main notions of reachability under constraints $\mathcal{U} \subset \mathcal{U}$

- \diamond exact: does there exist $u \in E_{\mathcal{U}}$ s.t. $y(T) = y_f$?
- \diamond approximate: does there exist, for all $\varepsilon > 0$, $u_{\varepsilon} \in E_{\mathcal{U}}$ s.t. $||y(T) y_f||_X \leq \varepsilon$?

If so, how to compute them? → looking for constructive approaches.

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Duhamel's formula:

$$y(T) = L_T u + S_T y_0, \qquad L_T u := \int_0^T S_{T-t} Bu(t) dt,$$

with $L_T \in L(E, X)$.

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Duhamel's formula:

$$y(T) = L_T u + S_T y_0, \qquad L_T u := \int_0^T S_{T-t} Bu(t) dt,$$

with $L_T \in L(E, X)$.

Upon translating, assume $y_0 = 0$ so that \mathcal{U} -reachability rewrites as follows

- \diamond exact: does there exist $u \in E_{\mathcal{U}}$ s.t. $L_T u = y_f$?
- \diamond approximate: does there exist, for all $\varepsilon > 0$, $u_{\varepsilon} \in \mathcal{E}_{\mathcal{U}}$ s.t. $||L_T u y_f||_X \le \varepsilon$?

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X$, $u(t) \in U$, X and U Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C_0 -semigroup over X, denoted by $(S_t)_{t\geq 0}$
- $\diamond B \in L(U,X)$

Duhamel's formula:

$$y(T) = L_T u + S_T y_0, \qquad L_T u := \int_0^T S_{T-t} Bu(t) dt,$$

with $L_T \in L(E, X)$.

Upon translating, assume $y_0 = 0$ so that \mathcal{U} -reachability rewrites as follows

- ♦ exact: does one have $y_f \in L_T E_U$?
- ♦ approximate: does one have $y_f \in \overline{L_T E_U}$?

 ${\cal U}$ is (closed, convex), bounded (joint work with Ivan Hasenohr, Yannick Privat, Christophe Zhang)

Motivation:

- \diamond bilateral constraints $m \leq u \leq M$,
- \diamond possibly with additional energy constraints like $||u||_2 \leq C$.

 $\mathcal{U}=P$ is ${\sf unbounded}$, assumed to be a ${\sf cone}$ (joint work with Emmanuel Trélat, Christophe Zhang)

Motivation:

- \diamond sign constraints, $P = \{u \in U, u \ge 0\}...$ convex
- \diamond sparsity constraints, $P = \{u \in U, |\operatorname{supp}(u)| \leq k\}...$ not convex, at all

 $\mathcal{U}=P$ is unbounded, assumed to be a cone (joint work with Emmanuel Trélat, Christophe Zhang)

Motivation:

- \diamond sign constraints, $P = \{u \in U, u \ge 0\}...$ convex
- \diamond sparsity constraints, $P = \{u \in U, |\operatorname{supp}(u)| \leq k\}...$ not convex, at all

Possible goals:

- Necessary and sufficient reachability conditions
- ♦ Constructive methods

 $\mathcal{U}=P$ is unbounded, assumed to be a cone (joint work with Emmanuel Trélat, Christophe Zhang)

Motivation:

- \diamond sign constraints, $P = \{u \in U, u \ge 0\}...$ convex
- \diamond sparsity constraints, $P = \{u \in U, |\operatorname{supp}(u)| \leq k\}...$ not convex, at all

Possible goals:

- Necessary and sufficient reachability conditions
- ♦ Constructive methods

Remark: exact and approximate reachability coincide in the closed, convex and bounded setting... but not in the closed, convex and unbounded conic setting! Even in dimension 2.

$$\ddot{x} = u, \qquad P = \mathbb{R}_+.$$

For all a > 0.T > 0.

(0, a) is approximately but not exactly P-reachable in time T.

Condition for non \mathcal{U} -reachability: find $p_f \in X$ such that $J(p_f) < 0$.

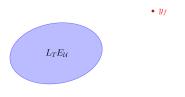


Figure: Separating y_f fom $L_T E_U$. Courtesy of Ivan Hasenohr.

Condition for non \mathcal{U} -reachability: find $p_f \in X$ such that $J(p_f) < 0$.

Figure: Separating y_f fom $L_T E_U$. Courtesy of Ivan Hasenohr.

Condition for non \mathcal{U} -reachability: find $p_f \in X$ such that $J(p_f) < 0$.

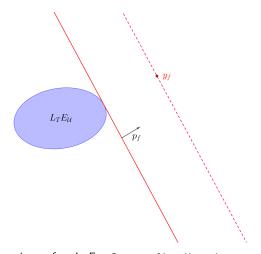


Figure: Separating y_f fom $L_T E_U$. Courtesy of Ivan Hasenohr.

Condition for non \mathcal{U} -reachability: find $p_f \in X$ such that $J(p_f) < 0$.

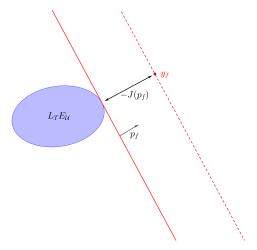


Figure: Separating y_f fom $L_T E_U$. Courtesy of Ivan Hasenohr.

Separation argument (1)

If there exists a strictly separating hyperplane between y_f and $L_T E_U$, i.e., $p_f \in X$ s.t.

$$\sup_{u\in E_{\mathcal{U}}}\langle L_T u, p_f\rangle_X < \langle y_f, p_f\rangle_X,$$

then y_f is not \mathcal{U} -reachable in time T.

Separation argument (1)

If there exists a strictly separating hyperplane between y_f and $L_T E_U$, i.e., $p_f \in X$ s.t.

$$\sup_{u\in E_{\mathcal{U}}}\langle L_T u, p_f\rangle_X < \langle y_f, p_f\rangle_X,$$

then y_f is not \mathcal{U} -reachable in time T.

Above condition rewrites

$$\int_0^T \underbrace{\sup_{u\in\mathcal{U}}\langle u, L_T^*p_f(t)\rangle_U}_{\sigma_{\mathcal{U}}(L_T^*p_f(t))} dt < \langle y_f, p_f\rangle_X.$$

where $\sigma_{\mathcal{U}}(u) := \sup_{v \in \mathcal{U}} \langle u, v \rangle_{\mathcal{U}}$ is the *support* function of \mathcal{U} .

Separation argument (1)

If there exists a strictly separating hyperplane between y_f and $L_T E_U$, i.e., $p_f \in X$ s.t.

$$\sup_{u\in E_{\mathcal{U}}}\langle L_T u, p_f\rangle_X < \langle y_f, p_f\rangle_X,$$

then y_f is not \mathcal{U} -reachable in time T.

Above condition rewrites

$$\int_0^T \underbrace{\sup_{u\in\mathcal{U}}\langle u, L_T^*p_f(t)\rangle_U}_{\sigma_{\mathcal{U}}(L_T^*p_f(t))} dt < \langle y_f, p_f\rangle_X.$$

where $\sigma_{\mathcal{U}}(u) := \sup_{v \in \mathcal{U}} \langle u, v \rangle_{\mathcal{U}}$ is the *support* function of \mathcal{U} .

Define the dual functional

$$J(p_f) := \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

Separation argument (2)

Proposition

Define the dual functional

$$J(p_f) := \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

If y_f is \mathcal{U} -reachable in time T, then $J(p_f) \geq 0$ for all $p_f \in X$.

