Domain invariance for nonlinear diffusion models

Piermarco Cannarsa

University of Rome Tor Vergata

2023-2026: Research secondment at the Interdisciplinary Center "B. Segre" Accademia Nazionale dei Lincei

> CONTROL OF PDES AND RELATED TOPICS Institut de Mathématiques de Toulouse June 30 – July 4, 2025

Domain invariance for nonlinear diffusion models

Piermarco Cannarsa

University of Rome Tor Vergata

2023-2026: Research secondment at the Interdisciplinary Center "B. Segre" Accademia Nazionale dei Lincei

> CONTROL OF PDES AND RELATED TOPICS Institut de Mathématiques de Toulouse June 30 – July 4, 2025

1 A bilinear control problem

- A bilinear control problem
- 2 Domain invariance for evolution equations

- A bilinear control problem
- 2 Domain invariance for evolution equations
- Nonlinear heat flows

- A bilinear control problem
- 2 Domain invariance for evolution equations
- Nonlinear heat flows
- Mavier-Stokes equations

Bilinear control of the heat flow

$\Omega \subset \mathbb{R}^d$ bounded with smooth boundary

Problem

For any $u_0\in H^1_0(\Omega)\setminus\{0\}$ find $f:[0,\infty) o\mathbb{R}$ such that the solution u^f of

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + f(t)u(t,x) & \mathbb{R}_{+} \times \Omega \\ u = 0 & \mathbb{R}_{+} \times \partial \Omega \\ u(0,x) = u_{0}(x) & x \in \Omega \end{cases}$$
 (LH)

satisfies

$$\int_{\Omega} |u^f(t,x)|^2 dx = \int_{\Omega} |u_0(x)|^2 dx \qquad \forall t \geqslant 0$$

Solution

L. Caffarelli and F. Lin, Nonlocal heat flows preserving the L² energy, DCDS 2009

If f satisfies

$$\int_{\Omega} |u^{f}(t,x)|^{2} dx = \int_{\Omega} |u_{0}(x)|^{2} dx \qquad \forall t \geqslant 0$$

then

$$0 = \int_{\Omega} u^f(t,x) \frac{\partial u^f}{\partial t}(t,x) dx = \int_{\Omega} u^f(t,x) \Delta u^f(t,x) dx + f(t) \int_{\Omega} |u_0(x)|^2 dx$$

So

$$f(t) = \frac{1}{\int_{\Omega} |u_0(x)|^2 dx} \int_{\Omega} |\nabla u^f(t, x)|^2 dx \qquad \forall t \geqslant 0$$

Abstract formulation

The problem reduces to the invariance of the set

$$K_{u_0} := \left\{ u \in H_0^1(\Omega) : \int_{\Omega} |u(x)|^2 dx = \int_{\Omega} |u_0(x)|^2 dx \right\}$$

under the nonlocal heat flow

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + \frac{\int_{\Omega} |\nabla u^{f}(t,x)|^{2} dx}{\int_{\Omega} |u_{0}(x)|^{2} dx} u(t,x) & \mathbb{R}_{+} \times \Omega \\ u = 0 & \mathbb{R}_{+} \times \partial \Omega \end{cases}$$

Abstract formulation

The problem reduces to the invariance of the set

$$K_{u_0} := \left\{ u \in H_0^1(\Omega) : \int_{\Omega} |u(x)|^2 dx = \int_{\Omega} |u_0(x)|^2 dx \right\}$$

under the nonlocal heat flow

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + \frac{\int_{\Omega} |\nabla u^f(t,x)|^2 dx}{\int_{\Omega} |u_0(x)|^2 dx} u(t,x) & \mathbb{R}_+ \times \Omega \\ u = 0 & \mathbb{R}_+ \times \partial \Omega \end{cases}$$

The above equation can be recast in abstract form in $H = L^2(\Omega)$ as

$$u'(t) = Au(t) + B(u(t)) \qquad (t \geqslant 0)$$

for suitable operators

- A = Dirichlet Laplacian
- $B(u) = \frac{\int_{\Omega} |\nabla u(x)|^2 dx}{\int_{\Omega} |u_0(x)|^2 dx} u$

Semilinear evolution equations

Consider the Cauchy problem

$$\begin{cases} u'(t) = Au(t) + B(u(t)) & t > 0 \\ u(0) = u_0 \in H \end{cases}$$
 (P_{u₀})

where

- (H1) $H, \langle \cdot, \cdot \rangle_H, \| \cdot \|_H$ Hilbert space
- (H2) $A: D(A) \subset H \to H$ infinitesimal generator of a strongly continuous semigroup of contractions on H, denoted by e^{tA}
- (H3) $V, \langle \cdot, \cdot \rangle_V, \| \cdot \|_V$ Hilbert space such that $D(A) \subset V \subset H$ and

$$e^{tA}V \subset V$$
 with $\|e^{tA}u\|_V \leqslant \|u\|_V$

(H4) $B: V \rightarrow H$ locally Lipschitz continuous

We denote by $u(t,u_0)$ the maximal solution of (P_{u_0}) defined for $t\in [0, au_{u_0})$

Invariant sets

A set $K \subset V$ is invariant under

$$u'(t) = Au(t) + B(u(t)) \qquad (t \geqslant 0)$$

if

$$u_0 \in K \implies u(t, u_0) \in K \quad \forall t \in [0, \tau_{u_0})$$

M. Nagumo.

Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen.

