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Introduction

• Modified gravity theories: predictions different from GR
• Important test: quasinormal modes of black holes
• Up to now, theoretical computations are rare
• Present a systematic algorithm to extract physical information
• Use it to perform numerical computation of modes
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Scalar-tensor theories and hairy
black holes



Necessity for modified gravity Black hole solutions

Motivations for modified gravity

Heuristic approach
• Design new tests of GR beyond a
null hypothesis check

• EFT of some high energy theory

GR
gµν

Modified gravity
gµν+?

Quantum
regime

energy

Issues of GR
• Big Bang singularity
• Black hole center singularity
• Cosmic expansion

⇒ Important to look for extensions of GR
⇒ Need to develop tests of these modified theories 3



Necessity for modified gravity Black hole solutions

Building a modified gravity theory

General procedure to construct a modified gravity theory:

Break one or
several

hypotheses of
Lovelock’s
theorem

→

Make sure the
theory is not
pathological
(ghosts,

instabilities...)

→
Take experimental
constraints into

account

Different scales of tests
• Large scale: cosmology, growth rates of structures
• Weak fields: Solar System tests, orbits
• Strong fields, small scales: black holes (focus of this talk) 4



Necessity for modified gravity Black hole solutions

Quasinormal modes and the ringdown

Ringdown of a merger: excited BH emits GW at precise frequencies, the
quasinormal modes

Figure 1: Ringdown phase of a binary black hole merger (L. London 2017)
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Necessity for modified gravity Black hole solutions

Computation and measurement

Computation

ho
riz
on

radius

ingoing outgoingwaves

• 2 boundary conditions: eigenvalue
problem

• Complex spectrum due to energy loss
• Depend on background and theory

Measurement

• Obtain from GW signal
• Compare to the theory [Abbott ’21]:
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Necessity for modified gravity Black hole solutions

Horndeski theory of gravity

Shift-symmetric Horndeski theory

S [gµν , φ] =
∫

d4x
[
F(X)R + P(X) + Q(X)�φ+ 2F ′(X)

(
φµνφ

µν − (�φ)2) ,
+ G(X)Gµνφµν +

1
3

GX((�φ)3 − 3�φφµνφµν + 2φµρφρνφµν )
]

φµ = ∇µφ , X = φµφ
µ

• New scalar field: additional degree of freedom
• Easier to evade no-hair theorems [Hui, Nicolis ’13]: new black hole solutions
[Babichev, Charmousis+ ’17; Van Aelst, Gourgoulhon+ ’20; Achour, Liu+ ’20]

• More involved dynamics in vacuum
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Necessity for modified gravity Black hole solutions

New black holes in Horndeski: BCL solution

Choice of Horndeski parameters [Babichev, Charmousis+ ’17]:

F(X) = f0 + f1
√

X P(X) = −p1X , Q(X) = 0 , G(X) = 0

Metric sector: RN with imaginary charge

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2 dΩ2

A(r) = 1 − rm
r
−ξ r2

m
r2 , ξ =

f 2
1

2f0p1r2
m

Scalar sector

φ = ψ(r) , ψ′(r) = ± f1
p1r2

√
A(r)

X(r) = f 2
1

p2
1r4
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Necessity for modified gravity Black hole solutions

New black holes in Horndeski: 4dEGB solution

D → 4 limit of higher-D Gauss-Bonnet [Lu, Pang ’20]:

F(X) = 1 − 2αX P(X) = 2αX2 , Q(X) = −4αX , G(X) = −4α ln(X)

Metric sector:

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2 dΩ2

A(r) = 1 − M (r)
r

, M (r) = 2µ
1 +

√
1 + 4αµ/r3

Scalar sector

φ = ψ(r)

ψ′(r) = −1 +
√

A
r
√

A
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Quasinormal modes in GR



Perturbation setup New challenges in modified gravity

Separating degrees of freedom

1. Start with the Einstein-Hilbert action S [gµν ] =
∫

d4x
√
−g R

2. Focus on spherically symmetric BH: Schwarzschild background
3. Perturb the metric: gµν = ḡµν + hµν and linearise Einstein’s equations

−→ obtain 10 equations
4. Decompose the components of hµν over spherical harmonics
5. Separate by parity: polar (even) and axial (odd) modes
6. Fix the gauge and Fourier transform [Regge, Wheeler ’57; Zerilli ’70]

7. Obtain the 2-dimensional systems

dXodd
dr

= Modd(r)Xodd and dXeven
dr

= Meven(r)Xeven
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Perturbation setup New challenges in modified gravity