Separation argument (2)

Proposition

Define the dual functional

$$J(p_f) := \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

If y_f is \mathcal{U} -reachable in time T, then $J(p_f) \geq 0$ for all $p_f \in X$.

In the case where U is convex, closed and bounded, the converse holds.

♦ Converse true by a separation argument (Hahn-Banach) in the weak topology.

Separation argument (2)

Proposition

Define the dual functional

$$J(p_f) := \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

If y_f is \mathcal{U} -reachable in time T, then $J(p_f) \geq 0$ for all $p_f \in X$.

In the case where \mathcal{U} is convex, closed and bounded, the converse holds.

- Converse true by a separation argument (Hahn-Banach) in the weak topology.
- \diamond Tractable: $\sigma_{\mathcal{U}}$ explicitly computable for generic constraint sets.
- \diamond Can be generalised to convex closed sets \mathcal{Y}_f in place of y_f .

1.	Computer assisted-proofs of (non-) ${\cal U}$ -reachability
2.	Reachability conditions for conically constrained problems, with constructivity

Context and state of the art

Constraints:

 $\ensuremath{\mathcal{U}}$ is closed, convex and bounded.

Context and state of the art

Constraints:

 \mathcal{U} is closed, convex and bounded.

Bounded constraints

- Controllability rather than reachability results
- ♦ to 0, and/or in free time *T* (Brammer '72, Son '88, etc)

Context and state of the art

Constraints:

 \mathcal{U} is closed, convex and bounded.

Bounded constraints

- Controllability rather than reachability results
- ♦ to 0, and/or in free time T (Brammer '72, Son '88, etc)

In the (nonlinear or) linear ODE setting,

- \diamond huge body of literature to approximate the reachable set from inside or outside (more ambitious than fixed y_f , but much more costly)
- most often does not include numerical certification
- up to our knowledge, open problem in infinite dimension

Towards proofs of non \mathcal{U} -reachability

If there exists $p_f \in X$ s.t. $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable in time T ('sharp', because the converse holds)

$$J(p_f) = \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

Key remark: J takes finite values on the whole of X in the bounded case.

Towards proofs of non \mathcal{U} -reachability

If there exists $p_f \in X$ s.t. $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable in time T ('sharp', because the converse holds)

$$J(p_f) = \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

Key remark: J takes finite values on the whole of X in the bounded case.

Dual equation, through $L_T^* p_f(t) = B^* p(t)$

$$\dot{p}(t) + A^* p(t) = 0, \quad p(T) = p_f.$$

Towards proofs of non \mathcal{U} -reachability

If there exists $p_f \in X$ s.t. $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable in time T ('sharp', because the converse holds)

$$J(p_f) = \int_0^T \sigma_{\mathcal{U}}(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_X.$$

Key remark: J takes finite values on the whole of X in the bounded case.

Dual equation, through $L_T^* p_f(t) = B^* p(t)$

$$\dot{p}(t) + A^* p(t) = 0, \quad p(T) = p_f.$$

- ♦ Need to discretise in time: the time-integral + the dual ODE/PDE,
- in infinite-dimension, need to discretise in space.

Towards computer-assisted proofs of non \mathcal{U} -reachability: finite dimension

Standing assumption: some form of dissipativity for the semigroup $(S_t)_{t\geq 0}$

Towards computer-assisted proofs of non \mathcal{U} -reachability: finite dimension

Standing assumption: some form of dissipativity for the semigroup $(S_t)_{t\geq 0}$

Using Euler's implicit scheme for the dual equation + Riemann sums for the time-integral

 \diamond Define a discretised proxy $J_{\mathrm{d}}:X o\mathbb{R}$

$$J_{\mathrm{d}}(p_f) = \Delta t \sum_{n=1}^{N_t} \sigma_{\mathcal{U}}((\mathrm{Id} + \Delta t A^*)^{-1} p_f) - \langle y_f, p_f \rangle_X.$$

♦ Establish error bounds: for all $p_f ∈ X$

$$|J(p_f) - J_d(p_f)| \le C_1 \Delta t ||A^* p_f||_X = e(p_f),$$

with explicit constant C_1 .

Towards computer-assisted proofs of non \mathcal{U} -reachability: finite dimension

Standing assumption: some form of dissipativity for the semigroup $(S_t)_{t\geq 0}$

Using Euler's implicit scheme for the dual equation + Riemann sums for the time-integral

 \diamond Define a discretised proxy $J_{\rm d}:X\to\mathbb{R}$

$$J_{\mathrm{d}}(p_f) = \Delta t \sum_{n=1}^{N_t} \sigma_{\mathcal{U}}((\mathrm{Id} + \Delta t \, A^*)^{-1} p_f) - \langle y_f, p_f \rangle_X.$$

♦ Establish error bounds: for all $p_f ∈ X$

$$|J(p_f) - J_d(p_f)| \le C_1 \Delta t ||A^* p_f||_X = e(p_f),$$

with explicit constant C_1 .

- \diamond Find $p_f \in X$ such that $J_{\mathrm{d}}(p_f) < 0$.
- \diamond Check, by means of interval-arithmetic, that $J_{\rm d}(p_f) + e(p_f) < 0$, hence $J(p_f) < 0$.

 p_f is a dual certificate of non \mathcal{U} -reachability (of y_f in time T), cf Computer-assisted proofs of non-reachability for linear finite-dimensional control systems (HPPZ '25, to appear in SICON)

Towards computer-assisted proofs of non \mathcal{U} -reachability: infinite dimension

Standing assumption: some form of dissipativity for the semigroup $(S_t)_{t\geq 0}$

Using Euler's implicit scheme for the dual equation + Riemann sums for the time-integral

 \diamond Define a discretised proxy $J_{\rm d}:V_h\to\mathbb{R}$ where $V_h\subset X$ are approximation spaces

$$J_{\mathrm{d}}(p_{\mathrm{fh}}) = \Delta t \sum_{n=1}^{N_t} \sigma_{\mathcal{U}}((\mathrm{Id} + \Delta t A_h^*)^{-1} p_{\mathrm{fh}}) - \langle y_f, p_{\mathrm{fh}} \rangle_X.$$

 \diamond Establish error bounds, for all $p_f \in X, p_{fh} \in V_h$

$$|J(p_f) - J_{\mathrm{d}}(p_{fh})| \le (C_1 \Delta t + \frac{C_2 h^2}{2}) ||A^* p_f||_X + \frac{C_3 ||p_f - p_{fh}||_X}{2} =: e(p_f, p_{fh}),$$

with explicit constants C_1 , C_2 , C_3 .

Towards computer-assisted proofs of non \mathcal{U} -reachability: infinite dimension

Standing assumption: some form of dissipativity for the semigroup $(S_t)_{t\geq 0}$

Using Euler's implicit scheme for the dual equation + Riemann sums for the time-integral

 \diamond Define a discretised proxy $J_{\rm d}:V_h\to\mathbb{R}$ where $V_h\subset X$ are approximation spaces

$$J_{\mathrm{d}}(p_{\mathrm{fh}}) = \Delta t \sum_{n=1}^{N_t} \sigma_{\mathcal{U}}((\mathrm{Id} + \Delta t \, A_h^*)^{-1} p_{\mathrm{fh}}) - \langle y_f, p_{\mathrm{fh}} \rangle_X.$$

 \diamond Establish error bounds, for all $p_f \in X, p_{fh} \in V_h$

$$|J(p_f) - J_{\mathrm{d}}(p_{fh})| \le (C_1 \Delta t + C_2 h^2) ||A^* p_f||_X + C_3 ||p_f - p_{fh}||_X =: e(p_f, p_{fh}),$$

with explicit constants C_1 , C_2 , C_3 .

