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Part | : Problem & Results



Electromagnetic Schrodinger equation

e The model :

iOpu = Havu inR; x T2, (1)
u(0,) = up in T2,

® Ha v : The electromagnetic Schrodinger operator given by

1 2
Hav(z) == (iV - A(z)> + V(2), z € T?, (2)
V e C2(T?%,R), A = (AL, Ay) € C(T? R?). (3)
e Zero-flux magnetic field : B =: VA A = 0;A, — 0,A;, so that

f.B=0.
e Gauge-invariance : A — A, := A+ V for any x € C>=(T?),

e—:tHAX,V _ e'Xe_'tHA*Ve_'X.

e Main question : Observability for the Schrodinger propagator e~/tHa.v

on L2(T?).



Brief review of literature for the Schrodinger observability

on T¢
(Obs)7,, : For T > 0,w open. 3Ct A >0, s.t. for any up € L2,

§
]2 < Cr o / ety ug 2, dt

e Lebeau '92 : Geometric control condition (GCC) is sufficient : (GCC)
allows to observe h—oscillating high-frequency wave packets at the
semi-classical time scale (s = t/h) O(1).

e When A = 0, due to the instability of the geodesic flow on T,
delocalization happens at semi-classical time scale O(1/h?), resulting
(Obs)t ., for any T > 0 and any non-empty open set w C T :
> Jaffard '90 (Fourier series approach) :d =2,V =0.
» Burg-Zworski '12, '19, Bourgain-Burg-Zworski '14 (semiclassical
analysis+dispersive tools):
d=2,V €2 wopen; and d = 2,V = 0,w measurable and |w| > 0.
> Anatharaman-Macia '14 (2nd semiclassical measures) :
d>2,V e C%wopen.
» Burg-Zhu ('25) (dispersive tools) : any d, rough space-time
observation region and rough V.



The case A # 07 Some notations

The first order perturbation will influence the long-time semiclassical
Schrédinger dynamics (Wunsch '12, Riviere-Macia '18). In our context of
observability, new geometric conditions appear.
We need some notions :
e Forany f € L}(T?%;,R™), &€ R?, |e] =1,

-

(Fe(z) == lim l/ F(z + té)dt.
0

T—ooo T

On T?, we distinguish € as
» Periodic : If € generates a closed geodesic, i.e.

&= \/(%,gcd(p, q) = 1, a rational direction
» Ergodic : If not, i.e. €is a irrational direction, generating a dense
orbit.
In particular, if € ergodic,
(fle=+1 f,
T2

while if € periodic,

(F)o(z) = ][ f.

where vz is the closed geodesic generated by €.



Condition (MGCC) and main results

Let w be an open set of T2, 7 the closed geodesic generated by the
periodic 7. Denote wy 1 the projection of w on the direction of 7.

Definition (MGCC)
We say that w satisfies the magnetic geometric control condition
(MGCC), if for any periodic direction 7, ws. contains all the zeros of
(B)5.
» Since B=V A A, the (MGCC) is equivalent to: for any periodic 7,
ws. contains all the critical points of the function A, := (A), - 7*.



Condition (MGCC) and main results

Let w be an open set of T2, 7 the closed geodesic generated by the
periodic 7. Denote wy 1 the projection of w on the direction of 7.
Definition (MGCC)

We say that w satisfies the magnetic geometric control condition
(MGCC), if for any periodic direction 7, ws. contains all the zeros of
(B)5.

» Since B=V A A, the (MGCC) is equivalent to: for any periodic 7,

ws. contains all the critical points of the function A, := (A), - 7*.

Theorem (Le Balc'h-Niu-S. arXiv Today)
Let w be an open subset of T2.
» If w satisfies (MGCC), then (Obs)t ., holds for any T > 0.

» If for some periodic 7, (B)y has a non-degenerate zero outside wWs.,
then (Obs)t ., cannot hold for any T > 0.
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Main results, sequel

Theorem (Le Balc’h-Niu-S. )
Under (MGCC), we have proved the following resolvent estimate :

||u||L2(’I[‘2) ||(HA’\/ + )\)UH/_z(Tz) + ||u,\||L2(w)7V>\ € R.

< C
=T e

Corollary
Under (MGCC), internal exact controllability holds.
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Theorem (Le Balc’h-Niu-S. )
Under (MGCC), we have proved the following resolvent estimate :
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< C
=T e

Corollary
Under (MGCC), internal exact controllability holds.

e (MGCQC) is sufficient, but not necessary with following missing cases :

» B = 0: There exists a gauge x such that A, := A + Vg = const.
Following the work Le Balc'h-Martin '23, the observability of (1)
holds for any T > 0 and any non-empty open set w C T2.

