Séminaire IA Univ Eiffel

Distillation in Online Continual Learning

Nicolas MICHEL

4th year PhD student LIGM

nicolas1203.github.io

September 19, 2024

Table of content

1. What is Online Continual

Learning?

- 2. How can we apply distillation
- 3. Our approach

Quick Recap: Supervised Learning

Machine Learning Problem

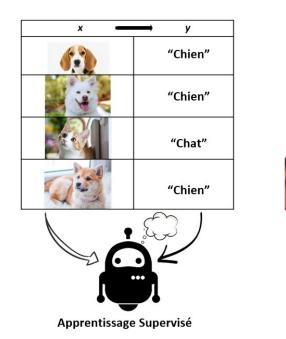
Inputs :

- image label pairs
- Initial model
- Metric to optimize

Outputs :

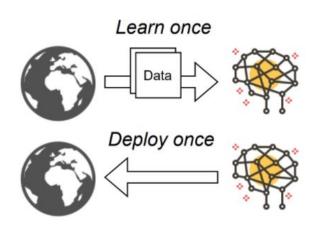
• trained model

Objective : Generalize

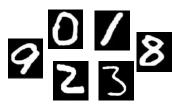


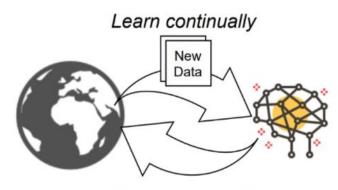
" ? "

What is Continual Learning?



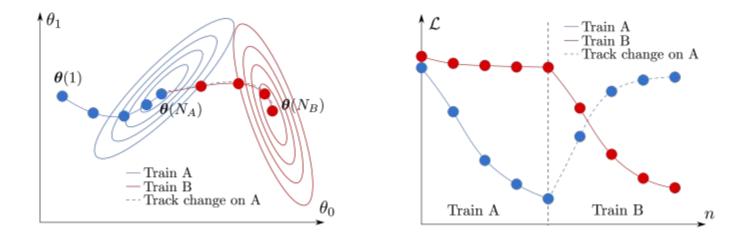
Unique Task





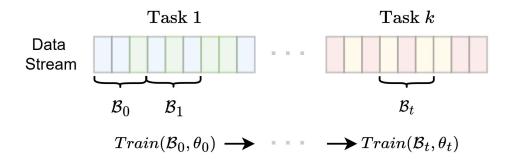
Deploy continually

The problem: Catastrophic Forgetting



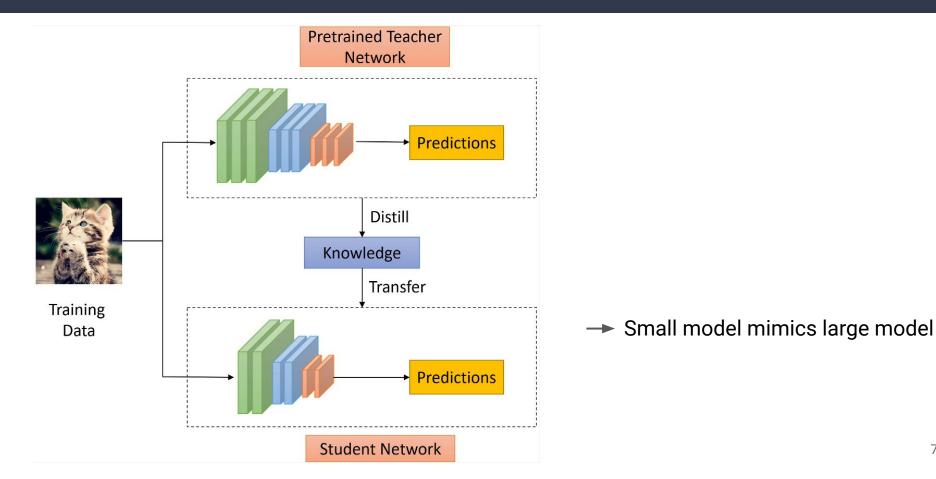
Method	Split-CIFAR10	Split-CIFAR100 43.2 3.6		
offline	80.0	43.2		
Incremental	16.4	3.6		

Online CL VS Offline CL



Example: YouTube Realistic: Can we store all YouTube data?

