
Geometric Inverse Problems for PDE’s: uniqueness and
reconstruction

Anna DOUBOVA
Dpto. E.D.A.N. - Univ. of Sevilla

joint work with several people
J. Apraiz, E. Fernández-Cara, M. Yamamoto

P. de Carvalho, J. Rocha de Faria

Control of PDEs and Related Topics

Toulouse: June 30 - July 4, 2025.

Anna Doubova Geometric Inverse Problems for PDE’s Toulouse - June 30, 2025 1 / 26



Outline

1 Geometric inverse problems

2 Part I: Uniqueness
Some known results
Determining multidimensional domain, unknown initial data
Comments and open questions

3 Part II: Reconstruction
A meshless method
Some open questions

Anna Doubova Geometric Inverse Problems for PDE’s Toulouse - June 30, 2025 2 / 26



Geometric Inverse Problems

Ω ⊂ RN , T > 0, φ = φ(x , t) are known

D ⊂⊂ Ω is unknown


PDE(u) = 0 in (Ω \ D)× (0,T )

u = φ on ∂Ω× (0,T )

u = 0 on ∂D × (0,T )

Initial cond. in Ω \ D

γ ⊂ ∂Ω and β =
∂u
∂n

∣∣∣
γ×(0,T )

are known

PDE(u): heat, wave, elasticity, Navier-Stokes, Boussinesq . . .

Inverse Problem
Find D and the solution u
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Main questions


PDE(uk ) = 0 in (Ω \ Dk )× (0,T ), k = 1, 2
uk = φ on ∂Ω× (0,T )

uk = 0 on ∂Dk × (0,T )

. . .

Observations (for example): βk =
∂uk

∂n
on γ × (0,T )

1 Uniqueness:

β1 ≡ β2 on γ × (0,T ) =⇒ D1 = D2 ?

2 Stability:

dist.(D1,D2) ≤ g(dist.
(
β1, β2)

)
(at least locally) ?

3 Reconstruction:

Compute (a numerical approximation of D from β ?
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Motivation I

Goal in fluid mechanics: find a structure inside the fluid; free boundary problem:

Previous works, u0(x) ≡ 0 : Stokes, Navier-Stokes, Boussinesq

[Alvarez and al, 2005]

[Doubova, Fernández-Cara, Ortega, 2007]

[Doubova, Fernández-Cara, González-Burgos, Ortega, 2006], . . .

Also: nonscalar elliptic systems, chemical product, sensible to temperature effects, fills
an unknown domain
[Araújo, Fernández-Cara, Souza, 2020]
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Motivation II

• Elastrography: uses low-frequency vibrations (ultrasound or MRI) to analyze the
stiffness of the tissue; set of noninvasive techniques

Application in Medicine: breast, liver, prostate cancers, fibrosis, etc

• To identify a rigid structure in an elastic medium

Wave equation, Elasticity system
[Doubova, Fernández-Cara, 2015, 2020]
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Uniqueness

1 Classical arguments using unique continuation (zero initial data)

Stokes, Navier-Stokes, Boussinesq, heat, wave, Lamé . . .

2 Analyze sensitivity of uniqueness to boundary or initial data: 1D models, find ℓ;
positive and negative answers

heat, wave, Burgers, fluid solid interaction model

3 Uniqueness in determining multidimensional domain with unknown initial data

Our work: [J. Apraiz, A. Doubova, E. Fernández-Cara, M. Yamamoto, 25]

To appear, available on arXiv: https://arxiv.org/abs/2504.10236.
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1.- Uniqueness: by unique continuation
∂2

ttuk − µ∆uk − (µ+ λ)∇(∇ · uk ) = 0 in Ω \ Dk × (0,T ), k = 1, 2
uk = φ on ∂Ω× (0,T )
uk = 0 on ∂Dk × (0,T )

uk (x , 0) = u0(x), ∂tuk (x , 0) = 0 in Ω \ Dk

u = u(x , t) : displacement vector, λ, µ > 0 : Lamé coefficients

σ(u) · n = (µ(∇u +∇ut) + λ(∇ · u)Id) · n : normal stress tensor

βk = σ(uk ) · n on γ × (0,T ) : observations

Theorem 1 (uniqueness for Lamé system) [Doubova, Fernández-Cara, 20]