Proc. Phys.-Math. Soc. Japan, III. Ser., 24:551–559, 1942.

was the first to give necessary and sufficient conditions for invariance (for ODEs)

[1] Jean-Michel Bony.

Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble), 19(fasc. 1):277–304 xii, 1969.

[2] Haï m Brezis.

On a characterization of flow-invariant sets.

Comm. Pure Appl. Math., 23:261-263, 1970.

[3] Michael G. Crandall.

A generalization of Peano's existence theorem and flow invariance.

Proc. Amer. Math. Soc., 36:151-155, 1972.

[4] Philip Hartman.

On invariant sets and on a theorem of Ważewski.

Proc. Amer. Math. Soc., 32:511-520, 1972.

[5] R. H. Martin.

Differential equations on closed subsets of a Banach space.

Trans. Am. Math. Soc., 179:399-414, 1973.

[6] R. M. Redheffer and W. Walter.

Flow-invariant sets and differential inequalities in normed spaces.

Applicable Anal., 5(2):149-161, 1975.

[7] S. Shi.

Viability theorems for a class of differential-operator inclusions.

J. Differ. Equations, 79(2):232-257, 1989.

[8] Peter Volkmann.

über die positive Invarianz einer abgeschlossenen Teilmenge eines Banachschen Raumes bezüglich u'=f(t,u).

J. Reine Angew. Math., 285:59-65, 1976.

Cannarsa (Rome Tor Vergata)

er Diffelentiáleletahu

In finite dimension, necessary and sufficient condition can be found in

O. Cârjă, M. Necula, and I. I. Vrabie.

Viability, invariance and applications. Amsterdam: Elsevier, 2007.

We shall present the approach developed in

[1] P. Cannarsa, G. Da Prato, and H. Frankowska.

Invariance for quasi-dissipative systems in Banach spaces.

J. Math. Anal. Appl., 457(2):1173-1187, 2018.

[2] Piermarco Cannarsa, Giuseppe Da Prato, and Hélène Frankowska.

Domain invariance for local solutions of semilinear evolution equations in Hilbert spaces.

J. Lond. Math. Soc., II. Ser., 102(1):287-318, 2020.

and later extended to Banach spaces in

[3] Aleksander Ćwiszewski, Grzegorz Gabor, and Wojciech Kryszewski.

Invariance and strict invariance for nonlinear evolution problems with applications.

Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 218:32, 2022. Id/No 112756.

Proximally smooth sets

Let
$$K \subset H$$
 be a closed set. Define $K_\delta = \Big\{ u \in H \setminus K \ : \ d_K(u) < \delta \Big\}$

Definition

K is proximally smooth if $\exists \delta>0$ such that every $u\in K_\delta$ has a unique projection onto K

We denote by $\Pi_K(u)$ such a projection

Necessary and sufficient conditions for invariance

Theorem

Let the closed set $K \subset H$ be proximally smooth and suppose that

$$\exists \delta > 0$$
 such that $\Pi_{\mathcal{K}} ig(D(A) \cap \mathcal{K}_{\delta} ig) \subset D(A)$

Then $K \cap V$ is invariant under u' = Au + B(u) if and only if

$$\langle p, Au + B(u) \rangle_H \leq 0 \qquad \forall u \in \partial K \cap D(A), \ \forall p \in N_K^P(u) \cap D(A)$$

Here $N_K^P(u)$ stands for the proximal normal cone to K at u, given by

$$N_K^P(u) = \left\{ p \in H \mid \exists \rho > 0 : \langle p, v - u \rangle_H \leqslant \frac{1}{2\rho} \|v - u\|_H^2 \right\}$$

Application to the heat equation with nonlocal term

Let $||u_0||_H = 1$ and consider the Cauchy problem

$$\begin{cases} u'(t) = Au(t) + ||u(t)||_{V}^{2} u(t) & t > 0 \\ u(0) = u_{0} \in H \end{cases}$$
 (*)

where A is the Dirichlet Laplacian in $H = L^2(\Omega)$. Define

$$K = \left\{u \in H \ : \ \|u\|_H = 1\right\}$$

Then

- K is (proximally) smooth
- $\Pi_K(D(A) \setminus \{0\}) \subset D(A)$ because $\Pi_K(u) = u/\|u\|_H$
- for all $u \in \partial K (=K)$ we have that $N_K^P(u) = \mathbb{R}u$

Since

$$\langle u, Au + ||u||_V^2 u \rangle_H = \langle u, Au \rangle_H + ||u||_V^2 = 0 \forall u \in D(A) \cap K$$

we conclude that $K \cap V$ is invariant under (\star)