Schrödinger equation of propagation

dX
dr

= MX , M =

(
∗ ∗
∗ ∗

)
dX̃
dr∗

= M̃ X̃ , M̃ =

(
0 1

V (r)− ω2 0

)
X = P(r)X̃

Physical interpretation{
X̃ ′

0 = X̃1 ,

X̃ ′
1 = (V (r)− ω2)X̃0

⇒ d2X̃0
dr2

∗
+
(
ω2 − V (r)

)
X̃0 = 0 , dr

dr∗
= A(r)

Schrödinger equation with potential V

r∗: “tortoise coordinate” such that r = rs is equivalent to r∗ = −∞ 11



Perturbation setup New challenges in modified gravity

Interpretation of the equation

Horizon

X̃0 ∼ e−iω(t+−r∗)

Infinity

X̃0 ∼ e−iω(t+−r∗)

• Recover the boundary conditions useful for QNM computation
• Numerical resolution of problem available [Leaver, Chandrasekhar ’97]

12



Perturbation setup New challenges in modified gravity

Summary: computation of modes in GR

Linearized
Einstein’s
equations

Fix
gauge

Separate
by parity

Odd parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Even parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Wave equation:
Y ′′ + (ω2 − Vo)Y = 0

Wave equation:
Y ′′ + (ω2 − Ve)Y = 0

Numerics
Fully

decoupled
system
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Perturbation setup New challenges in modified gravity

What changes in scalar-tensor gravity

Linearized
modified
gravity

equations

Fix
gauge

Separate
by parity

Odd parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Even parity:

X ′ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

X

Wave equation:
Y ′′ + (ω2 − Vo)Y = 0 Numerics

In general:
no decoupling,
usual numerics
not possible

New degrees of freedom
couple to gravitation
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Quasinormal modes in modified
gravity



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

First-order system and boundary conditions

Main idea
Get boundary conditions and perform numerical computations from the

first-order system

Steps to perform
• Find asymptotic behaviour at the horizon and infinity
• Identify ingoing and outgoing modes
• Use a numerical method that does not require Schrödinger equations

15



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Example for axial Schwarzschild

M (r) = −i

(
0 ω2

1 0

)
+

2
r

(
1 0

−iµ 0

)
+O

(
1
r2

)

M̃ (r) =

(
−iω 0

0 +iω

)
+

1
r

(
1 − iµω 0

0 1 + iµω

)
+O

(
1
r2

)
Diagonalizing

dX̃
dr

= M̃ X̃ =⇒ X̃ ∼

(
e−iωr 0

0 e+iωr

)
X̃c

One recovers ingoing and outgoing modes!
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Example for polar Schwarzschild

M (r) =

(
0 0

iω2/λ 0

)
r2 +O(r)

dX
dr

= MX =⇒ X ∼

(
1 0

iω2

λ
r3

3 1

)
Xc

• No diagonalizing possible
• Asymptotic behaviour does not give ingoing and outgoing waves
• Reason of this problem: leading order is nilpotent
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Mathematical results

Solution from theory of meromorphic systems of linear ODEs [Wasow ’65; Balser ’99]

Mathematical algorithm

• Main idea: apply a change of variables X = PX̃
• New system has

M̃ = P−1MP − P−1 dP
dr

• M̃ can be diagonal even if M is not diagonalisable

⇒ important result: diagonalization is always possible order by order
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Principle of the algorithm

Diagonalisable

P = I + 1
r
Σ1+

1
r2Σ2+ . . .

Solve for Σi order by
order→ final system
diagonal

Non-diagonalisable

M ∼

λ 0 . . .

1 λ 0
0 1 λ

 rp

1. P = exp
(
λrp+1/(p + 1)

)
I

2. P = diag(1, r , r2, . . . )

3. Repeat

Several eigenvalues

P = I + 1
r
Σ1+

1
r2Σ2+ . . .

Solve for Σi to decouple
subsystems order by
order

General result

M = Mprp + Mp−1rp−1 + · · · −→ M̃ = Dqrq + Dq−1rq−1 + . . .

X ∼ eD(r)rD−1F(r)Xc 19



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Algorithm for polar Schwarzschild

M (r) =

(
0 0

iω2/λ 0

)
r2 +O(r)

M̃ (r) =

(
−iω 0

0 +iω

)
+

1
r

(
1 − iµω 0

0 1 + iµω

)
+O

(
1
r2

)
Algorithm

P(r) =

(
0 0
1 1

)
r2 +

(
i i

(2λ−3)µ
4λ − i

2ω
(2λ−3)µ

4λ + i
2ω

)
r +O(1)

dX̃
dr

= M̃ X̃ =⇒ X̃ ∼

(
e−iωr 0

0 e+iωr

)
X̃c

One recovers ingoing and outgoing modes, and behaviour from axial modes 20



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Algorithm for BCL black hole: infinity

BCL black hole

ds2 = −A(r)dt2 + A(r)−1 dr2 + r2 dΩ2 , φ = ψ(r)

A(r) = 1 − µ/r − ξµ2/r2 , ψ′(r) = ±c
/

r2√A(r)

M =

ω2

 r2 +

2µω2 −iω

 r + ...