Knowledge Distillation



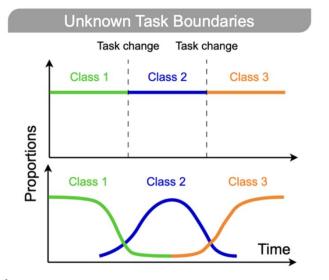
Distillation challenges in OCL

Teacher Quality								
Training Scenario	Accuracy (%)	Method	Accuracy (%)					
Offline CL Online CL	81.8 61.0	ER ER+low qual. teach.	49.0±4.6 50.7±4.3 54.6±3.3					
Online CL, Hard task Online CL, Easy task	51.6 72.1	ER+high qual. teach.						

The quality of the teacher is not guaranteed (only one epoch)
Lower quality teacher can lead to little improvement

Teacher Quantity

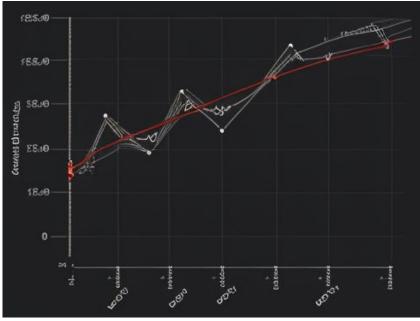
A One teacher per task is unrealistic (exploding memory cost)



A When to take the snapshot for distillation?

Exponential Moving Average

$$\theta_{\alpha}(t) = \alpha * \theta(t) + (1 - \alpha) * \theta_{\alpha}(t - 1)$$



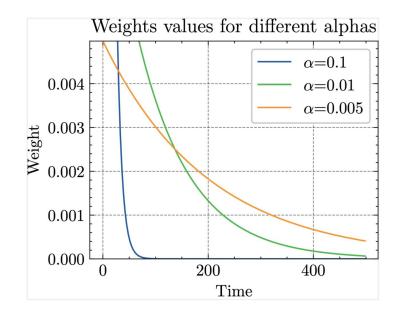
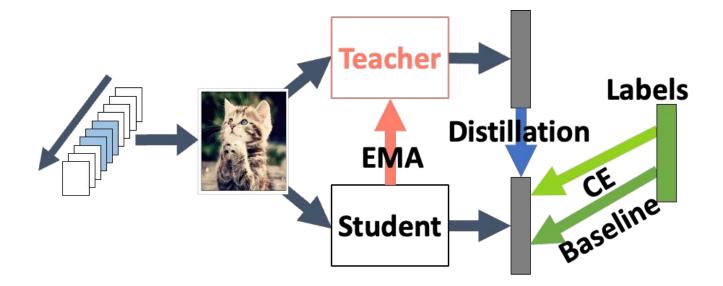


Image source: Me trying to generate some images

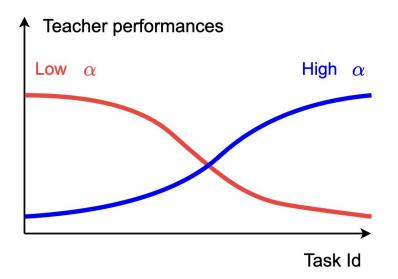
Momentum Knowledge Distillation



Stability-Plasticity control

Advantages

- Control of the teacher knowledge
- Only one teacher
- Evolving teacher
- No need for task boundaries