Invariance as a way to obtain global existence

Let $u_0 \in V$ be sucht that $||u_0||_H = 1$. By the above invariance result we that that the maximal solution of the Cauchy problem

$$\begin{cases} u'(t) = Au(t) + ||u(t)||_{V}^{2} u(t) & t > 0 \\ u(0) = u_{0} \in H \end{cases}$$
 (*)

satisfies

$$||u(t)||_H = 1 \qquad \forall t \in [0, \tau_{u_0})$$
 $(\star\star)$

Invariance as a way to obtain global existence

Let $u_0 \in V$ be sucht that $||u_0||_H = 1$. By the above invariance result we that that the maximal solution of the Cauchy problem

$$\begin{cases} u'(t) = Au(t) + ||u(t)||_{V}^{2} u(t) & t > 0 \\ u(0) = u_{0} \in H \end{cases}$$
 (*)

satisfies

$$||u(t)||_{H}=1 \qquad \forall t \in [0,\tau_{u_0}) \tag{**}$$

Notice that $(\star\star)$ is not enough to conclude that $\tau_{u_0}=\infty$. However, together with (\star) it yields

$$\|u'(t)\|_{H}^{2} + \frac{1}{2} \frac{d}{dt} \|u(t)\|_{V}^{2} = \frac{1}{2} \|u(t)\|_{V}^{2} \frac{d}{dt} \|u(t)\|_{H}^{2} = 0 \qquad \forall t \in [0, \tau_{u_{0}})$$

Therefore $||u(t)||_V \leqslant ||u_0||_V$ and $\tau_{u_0} = \infty$

Energy preserving nonlinear heat flows

We now study the nonlinear heat equation perturbed by a nonlocal term in a bounded domain $\Omega\subset\mathbb{R}^d$ with smooth boundary

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + g|u(t,x)|^{2\sigma}u(t,x) + \mu[u(t,\cdot)]u(t,x) & \mathbb{R}_+ \times \Omega \\ u = 0 & \mathbb{R}_+ \times \partial\Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

where $g \in \mathbb{R}, \sigma > 0$ and

$$\mu[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u\|_H^2}$$
 (1)

Energy preserving nonlinear heat flows

We now study the nonlinear heat equation perturbed by a nonlocal term in a bounded domain $\Omega \subset \mathbb{R}^d$ with smooth boundary

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + g|u(t,x)|^{2\sigma}u(t,x) + \mu[u(t,\cdot)]u(t,x) & \mathbb{R}_+ \times \Omega \\ u = 0 & \mathbb{R}_+ \times \partial\Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

where $g \in \mathbb{R}, \sigma > 0$ and

$$\mu[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u\|_H^2}$$
 (1)

Formally, μ preserves the energy:

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{H}^{2} = -\|u(t)\|_{V}^{2} + g\|u(t)\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2} + \mu[u(t)]\|u(t)\|_{H}^{2} = 0$$

Energy

Consider the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H_0^1(\Omega) \end{cases}$$
 (NLH)

Define the energy of a solution as

$$E[u(t)] = \frac{1}{2} \|u(t)\|_{V}^{2} - \frac{g}{2\sigma + 2} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2} \begin{cases} \geqslant 0 & g \leqslant 0 \\ \text{indefinite} & g > 0 \end{cases}$$

Energy

Consider the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H_0^1(\Omega) \end{cases}$$
 (NLH)

Define the energy of a solution as

$$E[u(t)] = \frac{1}{2} \|u(t)\|_V^2 - \frac{g}{2\sigma + 2} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2} \begin{cases} \geqslant 0 & g \leqslant 0 \\ \text{indefinite} & g > 0 \end{cases}$$

Then

$$E[u(t)] - E[u_0] = -\int_0^t ds \int_{\Omega} \left| \frac{\partial u}{\partial t}(s, x) \right|^2 dx \le 0$$

Motivations

\bigcirc (NLH) is L^2 gradient flow constrained on a manifold

Thierry Aubin.

Some nonlinear problems in Riemannian geometry.

Springer Monogr. Math. Berlin: Springer, 1998.

Michael Struwe.

Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems., volume 34 of Ergeb. Math. Grenzgeb., 3. Folge.

Berlin: Springer, 4th ed. edition, 2008.

Numerical computation of ground state for Bose-Einstein condensation

Weizhu Bao and Qiang Du.

Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow.

SIAM J. Sci. Comput., 25(5):1674-1697, 2004.

Qiang Du.

Numerical computation of quantized vortices in the Bose-Einstein condensate.

In Recent progress in computational and applied PDEs. Conference proceedings for the international conference held in Zhangjiajie, China, July 1–7, 2001., pages 157–169. New York, NY: Kluwer Academic / Plenum Publishers, 2002.

