

Geometric Inverse Problems for PDE's: uniqueness and reconstruction

Anna DOUBOVA

Dpto. E.D.A.N. - Univ. of Sevilla

joint work with several people

**J. Apraiz, E. Fernández-Cara, M. Yamamoto
P. de Carvalho, J. Rocha de Faria**

Control of PDEs and Related Topics

Toulouse: June 30 - July 4, 2025.

1 Geometric inverse problems

2 Part I: Uniqueness

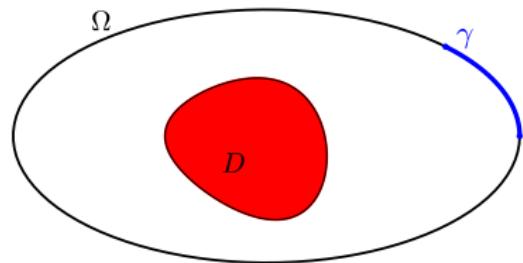
- Some known results
- Determining multidimensional domain, unknown initial data
- Comments and open questions

3 Part II: Reconstruction

- A meshless method
- Some open questions

- $\Omega \subset \mathbb{R}^N$, $T > 0$, $\varphi = \varphi(x, t)$ are known
- $D \subset\subset \Omega$ is unknown

$$\begin{cases} PDE(u) = 0 & \text{in } (\Omega \setminus \bar{D}) \times (0, T) \\ u = \varphi & \text{on } \partial\Omega \times (0, T) \\ u = 0 & \text{on } \partial D \times (0, T) \\ \text{Initial cond.} & \text{in } \Omega \setminus \bar{D} \end{cases}$$



- $\gamma \subset \partial\Omega$ and $\beta = \frac{\partial u}{\partial n} \Big|_{\gamma \times (0, T)}$ are known

$PDE(u)$: heat, wave, elasticity, Navier-Stokes, Boussinesq ...

Inverse Problem

Find D and the solution u

$$\begin{cases} PDE(u_k) = 0 & \text{in } (\Omega \setminus \overline{D_k}) \times (0, T), \quad k = 1, 2 \\ u_k = \varphi & \text{on } \partial\Omega \times (0, T) \\ u_k = 0 & \text{on } \partial D_k \times (0, T) \\ \dots \end{cases}$$

Observations (for example): $\beta_k = \frac{\partial u_k}{\partial n}$ on $\gamma \times (0, T)$

1 Uniqueness:

$$\beta_1 \equiv \beta_2 \text{ on } \gamma \times (0, T) \implies D_1 = D_2 ?$$

2 Stability:

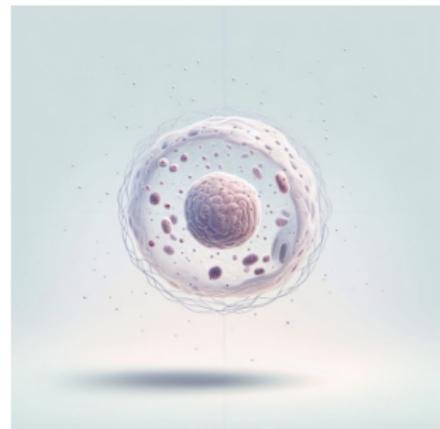
$$\text{dist.}(D_1, D_2) \leq g(\text{dist.}(\beta_1, \beta_2)) \quad (\text{at least locally}) ?$$

3 Reconstruction:

Compute (a numerical approximation of D from β ?

Motivation I

Goal in fluid mechanics: find a structure inside the fluid; free boundary problem:



Previous works, $u_0(x) \equiv 0$: Stokes, Navier-Stokes, Boussinesq

[Alvarez and al, 2005]

[Dobrova, Fernández-Cara, Ortega, 2007]

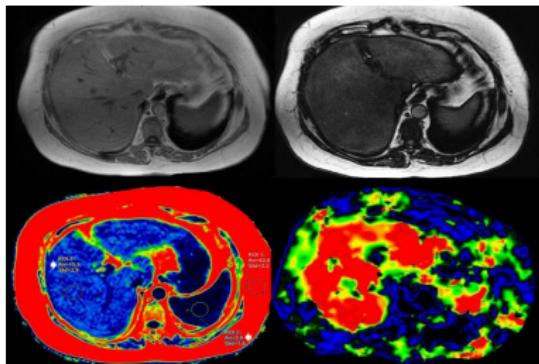
[Dobrova, Fernández-Cara, González-Burgos, Ortega, 2006], ...