- \diamond Find $p_{fh} \in V_h$ such that $J_{\rm d}(p_{fh}) < 0$,
- \diamond Interpolate $p_{fh} \in V_h$ into $p_f \in \mathcal{D}(A^*)$,
- \diamond Check, by means of interval-arithmetic, that $J_{\rm d}(p_{\rm fh})+e(p_{\rm f},p_{\rm fh})<0$, hence $J(p_{\rm f})<0$.

 p_f is a dual certificate of non \mathcal{U} -reachability (of y_f in time T), cf upcoming preprint Computer-assisted proofs of non-reachability for parabolic linear control problems (HPPZ)

Example in finite dimension

$$A\!:=\!\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}, \qquad B\!:=\!\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Estimate:

$$\begin{split} |J(p_f) - J_{\mathrm{d}}(p_f)| &\leq \frac{1}{2} \Delta t \ MT \|B\| \|A^* p_f \|\kappa(P) Q_2(\|N\|T). \\ \mathcal{U} &= \{u \in \mathbb{R}^2, \ \|u\|_2 \leq M_2, \ \|u\|_\infty \leq M_\infty\}. \\ \mathcal{Y}_f &= \left\{ (y_1, y_2, y_3, y_4) \in \mathbb{R}^4, \ \|(y_1 - z_1, y_2 - z_2)\|_{\mathbb{R}^2} \leq \eta \right\}, \end{split}$$

Example in finite dimension

$$A:=\begin{pmatrix}0&0&1&0\\0&0&0&1\\3&0&0&2\\0&0&-2&0\end{pmatrix},\qquad B:=\begin{pmatrix}0&0\\0&0\\1&0\\0&1\end{pmatrix}.$$

Estimate:

$$|J(p_f) - J_{\mathrm{d}}(p_f)| \leq \frac{1}{2} \Delta t \ MT \|B\| \|A^* p_f \|\kappa(P) Q_2(\|N\|T).$$

$$\mathcal{U} = \{ u \in \mathbb{R}^2, \ \|u\|_2 \leq M_2, \ \|u\|_{\infty} \leq M_{\infty} \}.$$

$$\mathcal{Y}_f = \{ (y_1, y_2, y_3, y_4) \in \mathbb{R}^4, \ \|(y_1 - z_1, y_2 - z_2)\|_{\mathbb{R}^2} \leq \eta \},$$

Theorem

Take $z_1=z_2=0.5$, $\eta=0.1$, $M_2=1.15$, $M_{\infty}=1$ and T=1. Then \mathcal{Y}_f is not \mathcal{U} -reachable in time T thanks to the dual certificate

$$p_f = (0.62, 0.78, 0, 0)^T$$
 for which $J(p_f) \in [-0.1146, -0.0717]$.

Example in infinite dimension

Consider $\partial_t y - \partial_{xx} y = \chi_\omega u$ & Dirichlet boundary conditions

$$U = \{ u \in L^2(0,1), \ 0 \le u \le M \text{ a.e.} \}, \quad \omega = (\frac{1}{5}, \frac{2}{5}) \cup (\frac{4}{5}, 1) \}$$

 \mathbb{P}_1 finite elements + interpolating with cubic splines + using the estimate (with $M_0=M|\omega|^{1/2},\ C=2+\frac{2}{\sqrt{3}}$)

$$|J(p_f) - J_{\mathrm{d}}(p_{fh})| \leq M_0 T \left(\left(\frac{1}{2} + C \right) \Delta t + \frac{1}{2} (7 + 4 \ln(2) + C) h^2 \right) \|A^* p_f\| + \left(M_0 T C + \|y_f\| \right) \|p_f - p_{fh}\|,$$

Example in infinite dimension

Consider $\partial_t y - \partial_{xx} y = \chi_\omega u$ & Dirichlet boundary conditions

$$\mathcal{U} = \{ u \in L^2(0,1), \ 0 \le u \le M \ \text{a.e.} \}, \quad \omega = (\frac{1}{5}, \frac{2}{5}) \cup (\frac{4}{5}, 1)$$

 \mathbb{P}_1 finite elements + interpolating with cubic splines + using the estimate (with $M_0=M|\omega|^{1/2}$, $C=2+\frac{2}{\sqrt{3}}$)

$$|J(p_f) - J_{\mathrm{d}}(p_{fh})| \leq M_0 T \left(\left(\frac{1}{2} + C \right) \Delta t + \frac{1}{2} (7 + 4 \ln(2) + C) h^2 \right) \|A^* p_f\| + \left(M_0 T C + \|y_f\| \right) \|p_f - p_{fh}\|,$$

Theorem

For M=1, T=1, the target $y_f=\lambda\sin(\pi\cdot)$ is not \mathcal{U} -reachable in time T if $\lambda\geq 0.035$.

Example in infinite dimension

Consider $\partial_t y - \partial_{xx} y = \chi_\omega u$ & Dirichlet boundary conditions

$$\mathcal{U} = \{ u \in L^2(0,1), \ 0 \le u \le M \ \text{a.e.} \}, \quad \omega = (\frac{1}{5}, \frac{2}{5}) \cup (\frac{4}{5}, 1)$$

 \mathbb{P}_1 finite elements + interpolating with cubic splines + using the estimate (with $M_0=M|\omega|^{1/2}$, $C=2+\frac{2}{\sqrt{3}}$)

$$|J(p_f)-J_{\mathrm{d}}(p_{fh})| \leq M_0 T \left(\left(\frac{1}{2} + C \right) \Delta t + \frac{1}{2} (7 + 4 \ln(2) + C) h^2 \right) \|A^* p_f\| + \left(M_0 T C + \|y_f\| \right) \|p_f - p_{fh}\|,$$

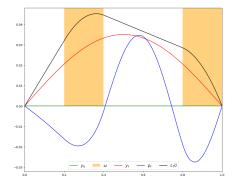


Figure: Target and optimal dual certificate. Courtesy of Ivan Hasenohr

Additional remarks

Crucial part: be able to find p_f (or p_{fh}) at which J_d is negative

- \diamond Done by 'minimising' $J_{\rm d}$
- \diamond Found p_f can have huge $||A^*p_f||$: regularisation can be necessary
- ♦ Structure calls for primal-dual algorithms

Additional remarks

Crucial part: be able to find p_f (or p_{fh}) at which J_d is negative

- \diamond Done by 'minimising' $J_{
 m d}$
- ♦ Found p_f can have huge $||A^*p_f||$: regularisation can be necessary
- ♦ Structure calls for primal-dual algorithms

Some bottlenecks:

- ♦ Computationally demanding
- ♦ 2D parabolic problems formally within reach, tall order in practice
- Optimising constants within estimates is key!

Additional remarks

Crucial part: be able to find p_f (or p_{fh}) at which J_d is negative

- \diamond Done by 'minimising' $J_{
 m d}$
- ♦ Found p_f can have huge $||A^*p_f||$: regularisation can be necessary
- ♦ Structure calls for primal-dual algorithms

Some bottlenecks:

- ♦ Computationally demanding
- ♦ 2D parabolic problems formally within reach, tall order in practice
- Optimising constants within estimates is key!

