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Observability of the Schrödinger equation
A Schrödinger equation is in the form of

𝑖𝜕𝑡𝑢 + Δ𝑔𝑢 = 0

defined on a domain Ω.

Given 𝜔 ⊂ Ω, 𝑇 > 0, if ∃𝐶 ∶= 𝐶(𝑇 , 𝜔) > 0, s.t.

‖𝑢0‖2
𝐿2(Ω) ≤ 𝐶 ∫

𝑇

0
‖𝑒𝑖𝑡Δ𝑔𝑢0‖2

𝐿2(𝜔) d𝑡 (Obs)

holds for all 𝑢0 ∈ 𝐿2(Ω), we call it an observability inequality
(from 𝜔 in time 𝑇 ).
Lebeau 1992 obtained the observability and control for the Schrödinger
equation from an open subset 𝜔 at time 𝑇 under the following
geometric control condition (GCC):

Any (generalized) geodesic, meets 𝜔 in a time 𝑡 ≤ 𝑇 .
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Results in tori

▶ Ω = 𝕋𝑑, 𝑑 ≥ 1, 𝜔 open: Jaffard 1990, Haraux 1989 (in dimension
2), Komornik 1992 (in higher dimension).

▶ Ω = 𝕋𝑑, potential 𝑉 ∈ 𝐶∞, 𝜔 open: Burq and Zworski 2012.
▶ Ω = 𝕋2, potential 𝑉 ∈ 𝐿2, 𝜔 open: Bourgain, Burq, and Zworski

2013.
▶ Ω = 𝕋1, 𝕋2, 𝜔 measurable: Burq and Zworski 2019.
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Extend to ℝ𝑑

Difficulty: ℝ𝑑 is not compact ⟹ compactness argument not allowed.

Let 𝜔 ⊂ 𝕋𝑑 nonempty, define 𝑆 ∶= ⋃𝑘∈ℤ𝑑(𝜔 + 2𝜋𝑘):

Täufer 2022 used Floquet–Bloch theorem (Floquet theorem, Bloch
theorem) ⟹ (Obs) from 𝑆.
𝑑 = 1, 𝑆 thick: Su, Sun, and Yuan 2023 using a different method.
𝑑 = 2, 𝜔 measurable and |𝜔| > 0: Le Balc’H and Martin 2023.
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Bloch theory

The Bloch transform ℱ is given by

ℱ ∶ 𝐿2(ℝ𝑑) ⟶ 𝐿2([0, 2𝜋]𝑑 × [0, 1]𝑑)
𝑢 ⟼ ∑

𝑘∈ℤ𝑑
𝑒2𝜋𝑖𝜃⋅𝑘𝑢(𝑦 + 2𝜋𝑘)

where 𝜃 = (𝜃1, ⋯ , 𝜃𝑑) ∈ [0, 1]𝑑.

Theorem (Bloch Theorem)
The Bloch transform ℱ is an isometric isomorphism from 𝐿2(ℝ𝑑) to
𝐿2([0, 2𝜋]𝑑 × [0, 1]𝑑).

∀𝜃 ∈ [0, 1]𝑑, apply the Bloch transform to the Schrödinger equation, we
obtain

⟶ 𝑖𝜕𝑡ℱ(𝑢)(𝑦, 𝜃) = −Δ𝜃ℱ(𝑢)(𝑦, 𝜃)
where Δ𝜃 = Δ with 𝜃-quasiperiodic boundary condition
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Idea from Täufer

Rewrite the above as

⟹
⎧{
⎨{⎩

𝑖𝜕𝑡𝑣 = −Δ𝜃𝑣,
𝑣(𝑦1, ⋯ , 0⏟

𝑘-th
, ⋯ , 𝑦𝑑) = 𝑒2𝜋𝑖𝜃𝑘𝑣(𝑦1, ⋯ , 2𝜋⏟

𝑘-th
, ⋯ , 𝑦𝑑), 𝑘 = 1, 2, ⋯ , 𝑑.

Its observability inequality is given by

‖𝑣0‖2
𝐿2(𝕋𝑑) ≤ 𝐶𝜃 ∫

𝑇

0
‖𝑒𝑖𝑡Δ𝜃𝑣0‖2

𝐿2(𝜔) d𝑡, ∀𝑣0 ∈ 𝐿2(𝕋2) (Obs𝜃)

(Obs) in ℝ𝑑 Bloch Theorem========⟹ a family of (Obs𝜃) with constants 𝐶𝜃
uniformly bounded.
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Several view points

quasiperiodic boundary condition determined by 𝜃 ∈ [0, 1]𝑑
with Laplacian Δ𝜃

⇕⇕⇕⇕⇕⇕
𝑈(1) representation 𝜌 defined by 𝜌(𝛾𝑘) = 𝑒2𝜋𝑖𝜃𝑘 ,

𝑘 = 1, 2, ⋯ , 𝑑 𝛾1, 𝛾2, ⋯ 𝛾𝑑 are generators of fundamental
group 𝜋1(𝕋𝑑)

⇕⇕⇕⇕⇕⇕
connection ∇𝜌 on a unitary flat bundle 𝐸𝜌 → 𝕋𝑑
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More general setting

𝑋: smooth connected Riemannian manifold with measure 𝜇𝑋 induced
by the Riemannian metric 𝑔.
Γ: at most countable discrete group acting on 𝑋 as a symmetry group,
i.e., the Riemannian metric 𝑔 is Γ-invariant.
The group action Γ × 𝑋 → 𝑋: smooth, free and proper (or equivalently
properly discontinuous).
𝑀 = 𝑋/Γ: connected Riemannian manifold with the induced measure
𝜇.