» B # 0 and there are finite order of zeros of (B), on Jws. ?
» (B). has infinite order of zeros ?



A closely related work

e Morin-Riviére'24 prove the Quantum Unique Ergodicity for the
magnetic Laplacian on T? under the condition (B). > 0 everywhere, for
all 4. In their setup, B cannot be derived from a magnetic potential A.
By = sz B is the total flux satisfying the quantization condition

By € 2nZ. Their arugment leads to the same resolvent estimate as ours
in the non-zero flux case By # 0.

e In the non-zero flux case §0 # 0, Morin-Riviere used magnetic
Weyl-quantization and the second semiclassical measure approach in the
spirit of Anatharaman-Macia.

e In the zero flux case éo = 0, the standard Weyl-quantization is
sufficient. Our argument is based on the normal form approach in the
spirit of Burg-Zworski.



Part |l : Sketch of the Proof



A model example

Consider the model case A = (A;(y), A = 0), V = —|A;|?. Then the
magnetic Schrodinger equation writes

i0ru+ Au — 2iA;1(y)0xu = 0.
Taking the Fourier transform in x :
iOpuy + (85 — k?)uy + 2A1(y)kuy = 0.

Around a non-degenerate critical point yp of A; with
A1(v0) = 0, A (v0) = —w§ <0,

M)~ Ao~ O

. : 2
Consider uy = vy := uetK=A1n0)k) then

iOpvik + 8§vk — kwg(y — yo)ka =0.



A model example, sequel

For k > 1, take

_ Vkwg(y—x)?

vk(0) = cke 2

; : 2 2 2
to be the ground state of the harmonic oscillator —3; + kwg(y — y0)*.
Then . ,

kwoly—y0)% -
vi(t,y) = c(k)em

which concentrates around y = yq for all t € R. So we cannot have
observability if a horizontal observation region w does not contain the

line y = yp.



Proof under (MGCC) I: High-energy observability

By the standard compactness-uniqueness argument of Lebeau and the
unique continuation property w.r.t. Ha v, it suffices to prove the
high-energy observability. More precisely, Denote

W2 Hay — 1
Mhpt ==X <AV> u,  uel?(T?).
p

We need to prove for any T > 0, and sufficiently small 0 < h, p < 1,

T
Hl'lh7pu0||%2(Tz) < C/o / ‘e_’tH“"’I_Ih,puo(z)|2 dzdt  Vuy € L3(T?).



Proof under (MGCC) I: High-energy observability
By the standard compactness-uniqueness argument of Lebeau and the

unique continuation property w.r.t. Ha v, it suffices to prove the
high-energy observability. More precisely, Denote

h?Ha,v — 1

Mhpt ==X <AV> u,  uel?(T?).

p

We need to prove for any T > 0, and sufficiently small 0 < h, p < 1,

T
thonH%z(Tz) < C/o / ‘e_’tH“"’I_Ih,puo(z)’2 dzdt  Vuy € L3(T?).

Under (MGCC), we will indeed prove a stronger high-energy observability
result in much shorter time, equivalent to our resolvent estimate :
Proposition

There exists a numerical constant To > 0 such that for any T > Ty,

there exist constants pg > 0, hg > 0 and C > 0 such that for any
p €(0,p0), h € (0, hy), we have (Obs)h. 7., :

;
1M, tto]| 7272y < C/ /
0 w

2
1
o—ith? HA-er—]h’pUO(Z) dzdt Yup € L2(T2).

(4)




Proof under (MGCC) Il: Semiclassical measures

Though a quantitative argument is possible, we argue by contradiction for
clarity. If (Obs)a, 1. is untrue, there is a sequence (up)o<h<1 such that

T L, L
upllz = 1, /0 e 7th® Fav gy |12, vt = o(1), h— 0 +.

Up to extracting a subsequence, there exists a semiclassical defect
measure i on R; x T*T?2 such that for any function ¢ € CJ(R;) and any
a€ C>®(T*T?), we have

(. 9(t)a(z,¢)) = lim /R TZ11)(t)(010hw(3)Uh)(tZ)Uh(f-“,Z)dZG’f~

n—-+o0o

» The measure u is supported in S*T?, i.e.
supp(p) C {(t,2,¢) € Ry x T*T?: [¢[ =1},
» For any ty < t1, we have
1((to, 1) x T*T?) = t1 — to,  pl(0,75)xwxsr = O.

» Fora.e. teR,
¢-V,u(t,-)=0.



Proof under (MGCC) Il: Semiclassical measures

Though a quantitative argument is possible, we argue by contradiction for
clarity. If (Obs)a, 1. is untrue, there is a sequence (up)o<h<1 such that

T L, L
upllz = 1, /0 e 7th® Fav gy |12, vt = o(1), h— 0 +.