Next in store? *U*-reachability

- Possible but intractable in large dimensions
- Cannot deal with infinite-dimensional problems

	Computer assisted-proofs of (non-) ${\mathcal U}$ -reachability
2. I	Reachability conditions for conically constrained problems, with constructivity

Context and state of the art

Constraints:

P is a cone.

Context and state of the art

Constraints:

P is a cone.

Unbounded (conic) constraints,

- HUM method (Lions '88), unconstrained
- \diamond sparsity in finite dimension, k=1 (Zuazua '10)
- ♦ isotropic constraints (Berrahmoune '14 et '19)
- ♦ linear constraints (Ervedoza '20)
- sparsity shape constraints for parabolic equations (PTZ '24)

Context and state of the art

Constraints:

P is a cone.

Unbounded (conic) constraints,

- HUM method (Lions '88), unconstrained
- \diamond sparsity in finite dimension, k=1 (Zuazua '10)
- ⋄ isotropic constraints (Berrahmoune '14 et '19)
- linear constraints (Ervedoza '20)
- sparsity shape constraints for parabolic equations (PTZ '24)

Constructive methods, based on an appropriate dual functional, also yield a sufficient reachability condition.

Goal: come up with a general recipe, cf preprint Constructive reachability for linear control problems under conic constraints (PTZ '25)

Unconstrained reachability: the HUM method (1)

Unconstrained case, i.e., P = U: find $u \in E$ s.t. $||y(T) - y_f||_X = ||L_T u - y_f||_X \le \varepsilon$.

For $\varepsilon \geq$ 0, so-called dual functional, defined for $p_f \in X$

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \|L_T^* p_f(t)\|_U^2 dt - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$
$$= \frac{1}{2} \|L_T^* p_f\|_E^2 - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$

Unconstrained reachability: the HUM method (1)

Unconstrained case, i.e., P = U: find $u \in E$ s.t. $||y(T) - y_f||_X = ||L_T u - y_f||_X \le \varepsilon$.

For $\varepsilon \geq 0$, so-called dual functional, defined for $p_f \in X$

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \|L_T^* p_f(t)\|_U^2 dt - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$
$$= \frac{1}{2} \|L_T^* p_f\|_E^2 - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$

Provides a sufficient condition (actually also necessary) for reachability

- \diamond approximate: $\forall p_f \in X$, $L_T^* p_f = 0 \implies \langle y_f, p_f \rangle_X = 0$,
- $\diamond \ \ \text{exact:} \ \exists c>0, \ \forall p_f \in X, \quad |\langle y_f, p_f \rangle_X| \leq c \|L_T^* p_f\|_E.$

Unconstrained reachability: the HUM method (1)

Unconstrained case, i.e., P = U: find $u \in E$ s.t. $||y(T) - y_f||_X = ||L_T u - y_f||_X \le \varepsilon$.

For $\varepsilon \geq 0$, so-called dual functional, defined for $p_f \in X$

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \|L_T^* p_f(t)\|_U^2 dt - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$
$$= \frac{1}{2} \|L_T^* p_f\|_E^2 - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$

Provides a sufficient condition (actually also necessary) for reachability

- \diamond approximate: $\forall p_f \in X$, $L_T^* p_f = 0 \implies \langle y_f, p_f \rangle_X = 0$,
- \diamond exact: $\exists c > 0, \ \forall p_f \in X, \ |\langle y_f, p_f \rangle_X| \leq c \|L_T^* p_f\|_E$.

Constructive: if p_f^* minimises J_{ε} , then $u^* := L_T^* p_f^*$ steers 0 to $\overline{B}(y_f, \varepsilon)$ at time T.

Unconstrained reachability: the HUM method (2)

Dual functional, of what? Reachability, i.e., existence of $u \in E$ s.t. $||y(T) - y_f||_X \le \varepsilon$, is equivalent to

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} \frac{\frac{1}{2} \|u\|_E^2}{=:F(u)} < +\infty.$$

Unconstrained reachability: the HUM method (2)

Dual functional, of what? Reachability, i.e., existence of $u \in E$ s.t. $||y(T) - y_f||_X \le \varepsilon$, is equivalent to

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} \frac{\frac{1}{2} \|u\|_E^2}{=:F(u)} < +\infty.$$

Put constraints into objective function

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_{X} \le \varepsilon} F(u) = \inf_{u \in E} F(u) + G(L_T u),$$

where

$$G(L_T u) = \begin{cases} 0 & \text{if } ||y(T) - y_f||_X = ||L_T u - y_f||_X \le \varepsilon \\ +\infty & \text{else} \end{cases}$$

Unconstrained reachability: the HUM method (2)

Dual functional, of what? Reachability, i.e., existence of $u \in E$ s.t. $||y(T) - y_f||_X \le \varepsilon$, is equivalent to

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} \frac{\frac{1}{2} \|u\|_E^2}{=:F(u)} < +\infty.$$

Put constraints into objective function

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} F(u) = \inf_{u \in E} F(u) + G(L_T u),$$

where

$$G(L_T u) = \begin{cases} 0 & \text{if } ||y(T) - y_f||_X = ||L_T u - y_f||_X \le \varepsilon \\ +\infty & \text{else} \end{cases}$$

Fenchel-Rockafellar Theorem:

$$\pi_{\varepsilon} = -\inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f)$$

$$= -\inf_{p_f \in X} \frac{1}{2} \|L_T^* p_f\|_E^2 - \langle y_f, p_f \rangle + \varepsilon \|p_f\|_X$$

$$J_{\varepsilon(p_f)}$$

and π_{ε} is attained if finite.

Fenchel conjugate, gauge and support function

$$H$$
 Hilbert, $x \in H$

For
$$f: H \to]-\infty, +\infty]$$
,

subdifferential

$$\partial f(x) := \{ p \in H, \ \forall y \in H, \ f(y) \ge f(x) + \langle p, y - x \rangle \},$$

♦ Fenchel conjugate

$$f^*(x) := \sup_{y \in H} (\langle x, y \rangle - f(y)).$$

Fenchel conjugate, gauge and support function

H Hilbert, $x \in H$

For
$$f: H \to]-\infty, +\infty]$$
,

subdifferential

$$\partial f(x) := \{ p \in H, \ \forall y \in H, \ f(y) \ge f(x) + \langle p, y - x \rangle \},$$

♦ Fenchel conjugate

$$f^*(x) := \sup_{y \in H} (\langle x, y \rangle - f(y)).$$

For C closed and convex.

- \diamond indicator function δ_C defined by $\delta_C(x) = 0$ if $x \in C$, $+\infty$ else,
- \diamond support function $\sigma_{\mathcal{C}} := \delta_{\mathcal{C}}^*$, i.e. par définition

$$\sigma_C(x) = \sup_{y \in C} \langle x, y \rangle,$$

 \diamond gauge of C,

$$j_C(x) := \inf\{\alpha > 0, x \in \alpha C\}.$$

Closed convex case

Constraints: defined by a closed convex cone P_r

Choose \mathcal{U}_r convex, closed, bounded that generates P_r (i.e., s.t. $\operatorname{cone}(\mathcal{U}_r) = P_r$). Typically $\mathcal{U}_r = P_r \cap \overline{B}(0,1)$.

Closed convex case

Constraints: defined by a closed convex cone P_r

Choose \mathcal{U}_r convex, closed, bounded that generates P_r (i.e., s.t. $\operatorname{cone}(\mathcal{U}_r) = P_r$). Typically $\mathcal{U}_r = P_r \cap \overline{B}(0,1)$.