The literature on the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H^1_0(\Omega) \end{cases} \tag{NLH}$$

includes

The literature on the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H_0^1(\Omega) \end{cases}$$
 (NLH)

includes

- Caffarelli and Lin, DCDS (2009)
 - studied g = 0 (linear case)
 - proved global existence, convergence as $t \to \infty$, identified limit

The literature on the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H_0^1(\Omega) \end{cases}$$
 (NLH)

includes

- Caffarelli and Lin, DCDS (2009)
 - studied g = 0 (linear case)
 - proved global existence, convergence as $t \to \infty$, identified limit
- Ma and Cheng, J. Evol. Equ. (2009)
 - studied the case of g < 0 (positive definite energy)
 - proved global existence and weak convergence on $t_n \to \infty$

The literature on the nonlinear heat equation perturbed by a nonlocal term

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in H_0^1(\Omega) \end{cases}$$
 (NLH)

includes

- Caffarelli and Lin, DCDS (2009)
 - studied g = 0 (linear case)
 - proved global existence, convergence as $t \to \infty$, identified limit
- Ma and Cheng, J. Evol. Equ. (2009)
 - studied the case of g < 0 (positive definite energy)
 - proved global existence and weak convergence on $t_n \to \infty$
- Antonelli C Shakarov, Calc. Var. Partial Differ. Equ. (2024)
 - lacktriangle studied the case of $g\in\mathbb{R}$ for both Ω bounded and $\Omega=\mathbb{R}^d$

Stochastic wave equation: Cerrai and Xie, Electron. J. Prabab. (2025)

The general case $g \in \mathbb{R}$

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

- local well-posedness
- global solution
- ullet strong convergence on a time sequence $t_n o \infty$
- identification of the limit as $t \to \infty$ for $u_0 \ge 0$

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Theorem

Let

$$g>0$$
 and $0<\sigma<rac{2}{(d-2)^+}$

Then for any $u_0 \in H_0^1(\Omega)$ there exists a unique mild solution^a

$$u \in \mathcal{C}([0, \tau_{u_0}); H_0^1(\Omega))$$

of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$
 (NLH)

Moreover, either $au_{u_0}=\infty$ or $au_{u_0}<\infty$ and $\lim_{t o au_{u_0}}\|u(t)\|_V=\infty$

$$u^{s}u(t) = e^{tA}u_{0} + \int_{0}^{t} e^{(t-s)A} \Big(g|u(s)|^{2\sigma}u(s) + \mu[u(s)]u(s) \Big) ds$$

UNIVERSITÀ DEGLI STUDI DI ROMA

Difficulties

Difficulties

The energy functional

$$E[u(t)] = \frac{1}{2} \|u(t)\|_{V}^{2} - \frac{g}{2\sigma + 2} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2}$$

being indefinite, well-posedness cannot follow from a priori bounds

Difficulties

• The energy functional

$$E[u(t)] = \frac{1}{2} \|u(t)\|_{V}^{2} - \frac{g}{2\sigma + 2} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2}$$

being indefinite, well-posedness cannot follow from a priori bounds

- The contraction mapping theorem seems hard to apply because:
 - ▶ the nonlocal term

$$\mu[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u\|_H^2}$$

suggests to look for a fixed point in the space C([0, T]; V), but

• the power-like nonlinearity $G(u) = |u|^{2\sigma} u$ fails to be locally Lipschitz in V for $0 < \sigma < 1/2$

Difficulties

• The energy functional

$$E[u(t)] = \frac{1}{2} \|u(t)\|_{V}^{2} - \frac{g}{2\sigma + 2} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2}$$

being indefinite, well-posedness cannot follow from a priori bounds

- The contraction mapping theorem seems hard to apply because:
 - the nonlocal term

$$\mu[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u\|_H^2}$$

suggests to look for a fixed point in the space C([0, T]; V), but

- the power-like nonlinearity $G(u) = |u|^{2\sigma} u$ fails to be locally Lipschitz in V for $0 < \sigma < 1/2$
- Uniqueness has to be derived by an ad hoc method

Strategies

Strategies

We prove the local well-posedness of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \lambda(t)u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in V \end{cases}$$

with $\lambda \in L^{\infty}(\mathbb{R})$

Local well-posedness 3

Strategies

We prove the local well-posedness of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \lambda(t)u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in V \end{cases}$$

with $\lambda \in L^{\infty}(\mathbb{R})$

We employ the Schauder fixed point theorem to construct a solution of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma} u + \mu_0[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t, \cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in D(A) \end{cases}$$
 (NLH₀)

where

$$\mu_0[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u_0\|_H^2}$$

Local well-posedness 3

Strategies

We prove the local well-posedness of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \lambda(t)u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in V \end{cases}$$

with $\lambda \in L^{\infty}(\mathbb{R})$

• We employ the Schauder fixed point theorem to construct a solution of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma} u + \mu_0[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t, \cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in D(A) \end{cases}$$
 (NLH₀)

where

$$\mu_0[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u_0\|_H^2}$$

• We use a density argument to show the existence of solutions for $u_0 \in V$

Local well-posedness 3

Strategies

We prove the local well-posedness of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \lambda(t)u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in V \end{cases}$$

with $\lambda \in L^{\infty}(\mathbb{R})$

We employ the Schauder fixed point theorem to construct a solution of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu_0[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t, \cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \in D(A) \end{cases}$$
 (NLH₀)

where

$$\mu_0[u] = \frac{\|u\|_V^2 - g\|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}}{\|u_0\|_H^2}$$