Also: **nonscalar elliptic systems**, chemical product, sensible to temperature effects, fills an unknown domain

[Araújo, Fernández-Cara, Souza, 2020]

- **Elastography**: uses low-frequency vibrations (ultrasound or MRI) to analyze the stiffness of the tissue; **set of noninvasive techniques**

Application in Medicine: breast, liver, prostate cancers, fibrosis, etc



- To identify a rigid structure in an elastic medium

Wave equation, Elasticity system

[Dobrova, Fernández-Cara, 2015, 2020]

- ① Classical arguments using unique continuation (**zero initial data**)
Stokes, Navier-Stokes, Boussinesq, heat, wave, Lamé ...
- ② Analyze sensitivity of uniqueness to boundary or initial data: **1D models**, find ℓ ;
positive and negative answers
heat, wave, Burgers, fluid solid interaction model
- ③ Uniqueness in determining multidimensional domain with unknown initial data
Our work: [J. Apraiz, A. Doubova, E. Fernández-Cara, M. Yamamoto, 25]
To appear, available on arXiv: <https://arxiv.org/abs/2504.10236>.

1.- Uniqueness: by unique continuation

$$\begin{cases} \partial_t^2 u_k - \mu \Delta u_k - (\mu + \lambda) \nabla(\nabla \cdot u_k) = 0 & \text{in } \Omega \setminus \overline{D_k} \times (0, T), \quad k = 1, 2 \\ u_k = \varphi & \text{on } \partial\Omega \times (0, T) \\ u_k = 0 & \text{on } \partial D_k \times (0, T) \\ u_k(x, 0) = u_0(x), \quad \partial_t u_k(x, 0) = 0 & \text{in } \Omega \setminus \overline{D_k} \end{cases}$$

$u = u(x, t)$: displacement vector, $\lambda, \mu > 0$: Lamé coefficients

$\sigma(u) \cdot n = (\mu(\nabla u + \nabla u^t) + \lambda(\nabla \cdot u) \mathbf{Id}) \cdot n$: normal stress tensor

$\beta_k = \sigma(u_k) \cdot n$ on $\gamma \times (0, T)$: observations

Theorem 1 (uniqueness for Lamé system) [Dobrova, Fernández-Cara, 20]

Assume: $u_0(x) = 0$, $D^i \Subset \Omega$ non-empty and convex, $T > T_*(\Omega, \gamma)$, $\varphi \neq 0$ and

$$\beta_1 = \beta_2 \quad \text{on} \quad \gamma \times (0, T) \quad \Rightarrow \quad D_1 = D_2$$

• Key point: a unique continuation (L. Hörmander) + arguments [O. Kavian, 2003]

Ideas (simplified): $G := \Omega \setminus (\overline{D_1 \cup D_2})$, $u := u_1 - u_2$ in $G \times (0, T)$. Unique continuation $\Rightarrow u = 0$ in $G \times (0, T)$. Assume $D_2 \setminus \overline{D_1} \neq \emptyset$. Consider u_1 in $D_2 \setminus \overline{D_1}$. We have $u_1 = 0$ in $D_2 \setminus \overline{D_1} \times (0, T)$. Again, unique continuation $\Rightarrow u_1 = 0$ in $\Omega \setminus \overline{D_1} \times (0, T)$, but $u_1 = \varphi \neq 0 \Rightarrow \text{contradiction}$

2.- Uniqueness: sensitivity to boundary or initial data

Positive and negative answers

Previous works:

- **1D heat and wave equations**

[Apraiz, Cheng, Doubova, Fernández-Cara, Yamamoto, 2022]

2022, Volume 16, Issue 3: 569-594. DOI: 10.3934/cp.2021062

[This issue](#) [◀ Previous Article](#) [Next Article ▶](#)

Uniqueness and numerical reconstruction for inverse problems dealing with interval size search

Jone Apraiz^{1,4}, Jin Cheng^{2,1}, Anna Doubova^{1,5}, Enrique Fernández-Cara^{3,5} and Masahiro Yamamoto^{4,5}