Assume: u0(x) = 0, Di ⋐ Ω non-empty and convex, T > T∗(Ω, γ), φ ̸= 0 and

β1 = β2 on γ × (0,T ) =⇒ D1 = D2

• Key point: a unique continuation (L. Hörmander) + arguments [O. Kavian, 2003]

Ideas (simplified): G := Ω \ (D1 ∪ D2), u := u1 − u2 in G × (0,T ). Unique continuation
⇒ u = 0 in G × (0,T ). Assume D2 \ D1 ̸= ∅. Consider u1 in D2 \ D1. We have u1 = 0 in
D2 \ D1 × (0,T ). Again, unique continuation ⇒ u1 = 0 in Ω \ D1 × (0,T ), but
u1 = φ ̸= 0 ⇒ contradiction
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2.- Uniqueness: sensitivity to boundary or initial data

Positive and negative answers

Previous works:

1D heat and wave equations
[Apraiz, Cheng, Doubova, Fernández-Cara,
Yamamoto, 2022]

1D viscous Burgers equation and related
systems (heat effects; variable density)
[Apraiz, Doubova, Fernández-Cara,
Yamamoto, 2022]

1D Fluid solid interaction model
[Apraiz, Doubova, Fernández-Cara,
Yamamoto, 2024]
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a b s t r a c t

In this article we deal with one-dimensional inverse problems concerning the Burgers
equation and some related nonlinear systems (involving heat effects and/or variable
density). In these problems, the goal is to find the size of the spatial interval from some
appropriate boundary observations of the solution. Depending on the properties of the
initial and boundary data, we prove uniqueness and non-uniqueness results. In addition,
we also solve some of these inverse problems numerically and compute approximations
of the interval sizes.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper deals with some inverse problems for nonlinear time-dependent PDEs in one spatial dimension.
The analysis and solution of inverse problems of many kinds has recently increased a lot because of their relevance

in many applications: elastography and medical imaging, seismology, potential theory, ion transport problems or
chromatography, finances, etc.; see for instance [3,9,15]. The variety of inverse problems is huge in comparison with
their direct analogs and many inverse problems coming from very classical and basic direct problems wait for theoretical
and numerical research. Let us mention the monographs by Bellassoued and Yamamoto [2], Isakov [13], Romanov [16]
and Hasanov and Romanov [10], where many theoretical and numerical aspects of inverse problems for partial differential
equations are depicted.

In this paper, we consider problems related to the identification of the size of the spatial interval where a time-
dependent governing nonlinear equation must be satisfied. We will focus on the Burgers equation and some variants,
satisfied for (x, t) 2 (0, `)⇥(0, T ). We will assume that the equation is complemented with boundary and initial conditions
corresponding to known data, respectively for x 2 {0, `} and t = 0. Then, we will try to determine the width ` of the spatial
interval from some extra information, for instance given at x = 0. The main goals will be to establish or discard uniqueness

⇤ Corresponding author.
E-mail addresses: jone.apraiz@ehu.eus (J. Apraiz), doubova@us.es (A. Doubova), cara@us.es (E. Fernández-Cara), myama@next.odn.ne.jp

(M. Yamamoto).

https://doi.org/10.1016/j.cnsns.2021.106113
1007-5704/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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3.- Uniqueness: multidimensional domain, unknown initial data

Ω ⊂ Rd , d ≥ 1 bounded connected open set∂tuk −Auk = F (x , t) in (Ω\Dk )× (0,T ), k = 1, 2

uk = 0 on ∂(Ω\Dk )× (0,T )

Attention: no information on initial values for u1 and u2 (incomplete direct problem)

F (x , t) = µ(t)f (x), f ̸≡ 0 is an input amplitude, µ̸≡ 0 in (0,T )

Av(x) :=
d∑

i,j=1

∂i(aij(x)∂jv(x))−
d∑

j=1

bj(x)∂jv(x)− c(x)v(x)

aij = aji ∈ C1(Ω), bj , c ∈ L∞(Ω), ∃ α > 0:
d∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2∀ ξ ∈ Rd , a.e. in Ω.

