$\mathscr I$ and the black hole horizon

- new conserved quantities from a geometric duality -

w/ Shreyansh Agrawal, Panagiotis Charalambous

Laura DONNAY

Mathematical Physics of Gravity and Symmetry Workshop Institut de Mathématiques de Bourgogne (IMB) Nov 22 2024

Motivation

Quantum gravity in 4d asymptotically flat spacetimes

These spacetimes are relevant

from collider physics ... The contract of the

vanishing cosmological constant $\Lambda = 0$

(< cosmological scales)

Motivation

Quantum gravity in 4d asymptotically flat spacetimes

Black holes

Our understanding of quantum properties of black holes goes *hand-in-hand* with the **spectacular advances** of the

holographic or **AdS/CFT correspondence**.

$$
S_{BH} = \frac{Ac^3}{4G\hbar} \rightarrow \text{'Primordial holographic relationship'}
$$

[Bekenstein][Hawking]

Problem: we do not live in Anti-de Sitter spacetime

→ need to develop a **holographic correspondence** for **flat spacetimes**

Motivation

The holographic principle

Quantum gravity is *encoded* in a different theory that lives in a *lower-dimensional* spacetime.

['t Hooft '93; Susskind '94; Maldacena '97]

How general is it?

Anti-de Sitter Flat $\Lambda < 0$

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Main obstructions/difficulties:

The conformal **boundary** includes $\mathbf{1}$

> future/past timelike infinity future/past null infinity spatial infinity

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Road map: symmetries \sim $-$

The phenomenon of symmetry enhancement is a key feature of asymptotically flat spacetimes, due to the presence of gravitational radiation

what was expected

Poincaré

what was found

Bondi-Metzner-Sachs (BMS) ('62) **+ van der Burg**

While BMS symmetries were originally *disregarded*, it was realized (50 years later!) that they

constrain the gravitational **S-matrix** [Strominger '13]

While BMS symmetries were originally *disregarded*, it was realized (50 years later!) that they

- constrain the gravitational **S-matrix** [Strominger '13]
- have associated low-energy **observables**(memory effects) [Ashtekar '14][Strominger, Zhiboedov '14]

Donnay, Goncharov, Harms, *Phys. Rev. Lett.* 2024

FIG. 4: Demonstration of the GW memory contribution to strain from a merger of two non-spinning BBHs in the extended BMS scenario, $(m_1, m_2, \theta_{in}, z) = (30 M_{\odot}, 30 M_{\odot}, \pi/3, 0.06)$. Solid lines show h_+ , dashed lines show h_{\times} .

While BMS symmetries were originally *disregarded*, it was realized (50 years later!) that they

- constrain the gravitational **S-matrix** [Strominger '13]
- have associated low-energy **observables**(memory effects) [Ashtekar '14][Strominger, Zhiboedov '14]
- allow further extensions, including the local **conformal** group [Barnich, Troessaert '09]

While BMS symmetries were originally *disregarded*, it was realized (50 years later!) that they

- constrain the gravitational **S-matrix** [Strominger '13]
- have associated low-energy **observables**(memory effects) [Ashtekar '14][Strominger, Zhiboedov '14]
- allow further extensions, including the local **conformal** group [Barnich, Troessaert '09]

revival of **flat holography**

$$
\langle \text{out}|S| \text{ in } \rangle = \langle O_{\Delta_{1}, \overrightarrow{J}_{1}} \cdots O_{\Delta_{m}, \overrightarrow{J}_{m}} \rangle_{C C F T_{2}}
$$

review L. Donnay, *Celestial holography: an asymptotic symmetry perspective*, Phys. Rept. 1073 (2024)

Flat space holography with horizons?

What is the global form of conservation laws?