¹ Universidad del País Vasco, Dpto. Matemáticas, Barrio Sarriena s/n, 48940 Leioa (Bizkaia), Spain

² Fudan University, School of Mathematical Sciences, Shanghai 200433, China

³ Universidad de Sevilla, Dpto. EDAN e IMUS, Campus Reina Mercedes, 41012 Sevilla, Spain

⁴ The University of Tokyo, Department of Mathematical Sciences, 3-8-1 Komaba, Meguro, Tokyo 153, Japan

Communications in Nonlinear Science and Numerical Simulation 107 (2022) 306113

Contents lists available at [ScienceDirect](#)
Communications in Nonlinear Science and Numerical Simulation
journal homepage: [www.elsevier.com/locate/cnsns](#)

- **1D viscous Burgers equation and related systems (heat effects; variable density)**

[Apraiz, Doubova, Fernández-Cara, Yamamoto, 2022]

Some inverse problems for the Burgers equation and related systems

J. Apraiz^{a,*}, A. Doubova^b, E. Fernández-Cara^b, M. Yamamoto^c

^a Universidad del País Vasco, Facultad de Ciencias y Tecnología, Dpto. Matemáticas, Barrio Sarriena s/n, 48940 Leioa (Bizkaia), Spain

^b Universidad de Sevilla, Dpto. EDAN e IMUS, Campus Reina Mercedes, 41012 Sevilla, Spain

^c The University of Tokyo, Japan

Communications on Applied Mathematics and Computation
<https://doi.org/10.1007/s42967-024-00437-3>

ORIGINAL PAPER

Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

J. Apraiz¹ · A. Doubova² · E. Fernández-Cara² · M. Yamamoto³

3.- Uniqueness: multidimensional domain, unknown initial data

$\Omega \subset \mathbb{R}^d$, $d \geq 1$ bounded connected open set

$$\begin{cases} \partial_t u_k - \mathcal{A} u_k = F(x, t) & \text{in } (\Omega \setminus \overline{D_k}) \times (0, T), \quad k = 1, 2 \\ u_k = 0 & \text{on } \partial(\Omega \setminus \overline{D_k}) \times (0, T) \end{cases}$$

- **Attention:** no information on initial values for u_1 and u_2 (incomplete direct problem)
- $F(x, t) = \mu(t)f(x)$, $f \not\equiv 0$ is an input amplitude, $\mu \not\equiv 0$ in $(0, T)$
- $\mathcal{A}v(x) := \sum_{i,j=1}^d \partial_i(a_{ij}(x)\partial_j v(x)) - \sum_{j=1}^d b_j(x)\partial_j v(x) - c(x)v(x)$
- $a_{ij} = a_{ji} \in C^1(\overline{\Omega})$, $b_j, c \in L^\infty(\Omega)$, $\exists \alpha > 0$: $\sum_{i,j=1}^d a_{ij}(x)\xi_i \xi_j \geq \alpha |\xi|^2 \forall \xi \in \mathbb{R}^d$, a.e. in Ω .
- $A_k : \mathcal{D}(A_k) \rightarrow L^2(\Omega \setminus \overline{D_k})$, $\mathcal{D}(A_k) = \{v \in H_0^1(\Omega \setminus \overline{D_k}) : \mathcal{A}v \in L^2(\Omega \setminus \overline{D_k})\}$

$$(A_k v)(x) := \mathcal{A}v(x) \text{ a.e. in } \Omega \setminus \overline{D_k} \quad \forall v \in \mathcal{D}(A_k)$$

- Given $\frac{\partial v}{\partial \nu_A} := \sum_{i,j=1}^d a_{ij} \partial_i v \nu_j$ on $\gamma \times (0, T)$, $\gamma \subset \partial\Omega$ (conormal derivative)

Inverse problem: Find D from $\frac{\partial v}{\partial \nu_A}$ on $\gamma \times (0, T)$

Theorem 2: Uniqueness [Apraiz, Doubova, Frnández-Cara, Yamamoto, 25]

Let u_1, u_2 be solutions corresponding to the simply connected open sets D_1 and D_2 .