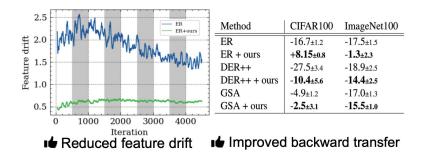
Results

Dataset		Tiny-IN	
Memory Size M	2000	5000	10000
ER [NeurIPS'19]	$11.39{\scriptstyle \pm 0.75}$	$18.97{\scriptstyle\pm1.16}$	$21.52{\scriptstyle \pm 3.37}$
ER + SDP	$15.32{\scriptstyle \pm 0.47}$	$23.22{\scriptstyle\pm0.31}$	$26.97{\scriptstyle\pm1.1}$
ER + ours	$23.95_{\pm 0.65}$	$32.22_{\pm 0.88}$	$38.27_{\pm 0.18}$
DER++ [NeurIPS'20]	$3.89{\scriptstyle \pm 0.64}$	$4.28{\scriptstyle \pm 0.51}$	$4.16{\scriptstyle \pm 0.32}$
DER+++ ours	$17.08{\scriptstyle \pm 1.43}$	$15.64{\scriptstyle \pm 4.64}$	$13.69{\scriptstyle \pm 3.3}$
ERACE [ICLR'22]	$14.79{\scriptstyle \pm 0.95}$	$22.25{\scriptstyle\pm1.69}$	$26.64{\scriptstyle\pm0.91}$
ERACE + ours	$22.21_{\pm 0.87}$	$31.13_{\pm 0.41}$	$35.54_{\pm 0.43}$
DVC [CVPR'22]	$2.04{\scriptstyle\pm0.8}$	$1.47{\scriptstyle\pm0.49}$	$1.54{\scriptstyle\pm0.79}$
DVC + ours	$9.41 \scriptstyle \pm 1.43$	$12.03{\scriptstyle \pm 3.83}$	$13.44{\scriptstyle \pm 3.84}$
OCM [ICML'22]	$19.58{\scriptstyle \pm 0.63}$	$27.85{\scriptstyle \pm 1.03}$	$32.56{\scriptstyle \pm 1.37}$
OCM + ours	$23.07_{\pm 0.37}$	$31.82_{\pm 0.72}$	$37.46_{\pm 0.95}$

ER + ours

ER

Reduced task-recency bias



- Solves many of OCL difficulties
- Small computation overhead
- Achieves a better stability-plasticity trade-off
- Simple yet efficient

Merci pour votre attention

Conclusions

- Offline and Online CL have different challenges
- Room for improvement in applying distillation in OCL