OUTLINE

BLACK HOLE HORIZON \bigcirc VS NULL INFINITY A) GEOMETRY

2 HG/J «DUALITY,

3 MAP OF DO CONSERVED
QUANTITES 26

Geometry of a black hole horizon

 $s = -$ see the review [E. Gourgoulhon, J.L. Jaramillo '05]

 $\overline{}$

 \leq \mathcal{X} $= c$ $\boldsymbol{\delta}$

Cordinates:
$$
(N, \ell, X^A)
$$

\nabysned, radial
null time coordinate coordinate coordinates

\nThe msn-horizon geometry is (expanding in small ρ):

\n
$$
ds^2 = -2\rho X \, dr^2 + 2 \, dr d\rho + 2\rho \partial_A dr dX^A
$$
\n
$$
+ (\Omega_{AB} + \rho \lambda_{AB}) \, dx^A \, dx^B + \dots
$$
\n
$$
K, \theta_A, \Omega_{AB} : functions of (N, X^A)
$$

Geometry of a black hole horizon

 $P = O$ \mathcal{H} $\rho = c$ st \preceq \preceq γ

$$
ds^{2} = -2\rho X \, dr^{2} + 2 \, dr d\rho + 2\rho Q_{A} dr dX^{A} + (A_{AB} + A_{AB}) \, dx^{A} dx^{B} + ...
$$
\nThe horizon extrimic geometry is given by\n
$$
\sum_{AB} = \frac{1}{2} \partial_{a} \cdot \Omega_{AB} \xrightarrow{kra\Omega} \frac{dx}{dx} - \frac{u}{a} = \frac{\rho}{2} \partial_{a} \Omega_{AB} - \frac{u}{d-2} \Omega_{AB}
$$
\n
$$
\omega_{A} = -\frac{1}{2} \partial_{A} \alpha \omega_{k} \omega_{k} dx_{R}
$$

Geometry of a black hole horizon

 $P = 0$ \mathcal{H} 31 $\frac{1}{\sqrt{2}}$

 $\boldsymbol{\omega}$

$$
ds^{2} = -2\rho K dr^{2} + 2 dr d\rho + 2\rho G_{A}dr dX^{A} + (A_{AB} + \rho A_{AB})dx^{A} dx^{B} + ...
$$
\n
$$
S_{n,\rho}
$$
\nThe horizon extrimic geometry is from by
\n
$$
S_{n,\rho}
$$
\n
$$
\sum_{\text{quation}^{10}} = \frac{4}{2} \partial_{\mu} \cdot \Omega_{AB} + \frac{mc\omega}{G_{2}\omega_{AB}} \cdot \frac{m}{\rho_{2}\omega_{A}} \cdot \frac{m}{\rho_{B}} = \frac{1}{2} \partial_{\mu} \cdot \Omega_{AB} - \frac{Q}{d-\lambda} \cdot Q_{AB}
$$
\n
$$
\omega_{A} = -\frac{4}{2} \partial_{A} \omega_{Lmit} \cdot \frac{m}{\rho_{2}\omega_{A}} \cdot \frac{m}{\rho_{2}\omega_{A}} \cdot \frac{m}{\rho_{2}\omega_{A}} \cdot \frac{Q}{d\rho_{2}\omega_{A}} \cdot \frac{Q}{d\rho_{2
$$

• Null Raychaudhuri equation:
$$
(\partial_v - \kappa) \Theta + \frac{1}{d-2} \Theta^2 + \sigma_{AB} \sigma^{AB} = 0
$$

- > describes how the *expansion* evolves along the null geodesic congruence **Key** in the proof of singularity theorems (+ energy conditions)

- **Null Raychaudhuri** equation: $(\partial_v \kappa) \Theta + \frac{1}{d-2} \Theta^2 + \sigma_{AB} \sigma^{AB} = 0$
- **Damour** equation:
	- originally thought of as the Navier-Stokes equation for a viscous **fluid** [Damour '79][Price,Thorne '86] \rightarrow In fact, it is a conservation equation of a *Carrollian* (not a Galilean) fluid [LD, Marteau '19]

• Null Raychaudhuri equation: $(\partial_v - \kappa) \Theta + \frac{1}{d-2} \Theta^2 + \sigma_{AB} \sigma^{AB} = 0$

• **Damour** equation:
$$
(\partial_v + \Theta) \theta_A + 2D_A \left(\kappa + \frac{d-3}{d-2}\Theta\right) - 2D^B \sigma_{AB} = 0
$$

- originally thought of as the Navier-Stokes equation for a viscous **fluid** [Damour '79][Price,Thorne '86] \rightarrow In fact, it is a conservation equation of a *Carrollian* (not a Galilean) fluid [LD, Marteau '19]
- **Transverse shear** evolution equation:

$$
R_{AB} [\Omega] - (\partial_v + \kappa) \lambda_{AB} - 2D_{(A} \omega_{B)} - 2\omega_A \omega_B
$$