Assume: $f \in H^{2\varepsilon}(\Omega)$ for some $\varepsilon > 0$

- $f = 0$ in $D_1 \cup D_2$, but $f \not\equiv 0$
- $\mu(t)$ is piecewise polynomial, with $\mu \notin C^m([0, T])$ for some $m \geq 1$

Then:

$$\frac{\partial u_1}{\partial \nu_A} = \frac{\partial u_2}{\partial \nu_A} \quad \text{on } \gamma \times (0, T) \implies D_1 = D_2$$

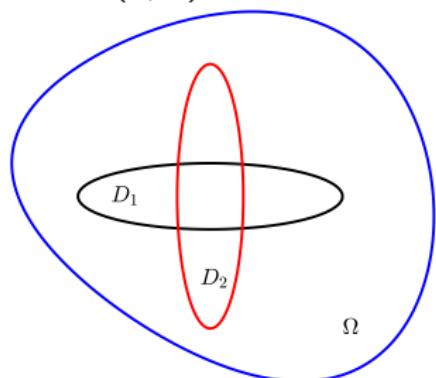
Moreover: $u_1(\cdot, 0) = u_2(\cdot, 0)$.

Idea of the proof I

Assume: $D_1 \neq D_2$. Argue by contradiction

Step 1: Let $G := \Omega \setminus (\overline{D_1 \cup D_2})$ and $u := u_1 - u_2$ in $G \times (0, T)$:

$$\begin{cases} \partial_t u - \mathcal{A}u = 0 & \text{in } G \times (0, T) \\ u = 0 & \text{on } \partial\Omega \times (0, T) \\ \frac{\partial u}{\partial \nu_A} = 0 & \text{on } \gamma \times (0, T) \end{cases}$$



Unique continuation $\Rightarrow u = 0$ in $G \times (0, T)$ $\Rightarrow u_1 = u_2$ in $G \times (0, T)$
(no initial condition is needed)

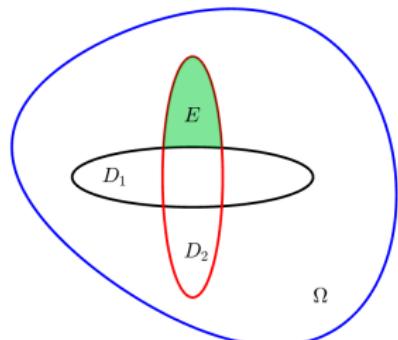
Step 2: $D_1 \neq D_2 \Rightarrow \exists E \neq \emptyset$ open:

$$E \subset (\Omega \cap \overline{D_1}) \cap D_2, \quad \partial E \subset \partial D_1 \cup \partial D_2$$

- $f = 0$ in $D_1 \cup D_2$, $z := \partial_t^m u_1$, $m \geq 1$ satisfies

$$\begin{cases} \partial_t z - A_1 z = 0 & \text{in } E \times (0, T), \\ z = 0 & \text{on } \partial E \times (0, T). \end{cases}$$

$$(A_1 v)(x) := \mathcal{A}v(x) \text{ a.e in } \Omega \setminus \overline{D_1}$$



- Introduce $E_0 \subset\subset E$ new nonempty open set and $h(t) := z(\cdot, t)|_{E_0}$ for all t . Semigroup theory implies that $t \mapsto h(t)$ is analytical

Computations and properties of $\mu \Rightarrow$

$$(\text{Id.} - e^{-tA_1})A_1^{-1}f \equiv 0 \text{ in } E_0 \quad \forall t$$

$\Rightarrow f = 0$ in $\Omega \setminus \overline{D_1}$, contradiction with $f \not\equiv 0$ in $\Omega \setminus \overline{D_1}$, then $D_1 = D_2$.

$D_1 = D_2$ (UC) $\Rightarrow u_1 = u_2 \Rightarrow u_1(\cdot, 0) = u_2(\cdot, 0)$ (Backwards uniqueness)

- ① More realistic assumption for f : $\exists \Omega_0 \subset\subset \Omega$, $D_1, D_2 \subset \Omega_0$ such that $f = 0$ in Ω_0 (since D_1 and D_2 are unknown).
- ② Positive result if $\mu(t)$ vanishes in some initial time interval:
 $\mu(t) = 0$ a.e. in $(0, t_*)$ for some $t_* \in (0, T)$ but $\mu \not\equiv 0$.
- ③ Positive result: uniqueness with different coefficients
- ④ A variant: boundary source and internal observation, also OK
- ⑤ Possible extension to more complex linear parabolic systems: Stokes, linearized Boussinesq, linearized Oldroyd, etc.