- We use a density argument to show the existence of solutions for $u_0 \in V$
- We prove the equivalence of (NLH₀) and

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Theorem

Let

$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases} \quad \text{or} \quad \begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$$

Then for any $u_0\in H^1_0(\Omega)$ the solution $u\in \mathcal{C}\big([0,\tau_{u_0});H^1_0(\Omega)\big)$ of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$
 (NLH)

is global, that is, $\tau_{u_0} = \infty$

Strategies

Strategies

• If
$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases}$$
 then $\|u(t)\|_V^2 \leqslant 2E[u(t)] \leqslant 2E[u_0]$

Strategies

• If
$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases}$$
 then $\|u(t)\|_V^2 \leqslant 2E[u(t)] \leqslant 2E[u_0]$

• If
$$\begin{cases} g > 0 \\ 0 < \sigma < \frac{2}{d} \end{cases}$$

then we use the Gagliardo-Nirenberg inequality

$$\|u(t)\|_{V}^{2} = 2E[u(t)] + \frac{g}{\sigma+1} \|u(t)\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2} \lesssim E[u_{0}] + \|u(t)\|_{V}^{d\sigma}$$

Since $d\sigma < 2$ we conclude

$$\|u(t)\|_V\lesssim \|u_0\|_V$$

Global solution 3 (*)

Potential well

We now want to address the case of $\begin{cases} g>0 \\ 0<\sigma<\frac{2}{(d-2)^+} \end{cases}$

Assuming g=1 we have that

$$E[u(t)] = \frac{1}{2} \left(\|u(t)\|_{V}^{2} - \frac{1}{\sigma + 1} \|u(t)\|_{L^{2\sigma + 2}(\Omega)}^{2\sigma + 2} \right)$$

Define $I[u] = \|u\|_V^2 - \|u\|_{L^{2\sigma+2}(\Omega)}^{2\sigma+2}$ and $p = \inf \left\{ E[u] : u \in V \setminus \{0\}, \ I[u] = 0 \right\}$

Potential Well [ref: Payne-Sattinger (1975), Quittner-Souplet (2019)]

$$W = \{u \in V : E[u] < p, I[u] > 0\} \cup \{0\}$$

Notice that $||f||_V < \sqrt{2p} \implies f \in \mathcal{W}$

Theorem

- \mathcal{W} is invariant under $\frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u$
- If $u_0 \in \mathcal{W}$ then $\tau_{u_0} = \infty$

UNIVERSITÀ DEGLI STUDI DI ROM

Long time behaviour of solutions

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Let

$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases} \quad \text{or} \quad \begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$$

and consider the solution $u \in \mathcal{C}([0,\infty); V)$ of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$
 (NLH)

Long time behaviour of solutions

Antonelli – C – Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Let

$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases} \quad \text{or} \quad \begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$$

and consider the solution $u \in \mathcal{C}([0,\infty); V)$ of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$
 (NLH)

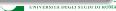
Theorem

 $\exists t_n \uparrow \infty \text{ and } u_\infty \in V \text{ such that }$

$$u(t_n) \stackrel{V}{ o} u_\infty$$
 and $\mu[u(t_n)] o \mu[u_\infty]$ as $n o \infty$

Moreover

$$\Delta u_{\infty} + g |u_{\infty}|^{2\sigma} u_{\infty} + \mu [u_{\infty}] u_{\infty} = 0 \quad \text{and} \quad \|u_{\infty}\|_H = \|u_0\|_H$$



A result from elliptic theory

Let
$$\Omega = B_R = \{x \in \mathbb{R}^d : |x| < R\}$$
 and let

$$\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases} \quad \text{or} \quad \begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$$

Ground state

For any $u_0 \in V \setminus \{0\}$ there exists a unique positive (in B_R) minimizer $\underline{u} \in V$ of the constrained energy

$$\underline{u} \rightarrow \min \left\{ E[u] : u \in V, \|u\|_H = \|u_0\|_H \right\}$$
 (*)

Moreover, the ground state \underline{u} is radially symmetric and satisfies

$$\Delta \underline{u} + g|\underline{u}|^{2\sigma}\underline{u} + \mu[\underline{u}]\underline{u} = 0 \quad \text{and} \quad \|\underline{u}\|_H = \|u_0\|_H \tag{$\star\star$}$$

Problem (*) and equation (**) have been extensively studied, see, e.g., Gidas-Ni-Nirenberg (1979), Stuart (1982), P-L Lions (1984), McLeod-Serrin (1987), Kwong (1989)

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Let
$$\Omega = B_R$$
 and let $\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases}$ or $\begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$