Set
$$F(u) := \frac{1}{2} \int_0^T j_{\mathcal{U}_r}^2(u(t)) dt$$
.

- Cost F enforces the constraints: $F(u) < +\infty \iff u \in L^2(0, T; P_r)$.
- Generalises HUM: if $P_r = U$, with $\mathcal{U}_r = \overline{B}(0,1)$, then $F = \frac{1}{2} \| \cdot \|_E^2$

Closed convex case

Constraints: defined by a closed convex cone P_r

Choose \mathcal{U}_r convex, closed, bounded that generates P_r (i.e., s.t. $\operatorname{cone}(\mathcal{U}_r) = P_r$). Typically $\mathcal{U}_r = P_r \cap \overline{B}(0,1)$.

Set
$$F(u) := \frac{1}{2} \int_0^T j_{\mathcal{U}_r}^2(u(t)) dt$$
.

- Cost F enforces the constraints: $F(u) < +\infty \iff u \in L^2(0,T; P_r)$.
- Generalises HUM: if $P_r = U$, with $\mathcal{U}_r = \overline{B}(0,1)$, then $F = \frac{1}{2} ||\cdot||_E^2$

$$\pi_{\varepsilon} = \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} F(u) = \inf_{u \in E} F(u) + G(L_T u), \qquad G = \delta_{\overline{B}(y_f, \varepsilon)}.$$

$$\pi_{\varepsilon} = -\inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f)$$

$$= -\inf_{p_f \in X} \underbrace{\frac{1}{2} \int_0^T \sigma_{\mathcal{U}_f}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle + \varepsilon \|p_f\|_X}_{J_{\varepsilon}(p_f)}$$

and π_{ε} is attained if finite.

How constructive is this?

If p_f^* is dual optimal, then any optimal control u^* must satisfy $u^* \in \partial F^*(L_T^*p_f^*)$. Necessary optimality condition... not sufficient in general. Becomes sufficient if subdifferential reduced to a singleton.

How constructive is this?

If p_f^\star is dual optimal, then any optimal control u^\star must satisfy $u^\star \in \partial F^*(L_T^\star p_f^\star)$. Necessary optimality condition... not sufficient in general. Becomes sufficient if subdifferential reduced to a singleton.

$$\begin{aligned} u &\in \partial F^*(L_T^* p_f^*) &\iff \text{ for a.e. } t \in (0,T), \ u(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \ \partial \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \\ &\iff \text{ for a.e. } t \in (0,T), \ u(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \ \arg\max_{v \in \mathcal{U}_r} \langle L_T^* p_f^*(t), v \rangle_{\mathcal{U}}. \end{aligned}$$

How constructive is this?

If p_f^\star is dual optimal, then any optimal control u^\star must satisfy $u^\star \in \partial F^*(L_T^\star p_f^\star)$. Necessary optimality condition... not sufficient in general. Becomes sufficient if subdifferential reduced to a singleton.

$$u \in \partial F^*(L_T^* p_f^*) \iff \text{for a.e. } t \in (0,T), \ u(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \ \partial \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \\ \iff \text{for a.e. } t \in (0,T), \ u(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \ \text{arg max} \ \langle L_T^* p_f^*(t), v \rangle_{\mathcal{U}}.$$

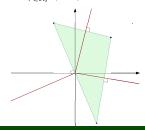
Uniqueness holds as soon as

$$L_T^* p_f^*(t) \notin \operatorname{sing}(\mathcal{U}_r)$$
 for a.e. $t \in (0, T)$,

"hence" as soon as

$$\forall p_f \neq 0, \quad B^* S_t^* p_f \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0,$$
 (H)

where $sing(\mathcal{U}_r) := \{q \in U, \text{ arg max}_{v \in \mathcal{U}_r} \langle q, v \rangle_U \text{ is not a singleton}\}$



Functionals of interest, for $\varepsilon > 0$:

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle + \varepsilon \|p_f\|_X.$$

Relevant condition

$$\forall p_f \neq 0, \quad B^* S_t^* p_f(t) \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0.$$
 (H)

Theorem

 y_f is approximately P_r -reachable in time T iff

$$\forall p_f \in X, \quad F^*(L_T^* p_f) = 0 \implies \langle y_f, p_f \rangle_X \le 0$$
 (C_a)

Under (C_a) , for all $\varepsilon > 0$, J_{ε} admits a unique minimiser p_f^* , and if (\underline{H}) holds, then the unique $u_{\varepsilon}^* \in \partial F^*(L_T^*p_f^*)$ satisfies the constraints P_r and steers 0 to $\overline{B}(y_f, \varepsilon)$ at time T.

Functionals of interest, for $\varepsilon > 0$:

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle + \varepsilon \|p_f\|_X.$$

Relevant condition

$$\forall p_f \neq 0, \quad B^* S_t^* p_f(t) \notin \operatorname{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0.$$
 (H)

Theorem

 y_f is approximately P_r -reachable in time T iff

$$\forall p_f \in X, \quad F^*(L_T^* p_f) = 0 \implies \langle y_f, p_f \rangle_X \le 0 \tag{C_a}$$

Under (C_a) , for all $\varepsilon > 0$, J_ε admits a unique minimiser p_f^\star , and if (\underline{H}) holds, then the unique $u_\varepsilon^\star \in \partial F^\star(L_T^\star p_f^\star)$ satisfies the constraints P_r and steers 0 to $\overline{B}(y_f,\varepsilon)$ at time T.

- \diamond Sufficiency of (C_a) : coercivity of J_{ε} ,
- ♦ Necessity of (C_a): independent argument,
- ♦ Uniqueness of minimiser: study of optimality conditions + strict convexity.

Functional of interest:

$$J_0(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle.$$

Relevant condition

$$\forall p_f \neq 0, \quad B^* S_t^* p_f(t) \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0.$$
 (H)

Theorem

 y_f is exactly P_r -reachable in time T iff

$$\exists c > 0, \ \forall p_f \in X, \quad \langle y_f, p_f \rangle_X \le c \, F^* (L_T^* p_f)^{1/2} \tag{C_e}$$

Under (C_e) , and if J_0 admits a minimiser p_f^* then any $u^* \in \partial F^*(L_T^*p_f^*)$ satisfies the constraints P_r and steers 0 to y_f in time T for each such minimiser p_f^* .

Functional of interest:

$$J_0(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle.$$

Relevant condition

$$\forall p_f \neq 0, \quad B^* S_t^* p_f(t) \notin \operatorname{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0.$$
 (H)

Theorem

 y_f is exactly P_r -reachable in time T iff

$$\exists c > 0, \ \forall p_f \in X, \quad \langle y_f, p_f \rangle_X \le c \, F^* (L_T^* p_f)^{1/2} \tag{C_e}$$

Under (C_e) , and if J_0 admits a minimiser p_f^* then any $u^* \in \partial F^*(L_T^*p_f^*)$ satisfies the constraints P_r and steers 0 to y_f in time T for each such minimiser p_f^* .

- \diamond Sufficiency of (C_e): lower bound J_0 by coercive function of variable $\langle y_f, p_f \rangle_X$,
- ♦ Necessity of (C_e): independent argument.

Context:
$$B = \mathrm{Id}$$
, $X = U = L^2(\Omega)$

Typical example: $\partial_t y - \Delta y = u$ (+ Dirichlet boundary conditions).