Presented papers

Giovanni Chierchia

Romain Negrel

My co-authors

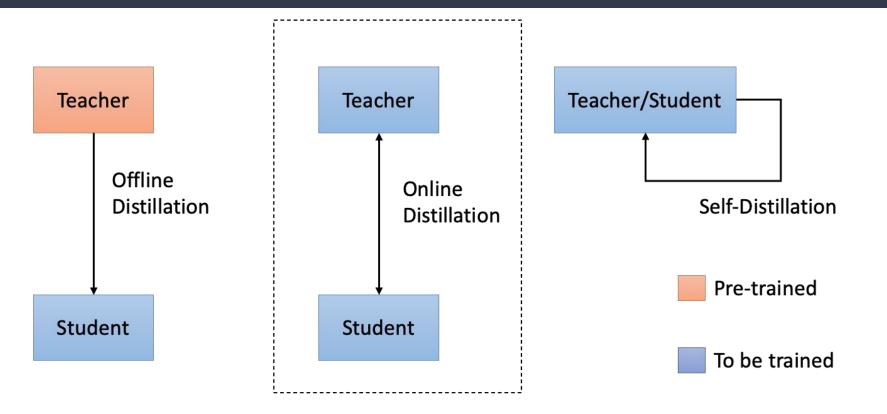
Jean-François Bercher

Toshihiko Yamasaki

Maorong Wang

Merci pour votre attention

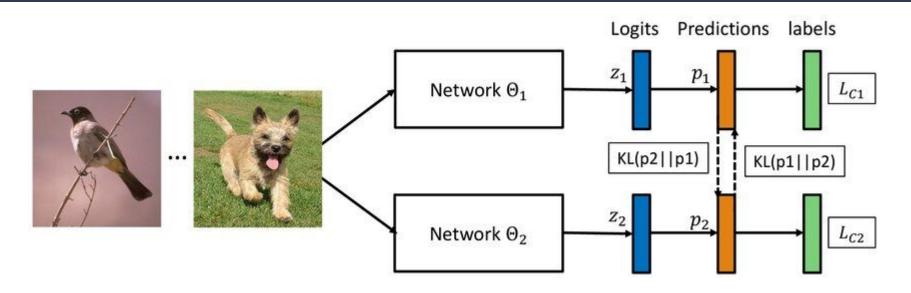
Knowledge Distillation Schemes



Three different knowledge distillation schemes

Improving plasticity with Collaborative Learning

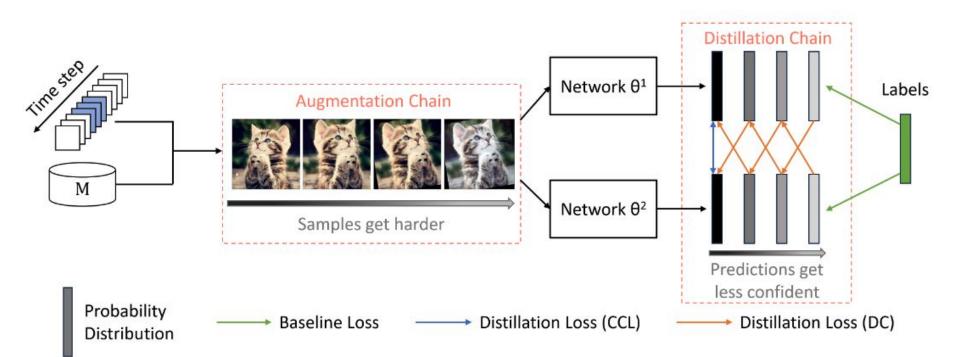
Mutual Learning



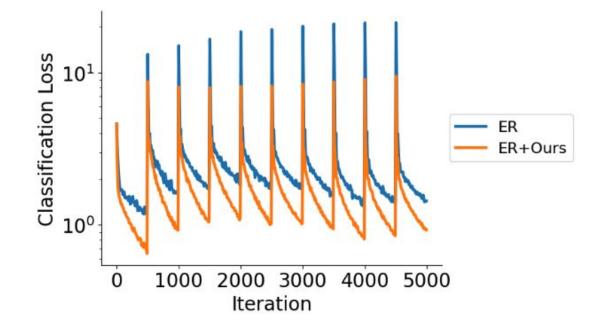
Why? Boost performance and convergence

How? Randomness in the training process

Overall approach



Results

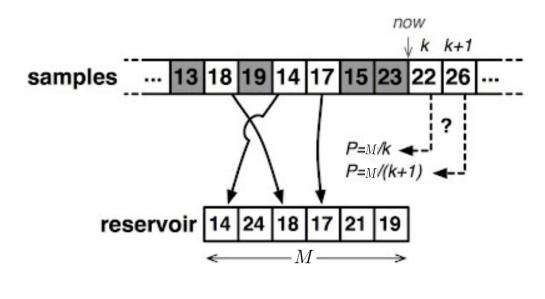


Results

Dataset	CIFAR10		CIFAR100			Tiny-ImageNet			ImageNet-100
Memory Size M	500	1000	1000	2000	5000	2000	5000	10000	5000
ER [35]	56.68±1.89	62.32±4.13	24.47±0.72	31.89±1.45	39.41±1.81	10.82±0.79	19.16±1.42	24.71±2.52	33.30±1.74
ER + Ours	66.43±2.48	74.10±1.71	33.43±1.06	44.45±1.04	53.81±1.16	16.56±1.63	29.39±1.23	37.73±0.85	43.11±1.49
DER++ [6]	58.04±2.30	64.02±1.92	25.09±1.41	32.33±2.66	38.31±2.28	8.73±1.58	17.95±2.49	19.40±3.71	34.75±2.23
DER++ + Ours	68.79±1.42	74.25±1.10	34.36±0.89	43.52±1.35	52.95±0.86	10.99±1.39	21.68±1.94	28.01±2.46	45.70±1.32
ER-ACE [7]	53.26±3.04	59.94±2.40	28.36±1.99	34.21±1.53	39.39±1.31	13.56±1.00	20.84±0.43	25.92±1.07	38.37±1.20
ER-ACE + Ours	70.08±1.38	75.56±1.14	37.20±1.15	45.14±1.00	53.92±0.48	18.32±1.49	26.22±2.01	32.23±1.70	45.15±1.94
OCM [19]	68.19±1.75	73.15±1.05	28.02±0.74	35.69±1.36	42.22±1.06	18.36±0.95	26.74±1.02	31.94±1.19	23.67±2.36
OCM + Ours	74.14±0.85	77.66±1.46	35.00±1.15	43.34±1.51	51.43±1.37	23.36±1.18	33.17±0.97	39.25±0.88	43.19±0.98
