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Machine Learning Problem

Inputs :
● image - label pairs
● Initial model
● Metric to optimize

Outputs :
● trained model

Objective : Generalize

“Apprentissage Supervisé : Introduction,” Machine Learnia, Jul. 02, 2019. https://machinelearnia.com/apprentissage-supervise-4-etapes/ (accessed Mar. 17, 2021).

Quick Recap: Supervised Learning

https://machinelearnia.com/apprentissage-supervise-4-etapes/
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What is Continual Learning?

Task 1 Task 2 Task 5Unique Task
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The problem: Catastrophic Forgetting
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Online CL VS Offline CL

Example: YouTube
Realistic: Can we store all YouTube data?
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Knowledge Distillation

Small model mimics large model
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Distillation challenges in OCL
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Exponential Moving Average

Image source: Me trying to generate some images
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Momentum Knowledge Distillation
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Stability-Plasticity control

Advantages

● Control of the teacher knowledge

● Only one teacher

● Evolving teacher

● No need for task boundaries
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Results

● Solves many of OCL difficulties
● Small computation overhead
● Achieves a better stability-plasticity trade-off
● Simple yet efficient
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Merci pour votre attention

Conclusions

● Offline and Online CL have different challenges
● Room for improvement in applying distillation in OCL
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Knowledge Distillation Schemes



Improving plasticity with 
Collaborative Learning
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Mutual Learning

Why? Boost performance and convergence

How? Randomness in the training process

source: A Selective Survey on Versatile Knowledge Distillation Paradigm for Neural Network Models, Ku et al. 2020.
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Overall approach
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Results
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Results

● Small computation overhead (x2, but its ok)
● Achieves a better stability-plasticity trade-off
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Réservoir Sampling

● Taille mémoire fixée

● Aucune information requise sur le 

stream

● Bonne représentation statistique 

dans la mémoire

[1]
J. S. Vitter, ‘Random sampling with a reservoir’, ACM Trans. Math. Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985, doi: 10.1145/3147.3165.

https://doi.org/10.1145/3147.3165


Stability-Plasticity trade-off
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Intuitively

Stability: Retain old knowledge

Plasticity: Being able to acquire new knowledge

Image sources: Me trying to desperately use some generative AI in my slides
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Some metrics
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An example
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Plasticity in OCL

● In offline: main focus is stability, plasticity is not very challenging

● In online: plasticity is especially challenging

Why? -> One pass over the data is not enough
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Back to memory based methods

Partially solves the lack of plasticity (multiple pass over memory data)

Can we do better?
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Another example
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More metrics
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OCL State-of-the-art: Replay-based methods

Generic Replay Algorithm
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Momentum Knowledge Distillation
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A lot of approaches

[1]
M. De Lange et al., ‘A continual learning survey: Defying forgetting in classification tasks’, IEEE Trans. Pattern Anal. Mach. 
Intell., pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3057446.

https://doi.org/10.1109/TPAMI.2021.3057446
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[1]
M. De Lange et al., ‘A continual learning survey: Defying forgetting in classification tasks’, IEEE Trans. Pattern Anal. Mach. 
Intell., pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3057446.

A lot of approaches

https://doi.org/10.1109/TPAMI.2021.3057446