Antonelli - C - Shakarov, Calc. Var. Partial Differ. Equ. (2024)

Let
$$\Omega = \mathcal{B}_R$$
 and let $\begin{cases} g \leqslant 0 \\ 0 < \sigma < \frac{2}{(d-2)^+} \end{cases}$ or $\begin{cases} g > 0 \\ \sigma < \frac{2}{d} \end{cases}$

Theorem

For any $u_0 \in V \setminus \{0\}$, with $u_0 \geqslant 0$, the solution $u \in \mathcal{C}\big([0,\infty);V\big)$ of

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + g|u|^{2\sigma}u + \mu[u]u & \text{in } \mathbb{R}_+ \times \Omega \\ u(t,\cdot)_{|\partial\Omega} = 0 & u(0) = u_0 \end{cases}$$
 (NLH)

converges to the ground state \underline{u} in V as $t \to \infty$

Steps of the proof

Steps of the proof

1 Let $t_n \uparrow \infty$ and $u_\infty \in V$ be such that $u(t_n) \stackrel{V}{\to} u_\infty$, with

$$\Delta u_{\infty} + g|u_{\infty}|^{2\sigma}u_{\infty} + \mu[u_{\infty}]u_{\infty} = 0$$
 & $||u_{\infty}||_{H} = ||u_{0}||_{H}$

Steps of the proof

1 Let $t_n \uparrow \infty$ and $u_\infty \in V$ be such that $u(t_n) \stackrel{V}{\to} u_\infty$, with

$$\Delta u_{\infty} + g|u_{\infty}|^{2\sigma}u_{\infty} + \mu[u_{\infty}]u_{\infty} = 0$$
 & $||u_{\infty}||_{H} = ||u_{0}||_{H}$

2 By the Maximum Principle

$$u(t_n) \geqslant 0 \implies u_\infty \geqslant 0 \& u_\infty \not\equiv 0$$

3 Since $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution, $u_{\infty} = \underline{u}$

Steps of the proof

1 Let $t_n \uparrow \infty$ and $u_\infty \in V$ be such that $u(t_n) \stackrel{V}{\to} u_\infty$, with

$$\Delta u_{\infty} + g|u_{\infty}|^{2\sigma}u_{\infty} + \mu[u_{\infty}]u_{\infty} = 0$$
 & $||u_{\infty}||_{H} = ||u_{0}||_{H}$

2 By the Maximum Principle

$$u(t_n) \geqslant 0 \implies u_\infty \geqslant 0 \& u_\infty \not\equiv 0$$

- Since $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution, $u_{\infty} = \underline{u}$
- **4** Since $t \mapsto E[u(t)]$ is continuous and decreasing,

$$\lim_{t\to\infty} E[u(t)] = \lim_{n\to\infty} E[u(t_n)] = E[u_\infty] = E[\underline{u}]$$

Then, one shows that $u(t) \stackrel{V}{\to} \underline{u}$ as $t \to \infty$ by contradiction

Steps of the proof

1 Let $t_n \uparrow \infty$ and $u_\infty \in V$ be such that $u(t_n) \stackrel{V}{\to} u_\infty$, with

$$\Delta u_{\infty} + g|u_{\infty}|^{2\sigma}u_{\infty} + \mu[u_{\infty}]u_{\infty} = 0$$
 & $||u_{\infty}||_{H} = ||u_{0}||_{H}$

2 By the Maximum Principle

$$u(t_n) \geqslant 0 \implies u_\infty \geqslant 0 \& u_\infty \not\equiv 0$$

- Since $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution, $u_{\infty} = \underline{u}$
- **4** Since $t \mapsto E[u(t)]$ is continuous and decreasing,

$$\lim_{t\to\infty} E[u(t)] = \lim_{n\to\infty} E[u(t_n)] = E[u_\infty] = E[\underline{u}]$$

Then, one shows that $u(t) \stackrel{V}{\to} \underline{u}$ as $t \to \infty$ by contradiction

Remark

• The proof applies to any bounded Ω such that $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution (which minimizes the constrained energy)

Steps of the proof

1 Let $t_n \uparrow \infty$ and $u_\infty \in V$ be such that $u(t_n) \stackrel{V}{\to} u_\infty$, with

$$\Delta u_{\infty} + g|u_{\infty}|^{2\sigma}u_{\infty} + \mu[u_{\infty}]u_{\infty} = 0$$
 & $||u_{\infty}||_{H} = ||u_{0}||_{H}$

2 By the Maximum Principle

$$u(t_n) \geqslant 0 \implies u_\infty \geqslant 0 \& u_\infty \not\equiv 0$$

- 3 Since $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution, $u_{\infty} = \underline{u}$
- **4** Since $t \mapsto E[u(t)]$ is continuous and decreasing,

$$\lim_{t\to\infty} E[u(t)] = \lim_{n\to\infty} E[u(t_n)] = E[\underline{u}]$$

Then, one shows that $u(t) \stackrel{V}{\to} \underline{u}$ as $t \to \infty$ by contradiction