GSA [20]	60.34±1.97	66.54±2.28	27.72±1.57	35.08±1.37	41.41±1.65	12.44±1.17	19.59±1.30	25.34±1.43	41.03±0.99
GSA + Ours	68.91±1.68	75.78±1.16	35.56±1.39	44.74±1.32	55.39±1.09	16.70±1.66	28.11±1.70	37.13±1.75	44.28±1.16
OnPro [44]	70.47±2.12	74.70±1.51	27.22±0.77	33.33±0.93	41.59±1.38	$14.32{\scriptstyle\pm1.40}\\\textbf{21.81{\scriptstyle\pm1.02}}$	21.13±2.12	26.38±2.18	38.75±1.03
OnPro + Ours	74.49±2.14	78.64±1.42	34.76±1.12	41.89±0.82	50.01±0.85		32.00±0.72	38.18±1.02	47.93±1.26

- Small computation overhead (x2, but its ok)
- Achieves a better stability-plasticity trade-off

Réservoir Sampling



$$N_{updates}(K,M) = M\left(1 + \ln\frac{K}{M+1}\right)$$

- Taille mémoire fixée
- Aucune information requise sur le stream
- Bonne représentation statistique dans la mémoire

J. S. Vitter, 'Random sampling with a reservoir', ACM Trans. Math. Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985, doi: 10.1145/3147.3165.

[1]

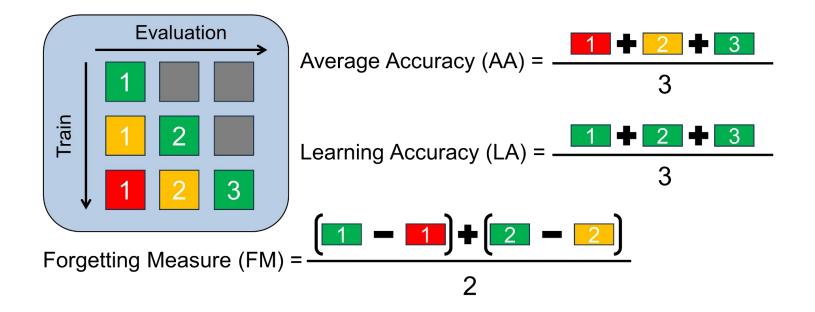
Stability-Plasticity trade-off

Stability: Retain old knowledge

Plasticity: Being able to acquire new knowledge

Image sources: Me trying to desperately use some generative AI in my slides

Some metrics



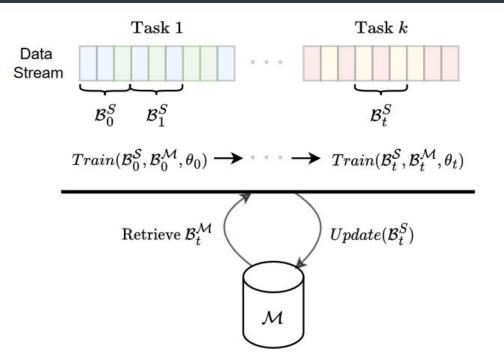
$a_{k,j}$	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5	AA_k	AF_k
$\overline{\mathcal{T}_1}$	50	-	-	-	-	50	0
\mathcal{T}_2	25	25	-	-	-	25	25
\mathcal{T}_3	16.7	16.7	16.7	-	-	16.7	20.83
\mathcal{T}_4	12.5	12.5	12.5	12.5	-	12.5	18.06
\mathcal{T}_5	10	10	10	10	10	10	$\begin{array}{c} 0 \\ 25 \\ 20.83 \\ 18.06 \\ 16.04 \end{array}$