Up to extracting a subsequence, there exists a semiclassical defect
measure i on R; x T*T?2 such that for any function ¢ € CJ(R;) and any
a€ C>®(T*T?), we have
(1. y(t)a(z,¢)) = lim / _W(£)(Opy (a)un)(t, 2)un(t, z)dzdt.
Ry xT2

n—-+o0o

» Thanks to the invariant property and the fact that w is open, we
have

H= Z PIRxT2x {¢o}+

Coperiodic
with only finitely-many periodic directions (5. We only need to show
that plpyxm2x (¢} = 0 for any periodic (o.
> Up to changing coordinate, we may assume for {, = (1,0)



2nd semiclassical scale and 1d reduction

o Gage : A = (A1(y),A2(x,y)). Our equation becomes
ih3/28tuh - Phuh = 0,
where
Py = pg (hD) + hp’(z, hD) + h*p3'(z, hD)

with symbols

po=[CI> = & +n?,

p1 = 2A1(y)§ + 2A2(x, y)n,

pr =V + A? + A3

e Need to perform a second microlocalization near the coisotropic
subspace {n = 0}. This could be realized simply by normal-form
reduction + positive commutator method. It turns out that the
second-semiclassical scale can be chosen as || ~ hit



Normal form reduction

We search for Q, = Opy/(g(x,y,£)n) to average the potential Ax(x,y)
through conjugation :

e Pue™ % =Py, + [Qn, Pu] + O(K)
h
=0pj (po +2hA(y)€) + Op} (2hA2(x, y)n + ={qn,&* +1°}) + O(h°)
=Opy (po + 2hA1(y)€) +Opy (2h(Aa(x, y) + i£xq)n)

principal

+ 2ihOp; ((8yq)n*) + O(h).

remainder:o(h3/2)

e To average A, we choose g by solving

Deq(x, y.€) = —%(Az — (A uo)():

e The operator 2ihOp! (8, qn?) can be viewed as remainder only if n = o(h/*),
this explains the choice of the second semiclassical scale. For wave packets
oscillating at scale n 2 h'/*, we detect it transversal propagation via the

multiplier ¢(y)yd,.



Key 1d analysis

We now prove the “1d"” observability of the equation

Nlw.

)

on finite union of blue horizonal strips containing all critical points of A;
in the interior :

ih*20up + h* Ay up + 2ihA(y) hdyup + 2ihAs(y)hdyup = opz  (h
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Figure: Multiple strips



Key 1d analysis

e On a gap (bj, aj41) of blue strips, Aj(y) > ¢y > 0 (or uniformly
negative). We use the localized multiplier 0(<)x(y)(y — bj + €0)9,.
Thinking hd, = 1, then the positive commutator comes from

—[ih? 0, + h202 + 2hA(y), x(y)(y — bj + €0)d,]

= —2x(y)h?8; + 2hx(y)AL(y)(y — a+ o) + l.o.t.

higher power in h + terms with Ox

positive operators

e The positive commutator will essentially control

|bdyunliZ; + A2l

—_———
principal thanks to (MGCC)

e On the other hand, the commutator involving
[ih*/20,,0(t/T)---h~*hd,] will finally contribute a main term in the
remainder

lo) h1/2 )
O a1,

hence we need T > Ty > 1 (but independent of h).



About the optimality

Assume for some periodic 7, (B), has a zero outside wWs. .
To disprove (Obs) T, :

» By changing coordinate, translation and gauge transform, we may
assume that W~ are horizontal strips and A = (A1(y), A2(x, y))
such that a critical point yo = 0 of A;(y) is outside @5, and
A7(0) # 0.

» Well-prepared modes : Preparing the highly-concentrated sequences
as in the model example (there Ay = (A2)(1,0)(y))-

» Since the normal form transform is invertible, we do the inverse
normal form transform (de-average A;) as in the previous proof to
transfer the well-prepared modes in the model example to get the
desired modes.

> Additional point : To disprove the observability (Obs)t ., only
0;2(h?) terms can be viewed as remainders (comparing to o,2(h*/?)).
We need to do one step further normal form to average symbols that
are Oy2(h?) in a priori.



Perspectives

» Our result could be generalized to the case with non-zero flux
By # 0 on T2, under (MGCC).

» In terms observability, Ha v is clearly not a perturbation of —A,
comparing to —A + V. It is challenging to study the question of
rough potential or rough control, as in the context of —A + V (talk
of Nicolas). It is possible to relax the regularity of the electronic
potential V.

» The case d > 3 7 Description of the semiclassical measures for the
magnetic Schrodinger equations 7 Delocalization ? Concentration ?



Thank you !