General scheme abstracted from the Euclidean case

Obs on 𝑋 from the
𝛾-invariant set
𝑆 = ⋃𝛾∈Γ 𝛾𝜔

Bloch transform=========⟹
⟸========

Bloch theorem

Obs𝜌 over bundle
𝐸𝜌 → 𝑀 with

uniform constants 𝐶𝜃
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Moduli spaces of irreducible representations

Define
M 𝑛

Γ ∶= Homirr(Γ, 𝑈(𝑛))/𝑈(𝑛).
For torus, it only has 𝑛 = 1 “parametrized space” (moduli space) of
irreducible representations

M 1
Γ = Homirr(Γ, 𝑈(1)) = (𝜒 ↦ (𝜒(𝛾1), ⋯ , 𝜒(𝛾𝑑))) ≃ ℝ𝑑/ℤ𝑑.

In general, we have (e.g., surface Σ𝑔 with genus 𝑔)

MΓ ∶=
∞
⋃
𝑛=1

Homirr(Γ, 𝑈(𝑛))/𝑈(𝑛).
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Abstract Bloch transform

See Kocábová and Št’ovíček 2008(or Nagy and Rayan 2024)
▶ End(ℂ𝑛): space of endomorphisms of ℂ𝑛.
▶ 𝑈(𝜌, 𝐴) ∶= (Ad(𝑈) ∘ 𝜌, 𝑈𝐴𝑈 ∗): free, linear action of 𝑃𝑈(𝑛) on

Homirr(Γ, 𝑈(𝑛)) × End(ℂ𝑛).
▶ V 𝑛 ∶= (Homirr(Γ, 𝑈(𝑛)) × End(ℂ𝑛))/𝑃𝑈(𝑛) → M 𝑛

Γ : Hermitian
vector bundle over M 𝑛

Γ .
▶ H0: Hilbert space.

Abstract Bloch transform
∀𝜓 ∈ 𝐶cpt(Γ) ⊗ H0, ∀[𝜌] ∈ MΓ,

B(𝜓)([𝜌]) ∶= [𝜌, ∑
𝛾∈Γ

𝜓(𝛾)𝜌(𝛾)] ∈ V
dim([𝜌])

[𝜌] ⊗ H0.
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Observability on compact hyperbolic surface

Dyatlov and Jin 2017: ∀𝑎 ∈ 𝐶∞
0 (𝑇 ∗𝑀) and 𝑎|𝑆∗𝑀 ≠ 0 ⟹

∃C(𝑎) > 0, h0(𝑎) > 0 s.t., ∀0 < ℎ < h0(𝑎) and ∀𝑢 ∈ 𝐻2(𝑀)

‖𝑢‖𝐿2(𝑀) ≤ C(𝑎, 𝑀) (∥Opℎ(𝑎)𝑢∥𝐿2(𝑀) + | log ℎ|
ℎ ∥(−ℎ2Δ − 1) 𝑢∥𝐿2(𝑀))

Jin 2017: the above semiclassical control + method from Burq and
Zworski 2004 ⟹ observability inequality.
We extend the above semiclassical control to flat bundles:

‖𝑢‖𝐿2(𝑀,𝐹 𝜌) ≤ C(𝑎, 𝑀) (∥Opℎ(𝑎Id𝐹 𝜌)𝑢∥𝐿2(𝑀,𝐹 𝜌)

+| log ℎ|/ℎ ∥(−ℎ2Δ𝜌 − Id) 𝑢∥𝐿2(𝑀,𝐹 𝜌)) .
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The result

Theorem (Kocábová and Št’ovíček 2008)
If Γ is a countable discrete group of type I (i.e., has an abelian normal
subgroup of finite index), then B is an isometric isomorphism between
ℓ2(Γ) ⊗ H0 and 𝐿2(V 𝑛) ⊗ H0.

The above Bloch Theorem + uniform semiclassical control on flat
bundles ⟹ Observability inequality on 𝑋:

Theorem (Y. Gong–X. Fu–W.)
Γ group of type I, 𝑀 = 𝑋/Γ compact hyperbolic surface, 𝑆 𝛾-invariant
nonempty open set. ⟹ observability inequality from 𝑆.
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Difficulties to hyperbolic plane

We failed to obtain observability of the Schrödinger equation from a
Γ𝑔-invariant open nonempty set on the whole hyperbolic plane ℍ (for
heat equation on ℍ, it is equivalent to a thickness condition, proven by
Rouveyrol 2024).

Two main reasons:
▶ We do not have a strong version of hyperbolic Bloch Theorem for

ℍ over Σ𝑔.
▶ The moduli space of irreducible unitary representations is

noncompact.
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