- ① Stability of D and $u|_{t=0}$ w.r.t $\frac{\partial u}{\partial \nu_A}$ on $\gamma \times (0, T)$?
- ② Can we also get uniqueness for more general inputs of the form $F = F(x, t)$?
- ③ We can get uniqueness for the Stokes systems even with $d - 1$ scalar observations (unique continuation is true in this case).
However, for $d = 3$, it is unknown whether the result holds for $d - 2$ components, i.e. when only one component coincides.

Two methods of reconstruction of D

- ① Method 1 (based on FEM): new mesh at each iteration

Lamé system

- ② Method 2: Method of Fundamental Solutions (MFS), meshless

Elliptic equation

Other possible meshless methods:

- Model order reduction techniques (Reduced Basis Methods)

Look for a few basis functions that represent the behavior of the problem

- Physics Informed Neural Networks (PINN's)

Use the information provided by the problem and progress of Artificial Intelligence

Goal: compute D from β on $\gamma \times (0, T)$

Technique: solve an optimization problem

Optimization problem

Assume: $d = 3$, D is a sphere and $\beta = \beta(x, t)$ is given

Find $(x_0, y_0, z_0, r) \in \mathcal{D}_{ad}$ such that

$$\begin{cases} \text{Minimize } J(x_0, y_0, z_0, r) := \frac{1}{2} \iint_{\gamma \times (0, T)} |\sigma(u(x_0, y_0, z_0, r)) \cdot n - \beta|^2 \, ds \, dt \\ \text{Subject to } D \in \mathcal{D}_{ad} := \{ (x_0, y_0, z_0, r) \in \mathbb{R}^4 : \overline{B}(x_0, y_0, z_0; r) \subset \Omega, r > 0 \} \end{cases}$$

$$\sigma(u) \cdot n = (\mu(\nabla u + \nabla u^t) + \lambda(\nabla \cdot u) \mathbf{Id.}) \cdot n \quad \text{on } \gamma \times (0, T)$$

Method 1: based on Finite Element Method, **new mesh at each iteration**

Test 1 : $T = 5$

$$u_0 = (10x, 10y, 10z), \quad u_1 = (0, 0, 0)$$

$$\eta = (10x, 10y, 10z)$$

$$(xd, \quad yd, \quad zd, \quad rd) = (-2, \quad -2, \quad -2, \quad 1)$$

$$(xi, \quad yi, \quad zi, \quad ri) = (0, \quad 0, \quad 0, \quad 0.6)$$

NLOpt (AUGLAG + DIRECTNoScal)

No Iter = 1005, FreeFem++ :

$$xc = -1.981405274$$

$$yc = -2.225232904$$

$$zc = -2.148084171$$

$$rc = 0.9504115226$$

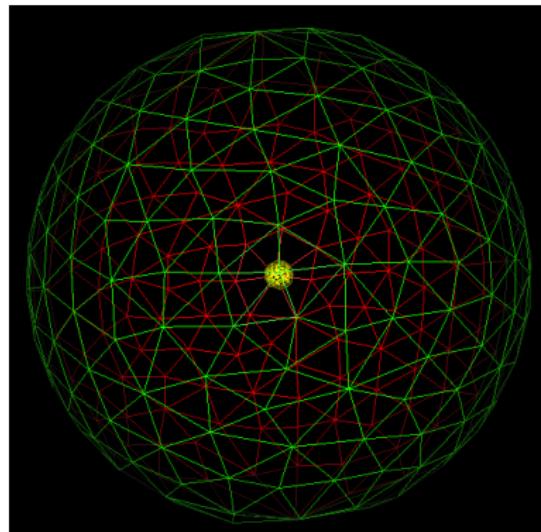


Figure: Initial mesh. Points: 829, tetrahedra: 4023, faces: 8406, edges: 5210, boundary faces: 720, boundary edges: 1080