+ $2\sigma_{(A}^{C} \left[\lambda_{B)C} - \frac{1}{4} \Omega_{B)C} \lambda_{D}^{D} \right] - \frac{d - 6}{2(d - 2)} \Theta \left[\lambda_{AB} + \frac{1}{d - 6} \Omega_{AB} \lambda_{C}^{C} \right] = 0$

• Null Raychaudhuri equation: $(\partial_v - \kappa) \Theta + \frac{1}{d-2} \Theta^2 + \sigma_{AB} \sigma^{AB} = 0$

• **Damour** equation:
$$
(\partial_v + \Theta) \theta_A + 2D_A \left(\kappa + \frac{d-3}{d-2}\Theta\right) - 2D^B \sigma_{AB} = 0
$$

- originally thought of as the Navier-Stokes equation for a viscous **fluid** [Damour '79][Price,Thorne '86] - -> -In fact, it is a conservation equation of a *Carrollian* (not a Galilean) fluid [LD, Marteau '19]
- **Transverse shear** evolution equation:

$$
R_{AB} [\Omega] - (\partial_v + \kappa) \lambda_{AB} - 2D_{(A} \omega_{B)} - 2\omega_A \omega_B
$$

+ $2\sigma_{(A}^{C} \left[\lambda_{B)C} - \frac{1}{4} \Omega_{B)C} \lambda_{D}^{D} \right] - \frac{d - 6}{2(d - 2)} \Theta \left[\lambda_{AB} + \frac{1}{d - 6} \Omega_{AB} \lambda_{C}^{C} \right] = 0$

• Tidal force equation:

$$
(\partial_v - \kappa) \sigma_{AB} - \sigma_{AC} \sigma_B^C - \frac{1}{d-2} \Omega_{AB} \sigma_{CD} \sigma^{CD} = 0
$$

Geometry of null infinity

▪ **Asymptotically flat** spacetime (in Newman-Unti gauge) [Bondi, van der Burg, Metzner '62] [Sachs '62] [Newman, Unti '62] $r\to\infty$ $(u, r, x^A), x^A = (z, \bar{z})$ $ds_{\mathscr{J}+}^2 = -F du^2 - 2 \, du dr + r^2 \mathcal{H}_{AB} \left(dx^A - \frac{U^A}{r^2} du \right) \left(dx^B - \frac{U^B}{r^2} du \right)$ (z,\bar{z}) $\mathcal{H}_{AB}(u,r,x^C) = q_{AB}(x^C) + \frac{1}{r} C_{AB}(u,x^C) + o(r^{-1}),$ $F(u,r,x^A) = \frac{R[q]}{(d-2)(d-3)} - \frac{1}{d-2}\partial_u C_A^A - \frac{2Gm_B}{r} + o(r^{-1}),$ $U^{A}\left(u,r,x^{B}\right) = \frac{1}{2(d-3)}\left(D_{B}C^{AB}-D^{A}C_{B}^{B}\right) + \frac{2}{3r}\left[N^{A}-\frac{1}{2}C^{AB}D^{C}C_{BC}\right] + o\left(r^{-1}\right)$

 \mathscr{I} vs \mathscr{H}

$$
ds_{\mathscr{J}^{+}}^{2} = -F du^{2} - 2 du dr + r^{2} \mathcal{H}_{AB} \left(dx^{A} - \frac{U^{A}}{r^{2}} du \right) \left(dx^{B} - \frac{U^{B}}{r^{2}} du \right)
$$
\n
$$
d\mathscr{H}^{+}
$$
\n<math display="</math>

[Newman, Unti '62][Barnich, Lambert '13]

$$
Newmen - Unti gauge\n $\frac{d}{s}g_{nn}=0$ \n
$$
\frac{d}{s}g_{nn}=0
$$
$$

$$
\begin{cases}\n\xi^{u} = f(u, x^{A}) \\
\xi^{n} = -n \partial_{u} f + J \\
\xi^{A} = \gamma^{A}(u, x^{A}) + I^{A}\n\end{cases}
$$

$$
+ \frac{3}{4} \frac{1}{3} \frac{1}{9} \frac{1}{4} \left(\frac{1}{2} \frac{1}{9} \right) \times \frac{1}{5} \frac{1}{9} \frac{1}{9} \left(\frac{1}{2} \frac{1}{9} \right) \times \frac{1}{2} \left(\frac{1}{9} \frac{1}{9} \right) \times \frac{1}{2} \times \frac{1}{9} \times \frac{1}{9} \times \frac{1}{1} \times \frac{1}{1
$$