Context:
$$B = \mathrm{Id}$$
, $X = U = L^2(\Omega)$

Typical example: $\partial_t y - \Delta y = u$ (+ Dirichlet boundary conditions).

Constraints *P*: for
$$0 < m < |\Omega|$$

for a.e.
$$t\in (0,T),\ u(t)=M(t)\,\chi_{\omega(t)}$$
 where $M(t)>0$ and $|\omega(t)|\leq m.$

Context:
$$B = \mathrm{Id}$$
, $X = U = L^2(\Omega)$

Typical example: $\partial_t y - \Delta y = u$ (+ Dirichlet boundary conditions).

Constraints *P*: for $0 < m < |\Omega|$

for a.e.
$$t \in (0, T)$$
, $u(t) = M(t) \chi_{\omega(t)}$ where $M(t) > 0$ and $|\omega(t)| \leq m$.

Nonconvex conic constraints *P* with natural generating set:

$$\mathcal{U} := \{\chi_{\omega}, \ |\omega| \le m\},\$$

Context: $B = \mathrm{Id}$, $X = U = L^2(\Omega)$

Typical example: $\partial_t y - \Delta y = u$ (+ Dirichlet boundary conditions).

Constraints *P*: for $0 < m < |\Omega|$

for a.e.
$$t \in (0, T)$$
, $u(t) = M(t) \chi_{\omega(t)}$ where $M(t) > 0$ and $|\omega(t)| \leq m$.

Nonconvex conic constraints P with natural generating set:

$$\mathcal{U} := \{ \chi_{\omega}, |\omega| < m \},$$

Relaxation:

$$\mathcal{U}_r = \overline{\operatorname{conv}}(\mathcal{U}) = \left\{ u \in L^2(\Omega), \ 0 \leq u \leq 1 \ \text{and} \ \int_{\Omega} u \leq m
ight\}.$$

 $P_r = \operatorname{cone}(\mathcal{U}_r) = \{u \in L^{\infty}(\Omega), u \geq 0\}, \text{ not closed.}$

Context: $B = \mathrm{Id}$, $X = U = L^2(\Omega)$

Typical example: $\partial_t y - \Delta y = u$ (+ Dirichlet boundary conditions).

Constraints *P*: for $0 < m < |\Omega|$

for a.e.
$$t \in (0, T)$$
, $u(t) = M(t) \chi_{\omega(t)}$ where $M(t) > 0$ and $|\omega(t)| \leq m$.

Nonconvex conic constraints *P* with natural generating set:

$$\mathcal{U} := \{ \chi_{\omega}, \ |\omega| \le m \},\$$

Relaxation:

$$\mathcal{U}_r = \overline{\operatorname{conv}}(\mathcal{U}) = \left\{ u \in L^2(\Omega), \ 0 \leq u \leq 1 \ \mathsf{and} \ \int_\Omega u \leq m
ight\}.$$

 $P_r = \operatorname{cone}(\mathcal{U}_r) = \{u \in L^{\infty}(\Omega), \ u \geq 0\}, \text{ not closed.}$

<u>Lemma 1</u>: For $y_f \in X$, T > 0 fixed s.t. $y_f \ge S_T y_0 = 0$, y_f is P_r -approximately reachable.

<u>Lemma 2</u>: 'Relaxation is bound to work', i.e., $ext(U_r) = U$.

Shape (approximate) control: functional and extremality

What about Condition (H), i.e.,

$$\forall p_f \neq 0, \quad S_t^* p_f(t) \notin \operatorname{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0? \tag{H}$$

$$\mathcal{U}_r = \overline{\operatorname{conv}}(\mathcal{U}) = \left\{ u \in L^2(\Omega), \ 0 \leq u \leq 1 \text{ and } \int_{\Omega} u \leq m \right\}.$$

Shape (approximate) control: functional and extremality

What about Condition (H), i.e.,

$$\forall p_f \neq 0, \quad S_t^* p_f(t) \notin \operatorname{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0?$$

$$\mathcal{U}_r = \overline{\operatorname{conv}}(\mathcal{U}) = \left\{ u \in L^2(\Omega), \ 0 \leq u \leq 1 \text{ and } \int_{\Omega} u \leq m \right\}.$$
(H)

Bathtub lemma: study of the optimisation problem

$$\sigma_{\mathcal{U}_r}(q) = \sup_{v \in \mathcal{U}_r} \langle q, v \rangle_U = \sup_{v \in \mathcal{U}_r} \int_{\Omega} q(x) v(x) dx.$$

If all level sets of q have measure 0, then there exists a unique maximiser, i.e., $q \notin \operatorname{sing}(\mathcal{U}_r)$

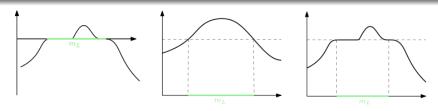


Figure: Relaxed in the bathtub. Courtesy of Christophe Zhang.

Shape (approximate) control: back to the original cone

Theorem

Let y_f , T s.t. $y_f \ge S_T y_0 = 0$. If the adjoint semigroup satisfies

 $\forall p_f \neq 0, \text{ all the level sets of } S_t^* p_f \text{ have measure 0 for a.e. } t > 0,$

then y_f is approximately P-reachable in time T, whatever T > 0 and m > 0 are.

Shape (approximate) control: back to the original cone

Theorem

Let y_f, T s.t. $y_f \ge S_T y_0 = 0$. If the adjoint semigroup satisfies

 $\forall p_f \neq 0$, all the level sets of $S_t^* p_f$ have measure 0 for a.e. t > 0,

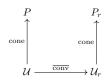
then y_f is approximately P-reachable in time T, whatever T > 0 and m > 0 are.

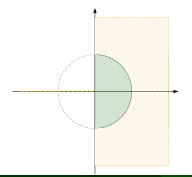
- Constructive: formula for the unique optimal control from the unique dual optimal variable
- Covers the heat (Dirichlet) equation, and more generally analytic-hypoelliptic operators (+ few non-restrictive properties)
- ♦ Nonnegative controllability result, 'optimal' (for the heat equation, say) because
 - $u \ge 0 \implies y(T) \ge 0$, by the parabolic comparison principle
 - if restriction on where the control acts, small-time obstructions
- ♦ Exact reachability: open problem.

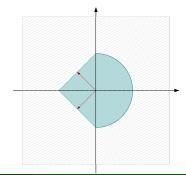
General case

Constraints: defined by a cone P (containing 0).

- (i) Choose a bounded set \mathcal{U} generating P, i.e, $P = cone(\mathcal{U})$.
- (ii) Apply the previous recipe to $U_r := \overline{\operatorname{conv}}(U)$, of associated cone $P_r := \operatorname{cone}(U_r)$.







Relaxation usually works

Functional J_{ε} , associated to \mathcal{U}_r : yields u^* taking values in P_r ... maybe even in P?

If p_f^* minimises J_{ε} , then any optimal control satisfies $u^* \in \partial F^*(L_T^*p_f^*)$, i.e.,

$$u^\star \in \partial F^*(L_T^\star p_f^\star) \iff \text{for a.e. } t \in (0,T), \ u^\star(t) \in \sigma_{\mathcal{U}_r}(L_T^\star p_f^\star(t)) \ \text{arg max} \ \langle L_T^\star p_f^\star(t), \nu \rangle_U.$$

Relaxation usually works

Functional J_{ε} , associated to \mathcal{U}_r : yields u^* taking values in P_r ... maybe even in P?