Geometric IP, Lamé system: reconstruction III

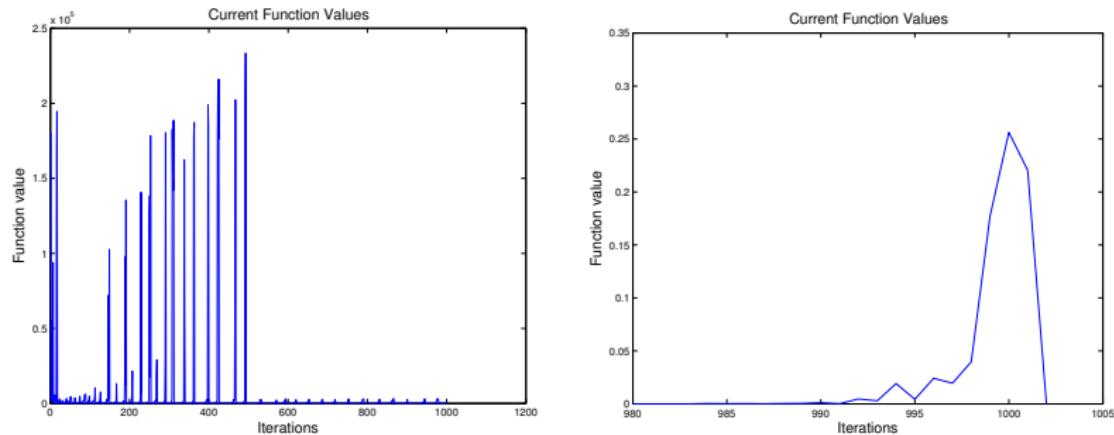


Figure: Evolution of the cost (left) and detail (right). Cost $< 10^{-3}$.

More details [Doubova, Fernández-Cara, 2020]

Method 1 (based on FEM): difficult, expensive (new mesh at each iteration) ...

Method 2: Method of Fundamental Solutions (MFS), meshless

- Developed by [V. Kupradze & D. Alexidze, 1960] for a direct problem
- Proposed as a computational technique by [Mathon & Johnston, 1977]
- Non-homogeneous problems: combined with Method of Particular Solutions (MPS) [Golberg, 1996]
- A collection of points is required
- Key idea: to use a basis formed by fundamental solutions

Advantages: meshless, high computational speed, exponential convergence properties

The problem:

$$\begin{cases} -\Delta u + au = h & \text{in } \Omega \setminus \bar{D} \\ u = \varphi & \text{on } \partial\Omega \\ u = 0 & \text{on } \partial D \end{cases}$$

$a = a(x)$, $h = h(x)$, $\varphi = \varphi(x)$
appropriate

Observation: $\beta := \frac{\partial u}{\partial n}$ on γ

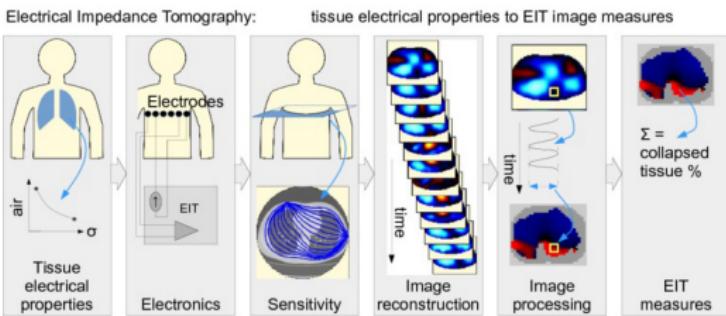


Figure: Electrical impedance tomography procedure.

- 1 **Uniqueness:** OK. Ideas from [O. Kavian, 2003]
- 2 **Stability:** OK. [A.L. Bukhgeim, J. Cheng, M. Yamamoto, 1999]
- 3 **Reconstruction:** OK. Several methods: optimization + least square + FEM
Here: **MFS (Method of Fundamental Solutions)**

MFS for Geometric Inverse Problems I

$\Omega = B(0; R)$. Goal: find $D = B(x_0, y_0; r)$ s.t.

$$\begin{cases} -\Delta u + au = h & \text{in } \Omega \setminus \bar{D} \quad (\text{PDE}) \\ u = \varphi & \text{on } \partial\Omega \quad (\text{BC on } \partial\Omega) \\ u = 0 & \text{on } \partial D \quad (\text{BC on } \partial D) \\ \frac{\partial u}{\partial n} = \beta & \text{on } \gamma \quad (\text{BC on } \gamma) \end{cases}$$

