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Context

3.4 million deaths directly related to water
quality

9 million premature deaths related to air
quality

➝ Need for accurate, reliable, but low-cost and small, sensors for local
monitoring of air and water quality
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Sensor Calibration in the lab
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The difficulty of moving to an open environment
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The difficulties of the sensor calibration

• Highly sensitive to pollutants but
partial selectivity

• Unmeasured or unknown variables

• Real data inaccessible: only access to
the measurements

• Real relation between environmental
variables and sensors unknown and
increasingly non-linear

• Strong correlation between
environmental variables

Figure: Sensor variables
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Summary of the method

• Small data context: physical information is used for mitigation purposes
• Two-step process: calibration + inversion
• Bayesian formalism to handle all uncertainties
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Summary of the method

• Two-step process: calibration + inversion

• Derivation of the calibration model on the training data

Outputs = H(Targets, Interferents)

• Inversion of the calibration model on the testing data

Targets = H̃−1(Output , Interferents)

• By contrast, in ’regular’ ML/IA, H̃−1 is directly learnt

−→ Provides physico-chemical information on the sensors
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Summary of the method

• Bayesian formalism to handle all
uncertainties :

• Targets, ie. the reference measurements (up
to 100% noise in chemical sensing!)

• Interferents, eg. temperature, humidity
(measured or not measured, possibly even
unknown)

• Outputs, ie. the innovative sensors (often EM
noise)

• The calibration model itself (linearity is the
exception, not the rule!)
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Summary of the method

• Small data context: physical information is used for mitigation purposes
• Two steps process: calibration + inversion
• Bayesian formalism to handle all uncertainties

−→ Grey/White Box method
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A grey-box method

• For each sensor j at time i , the a priori model is:

(ymes
i )j = hj(xmes

i + εx
i ; zmes

i + εz
i )

Tβj + (εy
i )j + εmod

j (xmes
i + εx

i ; zmes
i + εz

i ) + (δmod
i )j ,

• The calibration model hj is explicite (at least through Taylor expansion), enabling
physical interpretation

• The model errors εmod
j , (δmod

i )j are explicite (chosen covariance functions)
• The uncertainties can be derived from the training set
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Presentation of the two cases

1 Experimental data
• Sensor based on carbon nanotubes

deployed in an open environment during 57
days

• Exhaustive search to obtain sensor influence
parameters (O3, CO, RH , T ).

2 Simulated data
• Created to mimic as closely as possible the

experimental data.

yj = (4 + β1
j ) log(β

2
j x1 + 1 −min(x1))+

β3
j arctan(β

4
j z1) + β4

j arctan(β
5
j x2 + β6

j z2) + αuu.
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Similarity of the two datasets
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Experimental data

• Representation of the time evolution over one week of one sensor output, one
environmental variable and one target pollutant (black). For the experimental
data, the target pollutant is the CO and the values are normalized.
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Comparison with classical methods
Indicators on simulated data

Method R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2
GLR 0.87 0.83 0.39 0.49 1.8 2.7
GPR 0.98 0.88 0.14 0.38 0.95 1.9

GPR+IU 0.98 0.88 0.15 0.38 0.86 1.8
Indicators on experimental data

Method R2
O3

R2
CO MAEO3 MAECO L90%

O3
L90%

CO
GLR 0.55 0.74 5.1 0.030 18 0.083
GPR 0.65 0.79 4.4 0.023 18 0.079

GPR+IU 0.73 0.79 4.2 0.022 17 0.073

Table: Performances indicators of the methods on simulated and experimental data. For the
experimental data, the pollutants vary from 15 to 83 ppb for O3 and from 7 to 8 ppm for CO.
The results of the indicators are presented in ppb for O3 and in ppm for CO. GLR:
Generalized Linear Regression. GPR: Gaussian Process Regression. IU: Input Uncertainties.
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Correlation versus causality in the field of sensors
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Correlation versus causality in the field of sensors

x and z has a causal impact on the sensor,
w does not have a causal impact but is
correlated with x and z
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Correlation versus causality in the field of sensors

• x and z have a causal impact on the
sensor, w does not have a causal
impact but is correlated with x and
z .

