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The Cauchy horizon and blue-shift

Cauchy horizon:
Data posed on a Cauchy
hypersurface does not have
unique solutions past CH.

Heuristic blue-shift:
For a black hole with a Cauchy
horizon, ingoing light rays build up
infinitely, indicating blow-up.

Gravitational perturbations should
behave similarly.
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Previous scattering results for black hole interiors

Reissner-Nordström
Penrose–Simpson ’73, blue-shift instability of Maxwell, numerics.

Kehle–Shlapentokh-Rothman ’19; Luk–Oh–Shlapentokh-Rothman ’22:
scattering and blow-up of □gu = 0.

Häfner–Mokdad–Nicolas ’20; Boussaid–Daudé–Mokdad (upcoming):
scattering and blow-up of Dirac, Λ ∈ R.

Kerr
Sbierski ’23, scattering and blow-up of Teukolsky.

Kerr–Newman
Mokdad–P ’23, scattering of Dirac, Λ ∈ R.
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Black hole interiors

Illustrative example: Reissner-Nordström.
In Boyer-Lindquist coordinates
(t, r, θ, φ) ∈ Rt × (r−, r+)r × S2,

gM,Q := D(r) dt2 − 1

D(r)
dr2 − r2

◦
/g ,

with the horizon function

D(r) :=
(r − r−)(r − r+)

r2
< 0 .

r = r−

r = r+

bc bci+ i+

t
=

cs
t

-∂r
∂t

b

b

M
r =

cs
t

Milos Provci Scattering of Dirac Fields in Black Hole Interiors



4/21

Black hole interiors

Illustrative example: Reissner-Nordström.
In Boyer-Lindquist coordinates
(t, r, θ, φ) ∈ Rt × (r−, r+)r × S2,

gM,Q := D(r) dt2 − 1

D(r)
dr2 − r2

◦
/g ,

with the horizon function

D(r) :=
(r − r−)(r − r+)

r2
< 0 .

r = r−

r = r+

bc bci+ i+

t
=

cs
t

-∂r
∂t

b

b

M
r =

cs
t

Milos Provci Scattering of Dirac Fields in Black Hole Interiors



5/21

Black hole interiors

Illustrative example: Reissner-Nordström.
In Boyer-Lindquist coordinates
(x, τ , θ, φ) ∈ Rx × (−∞,+∞)τ × S2,

gM,Q = D̃(r(τ))dτ2−D̃(r(τ))dx2−r(τ)2
◦
/g ,

where

D̃(r(τ)) := −D(r(τ)) > 0 .

τ = +∞

τ = −∞

bc bci+ i+

x
=

cs
t

∂τ
∂x

b

b

M
τ =

cs
t
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The Kerr-Newman interior

Take (M = Rτ ×Rx ×S2, g = gM,Q,a,Λ) .

(M, g) is globally hyperbolic:
=⇒ each Στ

∼= R× S2 =: Σ
=⇒ M ∼= R× Σ.

We have the following asymptotics for
functions of r(τ):

|r − r∓| ∼ e−2|κ∓||τ |

D̃ ∼ e−2|κ∓||τ | as τ → ±∞ .

H L
− H R

−

H L
+

H R
+

bc bci+ i+

Στ

b

b

M

Στ ′

Σ0
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The Dirac equation

In a Newman-Penrose tetrad {l, n,m,m}, four coupled complex scalar equations

na(∂a − iqAa)ϕ0 −ma(∂a − iqAa)ϕ1 + (µs − γs)ϕ0 + (τs − βs)ϕ1 =
m√
2
χ0′ ,

la(∂a − iqAa)ϕ1 −ma(∂a − iqAa)ϕ0 + (αs − πs)ϕ0 + (ϵs − ρs)ϕ1 =
m√
2
χ1′ ,

la(∂a − iqAa)χ
0′ +ma(∂a − iqAa)χ

1′ + (ϵs − ρs)χ
0′ − (αs − πs)χ

1′ = − m√
2
ϕ0 ,

na(∂a − iqAa)χ
1′ +ma(∂a − iqAa)χ

0′ − (τs − βs)χ
0′ + (µs − γs)χ

1′ = − m√
2
ϕ1 .