Ak : D(Ak ) → L2(Ω\Dk ), D(Ak ) = {v ∈ H1
0 (Ω\Dk ) : Av ∈ L2(Ω\Dk )}

(Ak v)(x) := Av(x) a.e. in Ω\Dk ∀ v ∈ D(Ak )

Given ∂v
∂νA

:=
∑d

i,j=1 aij∂iv νj on γ × (0,T ), γ ⊂ ∂Ω (conormal derivative)

Inverse problem: Find D from
∂v
∂νA

on γ × (0,T )
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3.- Uniqueness: multidimensional domain, unknown initial data

Theorem 2: Uniqueness [Apraiz, Doubova, Frnández-Cara, Yamamoto, 25]
Let u1, u2 be solutions corresponding to the simply connected open sets D1 and D2.

Assume: f ∈ H2ε(Ω) for some ε > 0

f = 0 in D1 ∪ D2, but f ̸≡ 0

µ(t) is piecewise polynomial, with µ ̸∈ Cm([0,T ]) for some m ≥ 1

Then:
∂u1

∂νA
=

∂u2

∂νA
on γ × (0,T ) =⇒ D1 = D2

Moreover: u1(· , 0) = u2(· , 0).
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Idea of the proof I

Assume: D1 ̸= D2. Argue by contradiction

Step 1: Let G := Ω \ (D1 ∪ D2) and u := u1 − u2 in G × (0,T ):


∂tu −Au = 0 in G × (0,T )

u = 0 on ∂Ω× (0,T )
∂u
∂νA

= 0 on γ × (0,T )

Unique continuation ⇒ u = 0 in G × (0,T ) ⇒ u1 = u2 in G × (0,T )
(no initial condition is needed)
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Idea of the proof II I

Step 2: D1 ̸= D2 ⇒ ∃E ̸= ∅ open:

E ⊂ (Ω ∩ D1) ∩ D2, ∂E ⊂ ∂D1 ∪ ∂D2

• f = 0 in D1 ∪ D2, z := ∂m
t u1, m ≥ 1 satisfies{

∂tz − A1z = 0 in E × (0,T ),

z = 0 on ∂E × (0,T ).

(A1v)(x) := Av(x) a.e in Ω\D1

• Introduce E0 ⊂⊂ E new nonempty open set and h(t) := z(·, t)
∣∣
E0

for all t .
Semigroup theory implies that t 7→ h(t) is analytical

Computations and properties of µ ⇒

(Id.− e−tA1)A−1
1 f ≡ 0 in E0 ∀ t

⇒ f = 0 in Ω \ D1, contradiction with f ̸≡ 0 in Ω \ D1, then D1 = D2.

D1 = D2 (UC) ⇒ u1 = u2 ⇒ u1(· , 0) = u2(· , 0) (Backwards uniqueness ) ■
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Comments and extensions I

1 More realistic assumption for f : ∃Ω0 ⊂⊂ Ω, D1,D2 ⊂ Ω0 such that f = 0 in Ω0

(since D1 and D2 are unknown).

2 Positive result if µ(t) vanishes in some initial time interval:
µ(t) = 0 a.e. in (0, t∗) for some t∗ ∈ (0,T ) but µ ̸≡ 0.

3 Positive result: uniqueness with different coefficients

4 A variant: boundary source and internal observation, also OK

5 Possible extension to more complex linear parabolic systems: Stokes, linearized
Boussinesq, linearized Oldroyd, etc.
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Open questions I

1 Stability of D and u
∣∣
t=0 w.r.t ∂u

∂νA
on γ × (0,T )?

2 Can we also get uniqueness for more general inputs of the form F = F (x , t) ?

3 We can get uniqueness for the Stokes systems even with d − 1 scalar
observations (unique continuation is true in this case).