• In offline: main focus is stability, plasticity is not very challenging

• In online: plasticity is especially challenging

Why? -> One pass over the data is not enough

Back to memory based methods



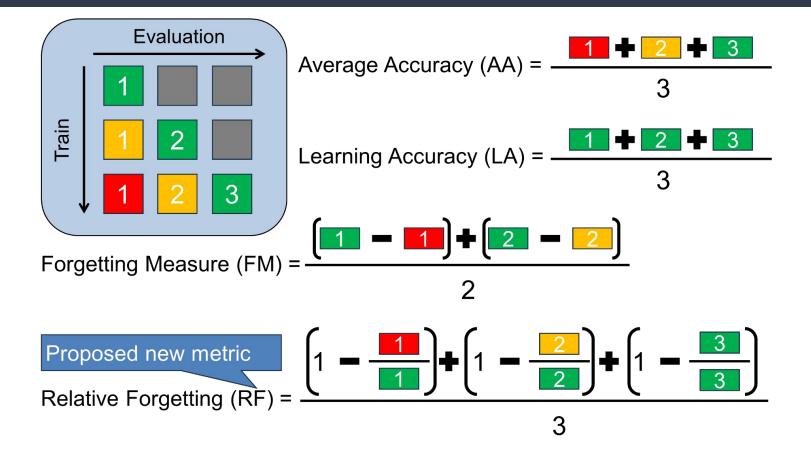
-> Partially solves the lack of plasticity (multiple pass over memory data)

--> Can we do better?

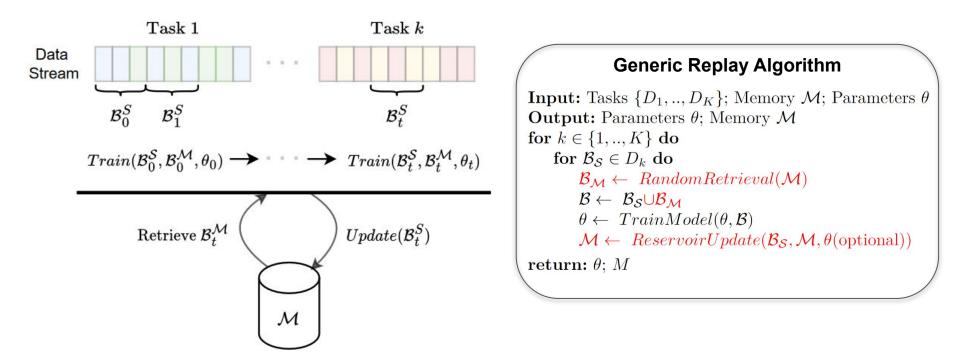
Another example

a_j^i	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5	AA_k	LA_k	FM_k	RF_k
\mathcal{T}_1	30/15	_	-	-	-	30/15	30/15	-	-
\mathcal{T}_2	25/12.5	25/12.5	-	-	-	25/12.5	27.5/13.75	5/2.5	8.33/8.33
\mathcal{T}_3	20/10	20/10	20/10	-	-	20/10	25/12.5	7.5/3.75	17.78/17.78
\mathcal{T}_4	15/7.5	15/7.5	15/7.5	15/7.5	-	15/7.5	22.5/11.25	10/5	28.75/28.75
\mathcal{T}_5	10/5	10/5	10/5	10/5	10/5	10/5	20/10	12.5/6.25	42/42