The system can be rewritten as a matrix equation for the Dirac spinor

Ψ =

(
ϕA
χA′

)
, A = 0, 1 .
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Dirac −→ Schrödinger: the Hamiltonian

The Dirac equation in Schrödinger form for Ψ on (M, gM,Q,a,Λ) reads

i∂τΨ = H(τ)Ψ ,

where

H(τ, θ) := H0(τ) +

√
D̃(r(τ))

(
M0(τ, θ) +H1(θ) +

√
∆θ /D(θ)

)
,

and (for D = −i∂; unitary matrices)

H0 := −Γz

(
Dx +

a

r2 + a2
Dφ − qQr

r2 + a2

)
,

M0 := iM−mr +M+ma cos θ ,

H1 := Γx
i∆′

θ

4
√
∆θ

+ Γy
a sin θ√

∆θ

(
λDx +

Λa

3
Dφ

)
,

∆θ := 1 +
Λa2

3
, /D := iΓx

(
∂θ +

cot θ

2

)
− iΓy

∂φ
sin θ

.
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A conserved quantity for the Dirac equation

The Dirac Hamiltonian H(τ) is symmetric on the space L2(Σ; C4).
Hence for two solutions Ψ1,Ψ2 ∈ L2(Σ; C4),

i∂τ ⟨Ψ1,Ψ2⟩L2(Σ) = ⟨HΨ1,Ψ2⟩L2(Σ) − ⟨Ψ1, HΨ2⟩L2(Σ) = 0 .

This means for data ψ of a solution Ψ

∀τ ∈ R , ∥Ψ∥L2(Σ) = ∥ψ∥L2(Σ) .

Define the Hilbert space:
H := L2(Σ; C4) .
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Functional spaces

Recall: H = L2(Σ; C4).

H1
sp (Σ; C4) is the space of Dirac spinors ξ satisfying

∥ξ∥2H1
sp (Σ) := ∥ξ∥2H + ∥∂xξ∥2H + ∥∇̃ξ∥2H <∞ ,

where ∇̃ is the spinorial connection on S2 with components

∇̃θξ = ∂θξ and ∇̃φξ = ∂φξ + iΓz
cos θ

2
ξ , Γz =

(
σz 0
0 −σz

)
.

One can verify that ∥ /Dξ∥2H ≂ ∥ξ∥2H + ∥∇̃ξ∥2H, and∥∥ /Dξ∥∥H ≲ ∥ξ∥H1
sp (Σ) , ∥H(τ)ξ∥H ≲ ∥ξ∥H1

sp (Σ) .
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Time-dependent Hamiltonians and scattering

Problem: ∇ ∼ ∂ + Γ(τ).

Solution:

Pass from a time-dependent IVP to one with “free” (time-independent) dynamics:

(⋆)

{
i∂τΨ = H(τ)Ψ

Ψ|τ=0 = ψ
on H −−→

{
i∂τΨ

+ = H+
0 Ψ+

Ψ+|τ=0 = ψ0

on H .

We would like:

∀ψ ∈ H , ∃ψ0 ∈ H :
∥∥∥U(τ)ψ − e−iH+

0 τψ0

∥∥∥
H
−−−−→
τ→+∞

0 ,

where
Ψ(τ) = U(τ)ψ and Ψ+(τ) = e−iH+

0 τψ0 .

ψ0 is called the future scattering data for (⋆). Equivalently,

ψ0 = lim
τ→+∞

e+iH+
0 τ U(τ)ψ .
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Wave operators

This is equivalent to defining the direct and inverse wave operators

W± := s−lim
t→±∞

W±(t) and Ω± := s−lim
t→±∞

Ω±(t) ,

where
W±(t) := U(t)−1e−iH±

0 t and Ω±(t) := e+iH±
0 t U(t) .

Existence of W± and Ω± =⇒ existence, uniqueness, and asymptotic
completeness of scattering data.

Existence is usually proven via Cook’s method :

Check that
(
∂tW

±(t)ψ, ∂tΩ±(t)ψ
)
∈ L1(R; H×H) for each ψ ∈ H.
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Main result

Theorem (Mokdad-P ’23)

Let ψ ∈ H and Ψ be a weak solution to the Dirac equation{
i∂τΨ = HΨ ,

Ψ|τ=0 = ψ .

with Hamiltonian H = H0 +
√
D̃
(√

∆θ /D +H1 +M0

)
. Define H±

0 := H0|τ→±∞.
Then

W± := s−lim
τ→±∞

U(τ)−1e−iτH±
0 ,

Ω± := s−lim
τ→±∞

e+iτH±
0 U(τ) .

exist on H.
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Symmetry operators for special cases

Recall

H =

radial part︷ ︸︸ ︷
(H0 + imr

√
D̃M−)+

√
D̃

angular part︷ ︸︸ ︷(√
1 +

Λa cos2 θ

3
/D +H1 +M+ma cos θ

)
.

Let m = 0. Then H|m=0 commutes with
(√

∆θ /D +H1

)2
.

Let a = 0. Then H| a=0 commutes with /D2 due to [M−,Γj ] = 0.