• Plot of the sensor outputs
according to w , the relationship is
clear but does not imply
causality
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Why do we need to distinguish correlation and causality?

• Using a non-causal, correlated-only variable may improve calibration model
performance! −→ why bother?

• Environmental variables are highly correlated (chemical reactions, dayly cycles)

• The correlation between variables depends on deployment specificities (location,
time, circumstances)

• Using non-causal variables reduces model transferability
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Why do we need to distinguish correlation and causality?

• Illustation on simulated data
(Boxplots of the mean absolute error)

• With different values of the
correlation between variables
(location 1 or 2)

• With and without using the
non-causal but correlated variable w
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Classical sensitivities analysis: an example with Sobol

• Problem: Classical sensitivity analysis techniques (eg. Sobol) do not
differentiate causality and correlation

• Illustration:
(

x
w

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

)
S2

)
and a linear relation y = αx + ε with

ε ∼ N (0, σ2)

• We get: y |w ∼ N
(
αρw , α2S2(1 − ρ2) + σ2)

• Sobol first-order indice (> 0 if the variable has influence)

Sw :=
Var (E[y |w ])

Var (E[y ]) =
α2ρ2S2

α2S2 + σ2 > 0
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Causality defined through the calibration model

• Our approach: treat causality in the context of the calibration −→ no causality if
the calibration model does not depend on the variable

• In the Generalized Linear Regression approximation of the calibration model,
there is no causality if the corresponding coefficient is equal to 0

• Existing tests: Student and Fisher indices

• BUT formally not developped for situations with noise on inputs
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Our new contributions

• Our improvment: Handling uncertainties in the Student test for one variable and
generalisation to the Fisher test

• Achieved by handling model error and measurement noise in the law of
coefficients β̂ (in the GLR)

• Asymptotically follows the law N
(
β,C IC)

• Where C IC = Cβ + CIC
β with Cβ the covariance on the noise-free GLR method and CIC

β

the contribution associated with the propagation of uncertainties

• Ignoring CIC
β leads to underestimation of the error
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Statistical test formalism

• Null Hypothesis: H0 : {βw = 0},

• Construction of an estimator β̂ of β := (βx , βz , βw ) and the model error σ̂2 by
least squares approaches and find the Statistical properties: β̂ ∼ N (β,C IC),

• Statistical test: Under H0, ζ(Dn) := (C IC
w )−

1
2 β̂w ,

• Definition of the region of rejection: the set of Wn of realisations such that
Wn = {|ζ(Dn)| > a} and select a to maximise the power,

• Without noise: classical Student framework; With noise: adaptation of the
formalism with linearisation to account for input noise.
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Results

• Let’s see the statistical power
(the probability to reject H0
knowing the value of βw ) of the
student test on βw .

• Comparison of the power of the
student test by using classical
student test on the non noisy
values, on noisy values and by
using the Student test with IU on
noisy values.
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Conclusions and prospects

• A calibration process in a Bayesian framework
• Environmental sensors calibration is a multi-variate problem with very small data

volumes
• A Bayesian framework expliciting the calibration model, the uncertainties and the

model error is proposed
• It significantly improves calibration performances compared to standard

approaches
• The proposed model is a Grey Box: influence factors can be identified

• Causality problems in the field of sensors
• Differentiating causality and correlation is challenging (but would improve model

performance)
• Several methods are proposed (and under test) to separate causality from

correlation in that context
• Further improvements lie in accounting for time effect (response time and

drift)
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Communication

• Conference
➝ IEEE sensors 2023 (Vienna, Austria) and 2024 (Kobe, Japan) conference (oral)
➝ SIAM conference 2024 (poster)
➝ MascotNum conference 2023 and 2024 (poster)
➝ Workshop MascotNum 2023 (oral)

• Publication
➝ Proceeding IEEE sensors 2023 and 2024
➝ Co-author on a paper published in IEEE sensors journal
➝ An article in review about the method

• Prevision of publication
➝ Publication of a package about the method
➝ Co-author of a patent
➝ Upcoming: A future application paper on CNT sensors
➝ Upcoming: A future paper on causality
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Thank you for your attention
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