Remark

- The proof applies to any bounded Ω such that $\Delta u + g|u|^{2\sigma}u + \mu[u]u = 0$ has a unique positive solution (which minimizes the constrained energy)
- For general u₀, the solution may not converge to the ground state

Navier-Stokes equations on \mathbb{T}^2

Similar problems were studied for the Navier-Stokes equations on the 2D torus

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) + (u(t,x) \cdot \nabla)u(t,x) - \Delta u(t,x) + \nabla p(t,x) = f(t)u(t,x) & t > 0, \ x \in \mathbb{T}^2 \\ u(0,x) = u_0(x) & x \in \mathbb{T}^2 \end{cases}$$

in

E. Caglioti, M. Pulvirenti, and F. Rousset.

On a constrained 2-D Navier-Stokes equation.

Commun. Math. Phys., 290(2):651-677, 2009.

where the N-S equations were considered in vorticity form with two kinds of constraint—constant energy and moment of inertia—proving the existence of a unique global solution for a special family of initial data, and in

Zdzisław Brzeźniak, Gaurav Dhariwal, and Mauro Mariani.

2d constrained Navier-Stokes equations.

J. Differ. Equations, 264(4):2833-2864, 2018.

where a global existence result for the nonlocal N-S system was deduced from the invariance of the unit sphere

Abstract form of the N-S system

Let us rewrite the Navier-Stokes system in abstract form as follows

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \in H \end{cases}$$
 (NS_f)

where:

- $u_0 = u_0(x)$ belongs to the space H of vector-valued functions in $L^2(\mathbb{T}^2; \mathbb{R}^2)$ which are divergence free
- $Au = \mathcal{P}(\Delta u u)$, with \mathcal{P} the orthogonal projector of $L^2(\mathbb{T}^2; \mathbb{R}^2)$ onto H
- $B(u) = \mathcal{P}((u \cdot \nabla)u)$
- $f:[0,T)\to\mathbb{R}$ is a locally bounded function

Abstract form of the N-S system

Let us rewrite the Navier-Stokes system in abstract form as follows

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \in H \end{cases}$$
 (NS_f)

where:

- $u_0 = u_0(x)$ belongs to the space H of vector-valued functions in $L^2(\mathbb{T}^2; \mathbb{R}^2)$ which are divergence free
- $Au = \mathcal{P}(\Delta u u)$, with \mathcal{P} the orthogonal projector of $L^2(\mathbb{T}^2; \mathbb{R}^2)$ onto H
- $B(u) = \mathcal{P}((u \cdot \nabla)u)$
- ullet $f:[0,T)
 ightarrow \mathbb{R}$ is a locally bounded function

Denote by V the subspace of H consisting of all vectors in $H^1(\mathbb{T}^2;\mathbb{R}^2)$ which are divergence free. The following trilinear form on V is of common use

$$b(u, v, w) = \int_{\mathbb{T}^2} \langle (u \cdot \nabla) v, w \rangle dx = \sum_{h, K=1}^2 u_k(x) \frac{\partial v_h}{\partial x_k}(x) w_h(x) dx$$

Hyperplane-constrained evolution

For the Navier-Stokes system

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \end{cases}$$
 (NS_f)

consider the following bilinear control problem

Problem

Given $u_0, v_0 \in V$ with $\langle u_0, v_0 \rangle_H \neq 0$, find $f : [0, T) \to \mathbb{R}$ such that

$$\langle u^f(t), v_0 \rangle_H = \langle u_0, v_0 \rangle_H \qquad \forall t \in [0, T)$$

Hyperplane-constrained evolution

For the Navier-Stokes system

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \end{cases}$$
 (NS_f)

consider the following bilinear control problem

Problem

Given $u_0, v_0 \in V$ with $\langle u_0, v_0 \rangle_H \neq 0$, find $f : [0, T) \to \mathbb{R}$ such that

$$\langle u^f(t), v_0 \rangle_H = \langle u_0, v_0 \rangle_H \qquad \forall t \in [0, T)$$

Let f be a solution. Then

$$f(t) = -\frac{1}{\langle u_0, v_0 \rangle_H} \Big\{ \langle Au^f(t), v_0 \rangle_H + b(u^f(t), u^f(t), v_0) \Big\}$$
$$= \frac{1}{\langle u_0, v_0 \rangle_H} \Big\{ \langle u^f(t), v_0 \rangle_V + b(u^f(t), v_0, u^f(t)) \Big\}$$

Recasting as an invariance problem

C - Frankowska, Nonlinear Differ. Equ. Appl. (2025), dedicated to G. Da Prato

The above bilinear control problem can be recast as an invariance problem for

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + F(u(t)) & 0 < t < T \\ u(0) = u_0 \end{cases}$$

 (NS_F)

with $F: V \rightarrow H$ given by

$$F(u) = \frac{\langle u, v_0 \rangle_V + b(u, v_0, u)}{\langle u_0, v_0 \rangle_H} u \qquad \forall u \in V$$