We define

Q :=
(√

∆θ /D +H1

)2
,

which is a symmetry operator when either m = 0 or a = 0.
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Symmetry operators for special cases

For solutions Ψ with data ψ at τ = 0, we have

(⋆)

{
i∂τΨ = HΨ ,

Ψ|τ=0 = ψ .
=⇒

{
i∂τQΨ = HQΨ ,

QΨ|τ=0 = Qψ .

Hence: ∀τ ∈ R , ∥QU(τ)ψ∥H = ∥Qψ∥H.

Proof via Cook’s method greatly simplified: ∀ψ ∈ D := H1
sp (Σ; C4),∥∥∥∂τ (e+iτH±

0 U(τ)ψ
)∥∥∥2

H
=
∥∥(H −H±

0 )U(τ)ψ
∥∥2
H

≤
∥∥H0 −H±

0

∥∥2
B(D;H)

∥ψ∥2D + D̃
∥∥∥Q1/2ψ

∥∥∥2
H
+m2D̃ ∥ψ∥2H .
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Symmetry operators for special cases

For solutions Ψ with data ψ at τ = 0, we have

(⋆)

{
i∂τΨ = HΨ ,

Ψ|τ=0 = ψ .
=⇒

{
i∂τQΨ = HQΨ ,

QΨ|τ=0 = Qψ .

Hence: ∀τ ∈ R , ∥QU(τ)ψ∥H = ∥Qψ∥H.
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Failure to commute in the general case

Recall

H :=

radial part︷ ︸︸ ︷
(H0 + imr

√
D̃M−)+

√
D̃

angular part︷ ︸︸ ︷(√
∆θ /D +H1 +M+ma cos θ

)
.

Consider for j ∈ {0, 1} , Qj :=
(√

∆θ /D +H1 +M+jma cos θ
)2
.

Unfortunately,

Q1 commutes with the angular part, but does not commute with M− due to
terms like ΓxM+. (ΓxM+Γz = −ΓzΓxM+.)

Q0 commutes with the radial part, but does not commute with cos θ due to
∂θ in /D.

Therefore, given a solution Ψ to (⋆), QjΨ is not a solution.
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Main difficulty: control of /D

Cook’s method will produce the term

D̃
∥∥ /D U(τ)ψ

∥∥2
H .

No obvious way to commute /D through U(τ). Even so,

Proposition (Mokdad-P ’23)

Let ψ ∈ D = H1
sp (Σ;C4). Then ∀τ ∈ R, we have∥∥ /D U(τ)ψ

∥∥
H ≲ ∥ψ∥H1

sp (Σ) .
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The comparison operator B

We define B := /D2 +Dx
2 to have ∀ψ ∈ D∥∥∥B1/2ψ

∥∥∥2
H
= ⟨Bψ,ψ⟩H = ∥Dxψ∥2H +

∥∥ /Dψ∥∥2H ≂ ∥ψ∥2D .

This ensures:∥∥ /DB−1/2
∥∥
B(H)

≤ 1,

∀τ ∈ R, B1/2 U(τ)B−1/2 ∈ B(H).

The last statement is an application of Grönwall’s lemma for k(τ) =
∥∥B1/2 U(τ)B−1/2u

∥∥2
H

and requires showing that

B−1/2[H,B]B−1/2 ∈ L1(Rτ ; B(H)) .
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Proof of Proposition 4.1

Proposition (Mokdad-P ’23)

Let ψ ∈ D = H1
sp (Σ;C4). Then ∀τ ∈ R, we have∥∥ /D U(τ)ψ

∥∥
H ≲ ∥ψ∥H1

sp (Σ) .

Proof. Using the properties of B, we have for ψ ∈ D,∥∥ /D U(τ)ψ
∥∥
H =

∥∥∥ /DB−1/2B1/2 U(τ)B−1/2B1/2ψ
∥∥∥
H

≤
∥∥∥ /DB−1/2

∥∥∥
B(H)

∥∥∥B1/2 U(τ)B−1/2
∥∥∥
B(H)

∥∥∥B1/2ψ
∥∥∥
H
≲ ∥ψ∥D .

□
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Why B?

We recall the operators

B = /D2 +Dx
2 ,

Qj =
(√

∆θ /D +H1 +M+jma cos θ
)2

, j ∈ {0, 1} .

B versus Qj

Downside: [B,H] computation is a large technical portion of the proof.
Greatly shortened by using Qj .

Upside: B is simple and B1/2 is equivalent to the H1
sp−norm.

Relating Qj to the H1
sp−norm seems unruly.
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Prospects

We have shown existence of the unitary scattering operator S = Ω+W− on H.

Using stationary scattering (reflection and transmission coefficients in the frequency
domain), one hopes to prove blow-up using the poles of the holomorphic extension of
the Fourier transform of S.1

Thank you!

1Upcoming work by N. Boussaid, T. Daudé,
and M. Mokdad on the interior of RN(A)dS.
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