Step 1 (MFS-MPS): $-\Delta u = -au + h$

$$u(x) \approx \sum_{j=1}^{Nf} \delta_j F(\|x - \eta_j\|) + \sum_{k=1}^{Nb} \alpha_k G(\|x - \xi_k\|)$$

Nf : field points, η_j

Nb : source points, ξ_k

F : integrated radial basis, $\Delta F(r) = f(r)$, $f(r)$ a compactly supported radial basis

G : fundamental solution of the Laplace equation

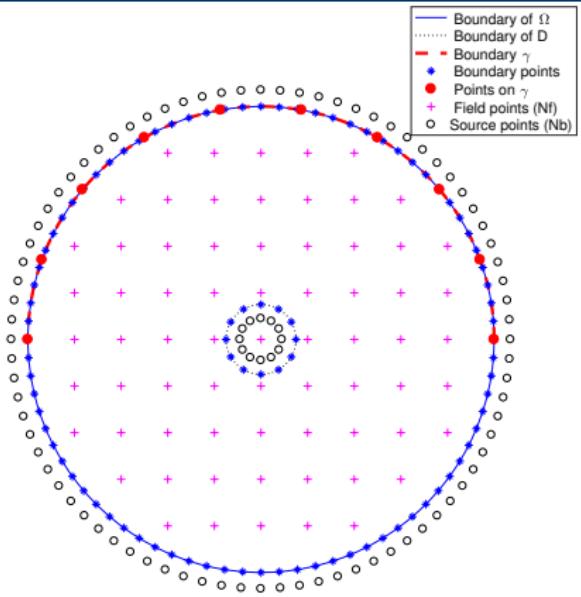


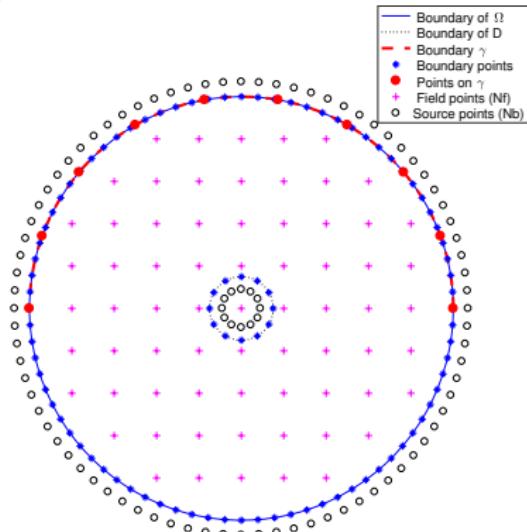
Figure: $(+, \eta_j), (\circ, \xi_k)$

Step 2 (Reduction to a nonlinear algebraic system):

- PDE at the field points η_i
- Dirichlet BC at the boundary points $\in \partial\Omega$
- Neumann BC at the boundary points $\in \gamma$
- Dirichlet BC at the boundary points $\in \partial D$ (unknown)
- Nonlinear system of equations:

Find $(\delta, \alpha) \in \mathbb{R}^{Nf} \times \mathbb{R}^{Nb}$, $(x_0, y_0, r) \in X_b$:

$$M(x_0, y_0, r) \begin{bmatrix} \delta \\ \alpha \end{bmatrix} = Z$$



Step 3 (Least square): $Nf + Nb + 3$ unknowns at each iteration of optim. algorithm

$$J(\delta, \alpha, x_0, y_0, r) := \frac{1}{2} \| M(x_0, y_0, r) \begin{bmatrix} \delta \\ \alpha \end{bmatrix} - Z \|^2$$

Test 2: $N = 2$, $\Omega = B(0, 0; 10)$, $a = 0.2\sqrt{x^2 + y^2}$, $h = 0.3x$, $\varphi = 10x$