However, for d = 3, it is unknown whether the result holds for d − 2 components,
i.e. when only one component coincides.
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Reconstruction

Two methods of reconstruction of D

1 Method 1 (based on FEM): new mesh at each iteration

Lamé system

2 Method 2: Method of Fundamental Solutions (MFS), meshless

Elliptic equation

Other possible meshless methods:

Model order reduction techniques (Reduced Basis Methods)

Look for a few basis functions that represent the behavior of the problem

Physics Informed Neural Networks (PINN’s)

Use the information provided by the problem and progress of Artificial Intelligence
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Geometric IP, Lamé system: reconstruction I

Goal: compute D from β on γ × (0,T )

Technique: solve an optimization problem

Optimization problem
Assume: d = 3, D is a sphere and β = β(x , t) is given

Find (x0, y0, z0, r) ∈ Dad such that
Minimize J(x0, y0, z0, r) :=

1
2

∫∫
γ×(0,T )

|σ(u(x0, y0, z0, r)) · n − β|2 ds dt

Subject to D ∈ Dad := { (x0, y0, z0, r) ∈ R4 : B(x0, y0, z0; r) ⊂ Ω, r > 0 }

σ(u) · n =
(
µ(∇u +∇ut) + λ(∇ · u)Id.

)
· n on γ × (0,T )
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Geometric IP, Lamé system: reconstruction II

Method 1: based on Finite Element Method, new mesh at each iteration

Test 1 : T = 5

u0 = (10x , 10y , 10z), u1 = (0, 0, 0)

η = (10x , 10y , 10z)

(xd, yd, zd, rd) = (-2, -2, -2, 1)

(xi, yi, zi, ri) = (0, 0, 0, 0.6)

NLopt (AUGLAG + DIRECTNoScal)

No Iter = 1005, FreeFem++ :

xc = -1.981405274

yc = -2.225232904

zc = -2.148084171

rc = 0.9504115226

Figure: Initial mesh. Points: 829, tetrahedra:
4023, faces: 8406, edges: 5210, boundary
faces: 720, boundary edges: 1080
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Geometric IP, Lamé system: reconstruction III
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Figure: Evolution of the cost (left) and detail (right). Cost < 10−3.

More details [Doubova, Fernández-Cara, 2020]

Method 1 (based on FEM): difficult, expensive (new mesh at each iteration) . . .
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Method of Fundamental Solutions (MFS)

Method 2: Method of Fundamental Solutions (MFS), meshless

Developed by [V. Kupradze & D. Alexidze, 1960] for a direct problem

Proposed as a computational technique by [Mathon & Johnston, 1977]

Non-homogeneous problems: combined with Method of Particular Solutions
(MPS) [Golberg, 1996]

A collection of points is required

Key idea: to use a basis formed by fundamental solutions

Advantages: meshless, high computational speed, exponential convergence properties
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MFS for an elliptic problem

The problem:
−∆u + au = h in Ω \ D

u = φ on ∂Ω

u = 0 on ∂D

a = a(x), h = h(x), φ = φ(x)
appropriate

Observation: β :=
∂u
∂n

on γ Figure: Electrical impedance tomography procedure.

1 Uniqueness: OK. Ideas from [O. Kavian, 2003]

2 Stability: OK. [A.L. Bukhgeim, J. Cheng, M. Yamamoto, 1999]

3 Reconstruction: OK. Several methods: optimization + least square + FEM

Here: MFS (Method of Fundamental Solutions)
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MFS for Geometric Inverse Problems I

Ω = B(0;R). Goal: find D = B(x0, y0; r) s.t. −∆u + au = h in Ω \ D (PDE)
u = φ on ∂Ω (BC on ∂Ω )
u = 0 on ∂D (BC on ∂D )

∂u
∂n

= β on γ (BC on γ )

Step 1 (MFS-MPS): −∆u = −au + h

u(x) ≈
Nf∑
j=1

δjF (||x − ηj ||) +
Nb∑

k=1

αk G(||x − ξk ||)

 Boundary of 
 Boundary of D

 Boundary 
 Boundary points

 Points on 
 Field points (Nf)

Source points (Nb)

Figure: (+, ηj ), (◦, ξk )
Nf : field points, ηj

Nb : source points, ξk

F : integrated radial basis, ∆F (r) = f (r), f (r) a compactly supported radial basis