 $(u_0, v_0 \in V \text{ are such that } \langle u_0, v_0
angle_H
eq 0 \text{ and } \|v_0\|_V = 1)$

Recasting as an invariance problem

C - Frankowska, Nonlinear Differ. Equ. Appl. (2025), dedicated to G. Da Prato

The above bilinear control problem can be recast as an invariance problem for

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + F(u(t)) & 0 < t < T \\ u(0) = u_0 \end{cases}$$

 (NS_F)

with $F: V \rightarrow H$ given by

$$F(u) = \frac{\langle u, v_0 \rangle_V + b(u, v_0, u)}{\langle u_0, v_0 \rangle_H} u \qquad \forall u \in V$$

 $(u_0, v_0 \in V \text{ are such that } \langle u_0, v_0 \rangle_H \neq 0 \text{ and } ||v_0||_V = 1)$

Theorem

Problem (NS_F) has a unique maximal solution $u(t, u_0)$ defined for $0 \le t < \tau_{u_0} \le \infty$

Crucial property:

 $\langle B(u), Au \rangle_H = 0$ for all $u \in D(A)$ by periodic boundary conditions in TOR VERGIA UNIVERSITA DEGLI STUDIO

Invariance of hyperplanes

Let $v_0 \in V$ be such that $||v_0||_V = 1$ and let $c \neq 0$ be a real number

Theorem

If
$$u \in V_c(v_0) := \{u \in V : \langle u, v_0 \rangle_H = c\}$$
, then the maximal solution of

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + F(u(t)) & 0 < t \\ u(0) = u_0 \end{cases}$$
 (NS_F)

belongs to $V_c(v_0)$ for all $t \in [0, \tau_{u_0})$

Invariance of hyperplanes

Let $v_0 \in V$ be such that $||v_0||_V = 1$ and let $c \neq 0$ be a real number

Theorem

If $u \in V_c(v_0) := \{u \in V : \langle u, v_0 \rangle_H = c\}$, then the maximal solution of

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + F(u(t)) & 0 < t \\ u(0) = u_0 \end{cases}$$
 (NS_F)

belongs to $V_c(v_0)$ for all $t \in [0, au_{u_0})$

Proof.

Since
$$F(u) = \frac{\phi(u)}{\langle u_0, v_0 \rangle_H} u$$
 with $\phi(u) = \langle u, v_0 \rangle_V + b(u, v_0, u)$, we have that

$$\langle u'(t), v_0 \rangle_H = \langle Au(t) + B(u(t)), v_0 \rangle_H + \frac{\phi(u(t))}{c} \langle u(t), v_0 \rangle_H$$
$$= -\phi(u(t)) + \frac{\phi(u(t))}{c} \langle u(t), v_0 \rangle_H$$

So,
$$\frac{d}{dt}(\langle u(t), v_0 \rangle_H - c) = \frac{\phi(u(t))}{c}(\langle u(t), v_0 \rangle_H - c)$$
 forcing $\langle u(t), v_0 \rangle_H - c = 0$

Application to bilinear control of N-S

Let $u_0, v_0 \in V$ be such that $\langle u_0, v_0 \rangle_H \neq 0$ and $||v_0||_V = 1$

Then there exists a unique control $f:[0, au_{u_0}) o\mathbb{R}$ such that the solution u^f of

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \end{cases}$$
 (NS_f)

satisfies

$$\langle u^f(t), v_0 \rangle_H = \langle u_0, v_0 \rangle_H \qquad \forall t \in [0, \tau_{u_0})$$

Application to bilinear control of N-S

Let $u_0, v_0 \in V$ be such that $\langle u_0, v_0 \rangle_H \neq 0$ and $\|v_0\|_V = 1$

Then there exists a unique control $f:[0, au_{u_0}) o\mathbb{R}$ such that the solution u^f of

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + f(t)u(t) & 0 < t < T \\ u(0) = u_0 \end{cases}$$
 (NS_f)

satisfies

$$\langle u^f(t), v_0 \rangle_H = \langle u_0, v_0 \rangle_H \qquad \forall t \in [0, \tau_{u_0})$$

Moreover

$$f(t) = rac{\phi(\overline{u}(t))}{\langle u_0, v_0
angle_H} \quad (t \in [0, au_0))$$

where $\phi(u)=\langle u,v_0\rangle_V+b(u,v_0,u)$ and $\overline{u}:[0, au_{u_0})\to V$ is the maximal solution of

$$\begin{cases} u'(t) = Au(t) + B(u(t)) + \frac{\phi(u(t))}{\langle u_0, v_0 \rangle_H} u(t) & (t > 0) \\ u(0) = u_0 & \end{cases}$$

Acknowledgement

PRIN 2022 PNRR Project (CUP E53D23017910001)

Some mathematical approaches to climate change and its impacts

NextGenerationEU

Acknowledgement

PRIN 2022 PNRR Project (CUP E53D23017910001)

Some mathematical approaches to climate change and its impacts

NextGenerationEU

Thanks for your kind attention