If p_f^* minimises J_{ε} , then any optimal control satisfies $u^* \in \partial F^*(L_T^*p_f^*)$, i.e.,

$$u^\star \in \partial F^*(L_T^* p_f^\star) \iff \text{for a.e. } t \in (0,T), \ u^\star(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^\star(t)) \ \underset{v \in \mathcal{U}_r}{\text{arg max}} \ \langle L_T^* p_f^\star(t), v \rangle_{\mathcal{U}}.$$

Uniqueness ensured by

$$\forall p_f \neq 0, \quad B^* S_t^* p_f \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0$$
 (H)

If (H) is satisfied, unique such control u^* , which must be extremal:

$$u^*(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^*(t)) \operatorname{ext}(\mathcal{U}_r).$$

Relaxation usually works

Functional J_{ε} , associated to \mathcal{U}_r : yields u^* taking values in P_r ... maybe even in P?

If p_f^* minimises J_{ε} , then any optimal control satisfies $u^* \in \partial F^*(L_T^*p_f^*)$, i.e.,

$$u^{\star} \in \partial F^{\star}(L_T^{\star} \rho_f^{\star}) \iff \text{for a.e. } t \in (0,T), \ u^{\star}(t) \in \sigma_{\mathcal{U}_r}(L_T^{\star} \rho_f^{\star}(t)) \ \underset{v \in \mathcal{U}_r}{\text{arg max}} \ \langle L_T^{\star} \rho_f^{\star}(t), v \rangle_{\mathcal{U}}.$$

Uniqueness ensured by

$$\forall p_f \neq 0, \quad B^* S_t^* p_f \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0$$
 (H)

If (H) is satisfied, unique such control u^* , which must be extremal:

$$u^{\star}(t) \in \sigma_{\mathcal{U}_r}(L_T^* p_f^{\star}(t)) \operatorname{ext}(\mathcal{U}_r).$$

Hence $u^*(t)$ is in $\sigma_{\mathcal{U}_r}(L_T^*p_f^*(t))\mathcal{U}$ generically, as soon as

$$\operatorname{ext}(\mathcal{U}_r) = \operatorname{ext}(\overline{\operatorname{conv}}(\mathcal{U})) \subset \mathcal{U}$$
 (E)

Milman's theorem: (E) holds under any of the two hypothèses

- $\diamond \mathcal{U}$ is weakly closed,
- $\diamond \ \mathcal{U}_r$ is (strongly) compact and \mathcal{U} is (strongly) closed.

General case - reachability

Functionals of interest: for $\varepsilon > 0$

$$J_{\varepsilon}(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle + \varepsilon \|p_f\|_X.$$

Relevant conditions:

$$\forall p_f \neq 0, \quad B^* S_t^* p_f \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0,$$
 (H)

$$\operatorname{ext}(\mathcal{U}_r) = \operatorname{ext}(\overline{\operatorname{conv}}(\mathcal{U})) \subset \mathcal{U}.$$
 (E)

Theorem

Assume that y_f is approximately P_r -reachable in time T, i.e. (C_a) .

Then J_{ε} admits a unique minimiser p_f^{\star} for all $\varepsilon > 0$, and if (H) and (E) are satisfied, then the unique $u_{\varepsilon}^{\star} \in \partial F^{\star}(L_T^{\star}p_f^{\star})$ satisfies the constraints P and steers 0 to $\overline{B}(y_f, \varepsilon)$ in time T.

In particular, if (H) et (E) are satisfied, then y_f is approximately P-reachable in time T.

General case - reachability

Functional of interest:

$$J_0(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_r}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle.$$

Relevant conditions:

$$\forall p_f \neq 0, \quad B^* S_t^* p_f \notin \text{sing}(\mathcal{U}_r) \text{ for a.e. } t > 0,$$
 (H)

$$\operatorname{ext}(\mathcal{U}_r) = \operatorname{ext}(\overline{\operatorname{conv}}(\mathcal{U})) \subset \mathcal{U}.$$
 (E)

Theorem

Assume that y_f is exactly P_r -reachable in time T, i.e., (C_e) .

Then, if J_0 admits a minimiser p_f^* , and if (H) et (E) are satisfied, then for any such minimiser, the unique $u^* \in \partial F^*(L_T^*p_f^*)$ satisfies the constraints P and steers 0 to y_f in time T.

In particular, if (H) et (E) are satisfied, then y_f is exactly P-reachable in time T.

Sparsity in finite dimension: problem and relaxation

Context : $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, A et B matrices

k-sparse controls

for a.e.
$$t \in (0, T)$$
, $||u(t)||_0 \le k$

$$P^{(k)}:=\{u\in\mathbb{R}^m,\;\|u\|_0\leq k\},\;\;\;$$
 closed, not convex (for $k\leq m-1$).

Generator:

$$\mathcal{U}^{(k)} := P^{(k)} \cap \overline{B}_{\infty}(0,1) = \{u \in \mathbb{R}^m, \ \|u\|_0 \leq k, \ \|u\|_{\infty} \leq 1\}.$$

Sparsity in finite dimension: problem and relaxation

Context : $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, A et B matrices

k-sparse controls

for a.e.
$$t \in (0, T)$$
, $||u(t)||_0 \le k$

$$P^{(k)}:=\{u\in\mathbb{R}^m,\;\|u\|_0\leq k\},\;\;\; ext{closed, not convex (for }k\leq m-1).$$

Generator:

$$\mathcal{U}^{(k)} := P^{(k)} \cap \overline{B}_{\infty}(0,1) = \{u \in \mathbb{R}^m, \ \|u\|_0 \le k, \ \|u\|_{\infty} \le 1\}.$$

Relaxation:

$$\mathcal{U}_r^{(k)} = \overline{\operatorname{conv}}(\mathcal{U}^{(k)}) = \{ u \in \mathbb{R}^m, \ \|u\|_1 \le k, \ \|u\|_{\infty} \le 1 \},$$

Remarks:

- P_r = the whole \mathbb{R}^m i.e., the relaxed problem is unconstrained,
- $\mathcal{U}^{(k)}$ is closed, hence Milman's theorem applies (hypothesis (E))

Sparsity in finite dimension: functional

$$\mathcal{U}_r^{(k)} = \overline{\operatorname{conv}}(\mathcal{U}^{(k)}) = \{ u \in \mathbb{R}^m, \ \|u\|_1 \le k, \ \|u\|_{\infty} \le k \},$$

Gauge and support functions

$$\forall u \in \mathbb{R}^m, \quad j_{\mathcal{U}_r^{(k)}}(u) = \max\left(\frac{\|u\|_1}{k}, \|u\|_{\infty}\right), \qquad \sigma_{\mathcal{U}_r^{(k)}}(u) = \sum_{i=1}^k |u_{(i)}|,$$

where, for $u \in \mathbb{R}^m$, $|u_{(1)}| \ge |u_{(2)}| \ge \ldots \ge |u_{(m)}|$.

Sparsity in finite dimension: functional

$$\mathcal{U}_r^{(k)} = \overline{\operatorname{conv}}(\mathcal{U}^{(k)}) = \{ u \in \mathbb{R}^m, \ \|u\|_1 \le k, \ \|u\|_{\infty} \le k \},$$

Gauge and support functions

$$\forall u \in \mathbb{R}^m, \quad j_{\mathcal{U}_r^{(k)}}(u) = \max\left(\frac{\|u\|_1}{k}, \|u\|_{\infty}\right), \qquad \sigma_{\mathcal{U}_r^{(k)}}(u) = \sum_{i=1}^k |u_{(i)}|,$$

where, for $u \in \mathbb{R}^m$, $|u_{(1)}| \ge |u_{(2)}| \ge \ldots \ge |u_{(m)}|$.