G : fundamental solution of the Laplace equation
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MFS for Geometric Inverse Problems II

Step 2 (Reduction to a nonlinear algebraic system):

PDE at the field points ηi

Dirichlet BC at the boundary points ∈ ∂Ω

Neumann BC at the boundary points ∈ γ

Dirichlet BC at the boundary points ∈ ∂D
(unknown)

Nonlinear system of equations:

Find (δ, α) ∈ RNf ×RNb, (x0, y0, r) ∈ Xb:

M(x0, y0, r)
[

δ
α

]
= Z

 Boundary of 
 Boundary of D

 Boundary 
 Boundary points

 Points on 
 Field points (Nf)

Source points (Nb)

Step 3 (Least square): Nf + Nb + 3 unknowns at each iteration of optim. algorithm

J(δ, α, x0, y0, r) :=
1
2

∥∥∥M(x0, y0, r)
[

δ
α

]
− Z

∥∥∥2
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Test 2 - MFS: D a circle I

Test 2: N = 2, Ω = B(0, 0; 10), a = 0.2
√

x2 + y2, h = 0.3x , φ = 10x

Nom = 60 : points on ∂Ω

Ng = 10 : points on γ

Nd = 12 : points on ∂D

Nb = Nom + Nd : source points ξk

xd = 2, yd = 4, rd = 1

xi = 0, yi = 0, ri = 1.5

MATLAB + fmincon

xc = 2.000274

yc = 4.000057

rc = 0.999658
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Figure: Evolution of the cost, 146 iterations.
Cost J(δ, α, x0, y0, r) < 10−9.
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Test 2 - MFS: D a circle

138 P. P. CARVALHO ET AL.

Test 1:We takeR = 10,x0des = 2,y0des = 4,rdes = 1 (the desired centre
and radius), x0ini = 0, y0ini = 0, rini = 1.5 (the centre and radius of the
starting ball B in the minimization algorithm).

Using the MATLAB function fmincon with active-set as an optimization strat-
egy, we find the following values (see Figures 2 and 3):

x0cals = 2.000274, y0cal = 4.000057,

rcal = 0.999658.

In Table 1, we have presented a comparison of the number of iterates needed by
active-set and interior-point to get a cost J(β ,α, x0, r) < 10−9.

In Table 2, we can see the evolution of the cost at the (best) stopping (β ,α, x0, r) when
we introduce random noises in the target. These results corresponds to the active-set
algorithm.

In order to illustratemore completely the process, we present now the results of a second
test for which the unknown domain D is polygon.

Test 2: We take R = 10, x0des = -3, y0des = 0, rdes = [0.6, 0.9,
1.2, 1, 1] (the desired centre and radius of the polygon domain), x0ini = 0,
y0ini = 0, rini = [0.51, 0.7, 0.9, 0.9, 0.8] (the centre and radius
of the starting polygon domain D in the minimization algorithm).

Using the MATLAB function fmincon with interior-point as an optimization
strategy, we find the following values (see Figures 4 and 5):

x0cal = -3.139980, y0cal = -0.166069
rcal = [0.869914, 0.958191, 0.879098, 0.897790, 1.193800]

It was suggested in [23] that future research associatedwith theMFS to inverse problems
should involvemultiple cavities identification problems.Motivated by this fact, we consider
in the next numerical test a situation where two unknown balls must be found.

Figure 2. Test 1 – Iterates of the optimization algorithm (left). The initial, desired and computed config-
urations (right). The number of iterates is 146 and the final value of the cost functional is 6.9118e−09.
The subset γ is the part of the outer boundary marked in dashed thick line.

Figure: Iterations of optimization algorithm (left). Initial, desired and computed configuration (right)

With Method 1 (FEM, FreeFem++): 1000 iterates to get a Cost < 10−7

With MFS-MPS: 146 iterates to get a Cost < 10−9
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Some open questions

Some open questions:

1 Similar numerical analysis for other more complex geometries

(polyhedral unknown D in 3D, the case of three or more balls, . . . )

2 MFS-MPS for Inverse Problems evolution system

(wave equation, Lamé, Stokes, Navier-Stokes, Boussinesq, free boundary . . . )
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