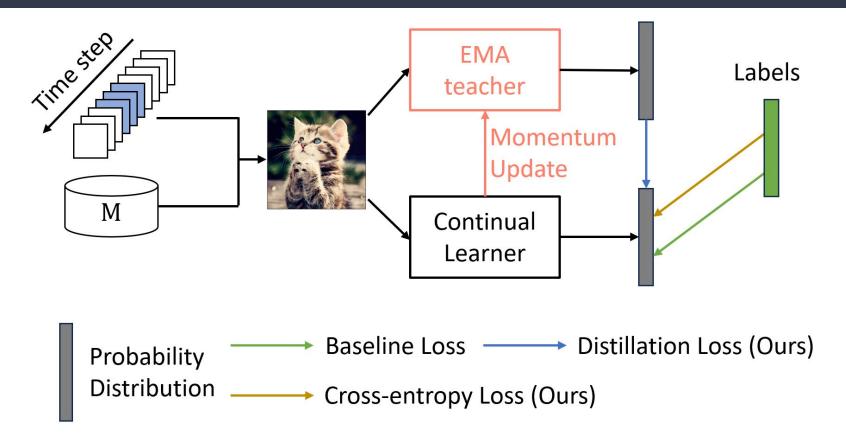
More metrics



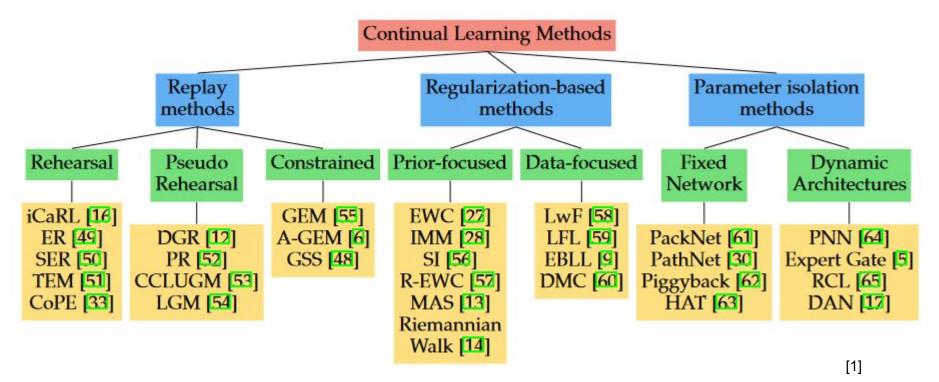
OCL State-of-the-art: Replay-based methods



Momentum Knowledge Distillation

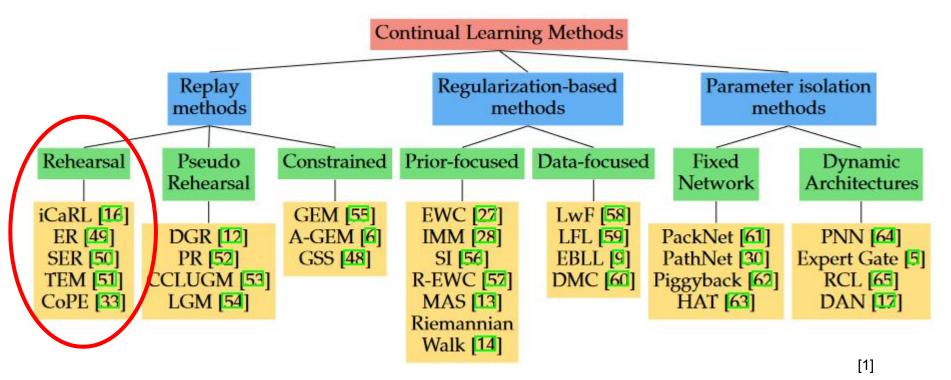


A lot of approaches



M. De Lange *et al.*, 'A continual learning survey: Defying forgetting in classification tasks', *IEEE Trans. Pattern Anal. Mach. Intell.*, pp. 1–1, 2021, doi: <u>10.1109/TPAMI.2021.3057446</u>.

A lot of approaches



M. De Lange *et al.*, 'A continual learning survey: Defying forgetting in classification tasks', *IEEE Trans. Pattern Anal. Mach. Intell.*, pp. 1–1, 2021, doi: <u>10.1109/TPAMI.2021.3057446</u>.