Associated cost

$$\forall u \in E, \quad F(u) = \frac{1}{2} \int_0^T j_{\mathcal{U}_r^{(k)}}^2(u(t)) dt.$$

For $p_f \in \mathbb{R}^n$, letting $p(t) = S_{T-t}^* p_f$, the dual fonctional equals

$$J_0(p_f) = \frac{1}{2} \int_0^T \sigma_{\mathcal{U}_f^{(k)}}^2(L_T^* p_f(t)) dt - \langle y_f, p_f \rangle_{\mathbb{R}^n}$$

$$= \frac{1}{2} \int_0^T \Big(\sum_{i=1}^k |(B^* p(t))_{(i)}| \Big)^2 dt - \langle y_f, p_f \rangle_{\mathbb{R}^n}.$$

Sparsity in finite dimension: results

One can show that

$$sing(\mathcal{U}_r^{(k)}) = \{u \in \mathbb{R}^m, \ |u_{(k)}| = |u_{(k+1)}|\},$$

hence (H) rewrites

$$\forall p_f \neq 0, \quad \{t > 0, \ |(B^*S_t^*p_f)_{(k)}| = |(B^*S_t^*p_f)_{(k+1)}|\} \text{ has zero measure}, \qquad (H)$$

Proposition

Assume that the pair (A, B) is controllable.

If (H) holds, then for all y_f , T, y_f est is exactly reachable in time T by k-sparse controls.

- \diamond *Proof*: Relaxed problem is unconstrained, by Kalman's criterion 'relaxed' reachability holds and it can be checked that J_0 has a minimiser.
- \diamond Constructive: formulae for optimal controls as a function of minimisers of J_0 .
- \diamond Open question: make (H) more explicit? (sufficient conditions available, but quite strong)

Internal controllability of the heat equation

Consider, in the unconstrained case

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x),$$
 + Dirichlet boundary conditions, (1)

Internal controllability of the heat equation

Consider, in the unconstrained case

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x) u(t,x),$$
 + Dirichlet boundary conditions,

rewritten in the form

$$\dot{y}(t) = Ay(t) + Bu(t)$$

$$\text{avec } X=U=L^2(\Omega), \ A=\Delta, \ \mathcal{D}(A)=H^2(\Omega)\cap H^1_0(\Omega), \ B=u\mapsto \chi_\omega u.$$

Internal controllability of the heat equation

Consider, in the unconstrained case

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x),$$
 + Dirichlet boundary conditions,

rewritten in the form

$$\dot{y}(t) = Ay(t) + Bu(t)$$

avec
$$X = U = L^2(\Omega)$$
, $A = \Delta$, $\mathcal{D}(A) = H^2(\Omega) \cap H_0^1(\Omega)$, $B = u \mapsto \chi_\omega u$.

For all $\omega \subset \Omega$ (of positive measure),

♦ (1) is approximately controllable

$$\forall y_f \in X, \forall T > 0, \ \forall \varepsilon > 0, \ \exists u_{\varepsilon} \in E \text{ s.t. } \|y(T) - y_f\|_X \leq \varepsilon.$$

 \diamond (1) is **not** exactly controllable

Internal controllability of the heat equation: HUM method

Dual equation, $p_f \in X$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$

Internal controllability of the heat equation: HUM method

Dual equation, $p_f \in X$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$

Dual functional

$$J(p_f) = \frac{1}{2} \int_0^T \int_{\omega} p^2(t, x) dx dt - \langle y_f, p_f \rangle_X + \varepsilon ||p_f||_X$$

= $\frac{1}{2} ||\chi_{\omega} p||_E^2 - \langle y_f, p_f \rangle_X + \varepsilon ||p_f||_X$

Internal controllability of the heat equation: HUM method

Dual equation, $p_f \in X$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$

Dual functional

$$J(p_f) = \frac{1}{2} \int_0^T \int_{\omega} p^2(t, x) \, dx \, dt - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$
$$= \frac{1}{2} \|\chi_{\omega} p\|_E^2 - \langle y_f, p_f \rangle_X + \varepsilon \|p_f\|_X$$

Key result: coercivity thanks to Holmgren's uniqueness theorem:

$$(\forall (t,x) \in (0,T) \times \omega, \quad p(t,x) = 0) \implies p_f = 0.$$

J admits a unique minimiser p_f^* , and the control

$$u^* := \chi_\omega p^*$$

steers 0 to $\overline{B}(y_f, \varepsilon)$ in time T.

Nonnegative reachability and obstructions

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x)$$
 + Dirichlet boundary conditions,

with

$$P = \{u \in L^2(\Omega), \ u \ge 0\}.$$

Nonnegative reachability and obstructions

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x)$$
 + Dirichlet boundary conditions,

with

$$P=\{u\in L^2(\Omega),\ u\geq 0\}.$$

First obstruction: monotonicity

$$\forall u \geq 0, \quad \forall t > 0, \quad y(t) \geq S_t y_0 = 0.$$

Nonnegative reachability and obstructions

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x)$$
 + Dirichlet boundary conditions,

with

$$P = \{u \in L^2(\Omega), u \ge 0\}.$$

First obstruction: monotonicity

$$\forall u \geq 0, \quad \forall t > 0, \quad y(t) \geq S_t y_0 = 0.$$

What if $y_f > 0$?

Theorem

If there exists $B(x,r) \subset \Omega \setminus \omega$, then one can build $y_f \geq 0$ s.t., for small enough T, y_f is not P-(approximately) reachable in time T.

Nonnegative reachability and obstructions (2)

Idea of proof (inspired from Pighin-Zuazua '18), build a separating hyperplane!

Dual equation,
$$p_f \in X$$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$

Nonnegative reachability and obstructions (2)

Idea of proof (inspired from Pighin-Zuazua '18), build a separating hyperplane!

Dual equation, $p_f \in X$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$

Find $y_f \ge 0$, p_f such that equality below cannot hold with $y(T) = y_f$

$$\langle y(T), p_f \rangle_X = \int_0^T \langle p(t), \chi_\omega u(t) \rangle_X dt.$$

Nonnegative reachability and obstructions (2)

Idea of proof (inspired from Pighin-Zuazua '18), build a separating hyperplane!

Dual equation, $p_f \in X$

$$\begin{cases} \partial_t p + \Delta p = 0 \\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$$
 (D)

Find $y_f \ge 0$, p_f such that equality below cannot hold with $y(T) = y_f$

$$\langle y(T), p_f \rangle_X = \int_0^T \langle p(t), \chi_\omega u(t) \rangle_X dt.$$

Pick any $y_f \ge 0$, $y_f \ne 0$, and then p_f s.t.

- (i) $p_f < 0 \text{ sur } \operatorname{supp}(y_f)$,
- (ii) pour T small enough, $p \ge 0$ on $(0, T) \times (\Omega \setminus B(x, r))$, where p solves (D).

$$\implies \langle y_f, p_f \rangle_X < 0 \quad \text{and} \quad \int_0^T \langle p(t), \chi_\omega u(t) \rangle_X dt \ge 0.$$