D =


−iω

+iω
−
√

2ω
+
√

2ω

+ ...

al
go
rit
hm g∞± (t, r)= a±e−iωt±iωr

s∞± (t, r) = b±e−iωt±
√

2ωr
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Algorithm for BCL black hole: horizon

BCL black hole

ds2 = −A(r)dt2 + A(r)−1 dr2 + r2 dΩ2 , φ = ψ(r)

A(r) = 1 − µ/r − ξµ2/r2 , ψ′(r) = ±c
/

r2√A(r)

M =

a0

 1
(r − r+)2 + M−1

1
r − r+

+ ...

D =


−iω/c0

+iω/c0

1/2 1
1/2

 1
r − r+

+ ...

al
go
rit
hm

g
r+
± (t, r)= a±(r − r+)±iω/c0e−iωt

s
r+
1 (t, r) = b1

√
r − r+e−iωt

s
r+
2 (t, r) = b2

√
r − r+ log(r − r+)e−iωt
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Algorithm for 4dEGB black hole: infinity

4dEGB black hole

A(r) = 1 − 2µ
/

r(1 +
√

1 + 4αµ/r3) , z = r/rh , Ω = ωrh , β = α
/

r2
h

M =

Ω2/a1

 z5 +

Ω2/a2 −iΩ/a1

 z4 + ...

D =


−iΩ

+iΩ

+

 −i
√
λ

+i
√
λ

 1
z
+ ...

al
go
rit
hm g∞± (t, r)≈ a±e−iΩ(t±z)

s∞± (t, r)≈ b±e−iωtz±i
√
λ
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Algorithm for 4dEGB black hole: horizon

4dEGB black hole

A(r) = 1 − 2µ
/

r(1 +
√

1 + 4αµ/r3) , x = 1
/√

r − rh , Ω = ωrh , β = α
/

r2
h

M =


a0

+ ...

D =


−1

0
0

2

 1
x
+ ...

al
go
rit
hm

grh
± (t, r) =?

srh
± (t, r) =?

No propagating modes
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

“Recipe” for the computation of quasinormal modes

1 2 3 4 5 6

Linearized
Einstein’s
eqs

→
Gauge
choice →

Back-
ground →

First-order
system →

Asymptoti-
cal

behaviour
→

Numerical
computa-
tion

• Generic algorithm that should work for any modified gravity theory
• Go around the technical difficulties of finding a wave equation
• Caveat: we do not get the full decoupled equations for the modes⇒ no
modified Regge-Wheeler equation

• Asymptotical behaviour is enough to obtain boundary conditions for
numerical resolution 25



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Numerical method

Impose both boundary behaviours to the system dX/dr = MX with the ansatz:

X = e+iωrr iµω︸ ︷︷ ︸
Infinity

(
r − r+

r

)−iω/c0

︸ ︷︷ ︸
Horizon

∞∑
n=0


anrm1(r − r+)m2

bnrm3(r − r+)m4

cnrm5(r − r+)m6

dnrm7(r − r+)m8


(

r − r+
r

)n

• Singular behaviour is known from asymptotic diagonalisation
• Exponents mi known from transfer matrices P∞ and Ph used for
diagonalisation at infinity and horizon
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Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

Condition for convergence

Convergence criterion: continued fraction method [Rosa, Dolan ’12; Leaver,

Chandrasekhar ’97; Gautschi ’67]

Recurrence relation obtained after
Gauss reduction

Xn =
(

an bn cn dn

)
α0X1 + β0X0 = 0
αnXn+1 + βnXn + γnXn−1 = 0 .

Matrix-valued continued fraction
method

MX0 = 0 =⇒ det(M ) = 0 ,

M = β0 −α0

[
β1 −α1[...]

−1γ2

]−1
γ1

27



Asymptotics from the first order system Application to new black hole solutions in modified gravity Numerical results (BCL)

BCL axial modes as proof of concept

Proof of concept for a 2 × 2 system

• Modification of the algebraically
special mode

• Higher overtones are more sensitive
to modifications

• Asymptotics: straight non-vertical
line

−1.0 −0.5 0.0 0.5 1.0

<(ω)

−8

−6

−4

−2

0

=(
ω

)

Schwarzschild (GR)

BCL
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Conclusion

• Additional degrees of freedom make the computation of QNMs tricky
• First-order system analysis: extract boundary behaviour
• Use it to understand the physics of propagation and to get boundary
conditions

• Method used in several setups to compute QNMs [Roussille, Langlois+ ’24;

Roussille, Larrouturou ’24]
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Thank you for your attention!
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