- $Nom = 60$: points on $\partial\Omega$
- $Ng = 10$: points on γ
- $Nd = 12$: points on ∂D
- $Nb = Nom + Nd$: source points ξ_k

$$x_d = 2, \quad y_d = 4, \quad r_d = 1$$

$$x_i = 0, \quad y_i = 0, \quad r_i = 1.5$$

MATLAB + fmincon

$$x_c = 2.000274$$

$$y_c = 4.000057$$

$$r_c = 0.999658$$

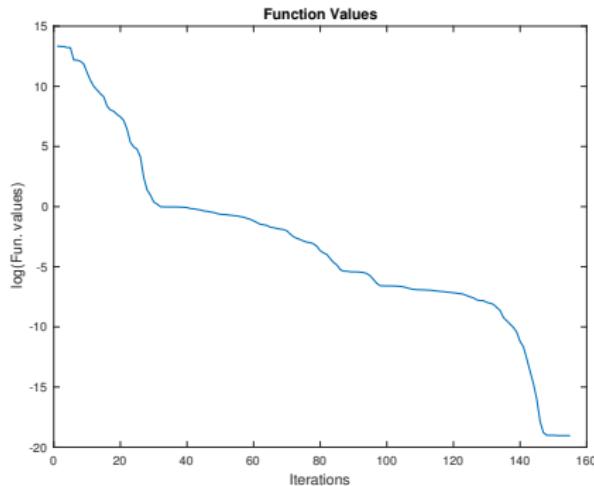


Figure: Evolution of the cost, 146 iterations.
Cost $J(\delta, \alpha, x_0, y_0, r) < 10^{-9}$.

Test 2 - MFS: D a circle

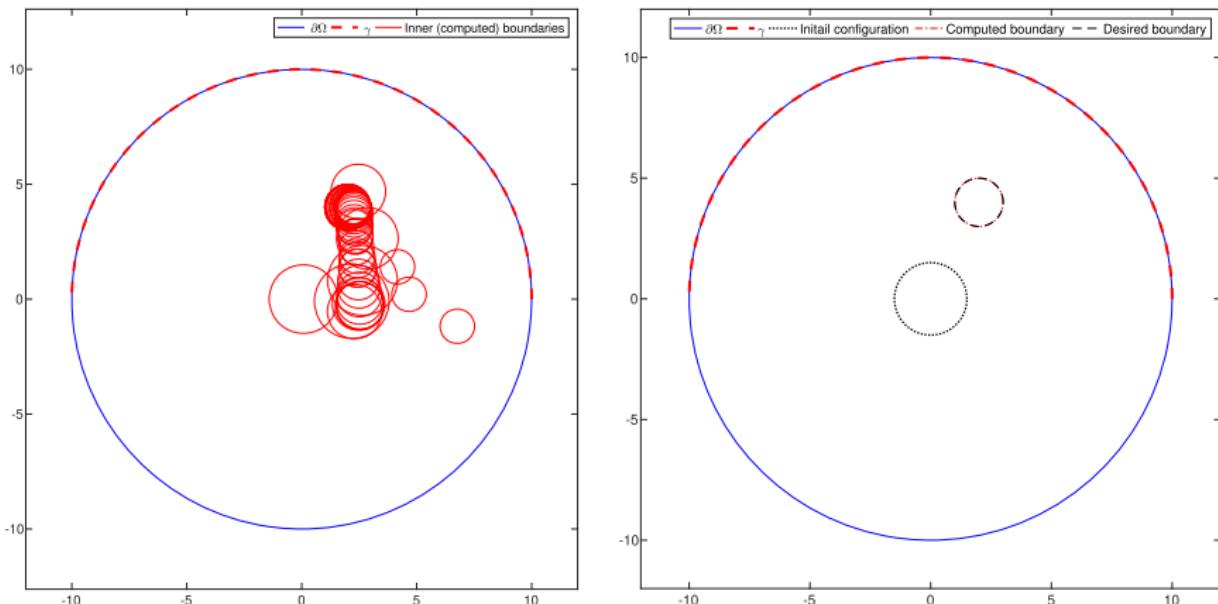


Figure: Iterations of optimization algorithm (left). Initial, desired and computed configuration (right)

With Method 1 (FEM, FreeFem++): **1000 iterates** to get a Cost $< 10^{-7}$

With MFS-MPS: **146 iterates** to get a Cost $< 10^{-9}$

Some open questions:

- ➊ Similar numerical analysis for other **more complex geometries**
(polyhedral unknown D in 3D, the case of three or more balls, ...)
- ➋ MFS-MPS for Inverse Problems **evolution system**
(wave equation, Lamé, Stokes, Navier-Stokes, Boussinesq, free boundary ...)