 $\chi = \chi^{\prime\prime}$ $\partial_{\gamma} + \chi$ $\partial_{\rho} + \chi^{\prime\prime}$ ∂_{ϕ} Newman-Unki gauge
 $\begin{cases} \frac{d}{dx} \partial_{\ell} e = 0 \\ \frac{d}{dx} \partial_{\ell} e = 0 \end{cases} \Rightarrow \begin{cases} \chi^{\alpha} = f(x, x^{\alpha}) \\ \chi^{\beta} = -\rho \partial_{\alpha} f + J \\ \chi^{\alpha} = \gamma^{\alpha}(\omega, x^{\alpha}) + I^{\alpha} \end{cases}$

+ "nest-houzon but contitions,

[LD, Giribet, Gonzalez, Pino '15]

$$
\chi_{\chi} g_{\mu\tau} = O(\rho) , \quad \chi_{\chi} g_{AB} = O(\rho^{\circ})
$$

$$
\chi_{\chi} g_{\mu\nu} = \begin{cases} O(\rho) & \kappa \neq 0 \\ O(\rho^{\circ}) & \kappa = 0 \\ \text{extremal one} \end{cases}
$$

 $\chi = \chi^{\prime\prime}$ $\partial_{\gamma} + \chi$ $\partial_{\rho} + \chi^{\prime\prime}$ ∂_{ϕ} Newman-Unki gauge
 $\begin{cases} \frac{d}{dx} \partial_{\ell} e = 0 \\ \frac{d}{dx} \partial_{\ell} e = 0 \end{cases} \Rightarrow \begin{cases} \chi^{\alpha} = f(x, x^{\alpha}) \\ \chi^{\beta} = -\rho \partial_{\alpha} f + J \\ \chi^{\alpha} = \gamma^{\alpha}(\omega, x^{\alpha}) + I^{\alpha} \end{cases}$

+ "nest-houzon but contitions,

[LD, Giribet, Gonzalez, Pino '15]

$$
\chi_{\chi} g_{\mu\tau} = O(\rho) , \quad \chi_{\chi} g_{AB} = O(\rho^{\circ})
$$

$$
\chi_{\chi} g_{\mu\nu} = \begin{cases} O(\rho) & \kappa \neq 0 \\ O(\rho^{\circ}) & \kappa = 0 \\ \text{extremal one} \end{cases}
$$

 $\chi = \chi^0 \partial_v + \chi^0 \partial_p + \chi^A \partial_A$ Neurman - Unti gauge $\begin{cases} \frac{d}{dx} \, \frac{d}{dx} e^{-0} \\ \frac{d}{dx} \, \frac{d}{dx} e^{-0} \end{cases} \Rightarrow \begin{cases} \chi^{\prime\prime} = f(\omega, x^{\prime}) \\ \chi^{\prime} = -\rho \, \partial_{\alpha} f + J \\ \chi^{\prime} = -\rho \, \partial_{\alpha} f + J \end{cases}$ + "near-houzon but contitions, [LD, Giribet, Gonzalez, Pino '15] $L_{\chi} g_{\nu A} = O(\rho)$, $L_{\chi} g_{AB} = O(\rho^{\circ})$
 $L_{\chi} g_{\nu D} = \begin{cases} O(\rho) & \text{if } \rho > 0 \\ O(\rho^{\circ}) & \text{if } \rho > 0 \\ O(\rho^{\circ}) & \text{if } \rho > 0 \end{cases}$ $L_{\text{extra}} = \frac{1}{2} \int_{\text{cyl}} \text{if } \rho > 0$
 $L_{\text{extra}} = \frac{1}{2} \int_{\text{cyl}} \text{if } \rho > 0$

Carroll symmetries

CONFORMAL CARROLL ALGEBRA (CCARR_N) BMS = CCARR2 $\&g_g = \lambda g$ $\&g_m = -\frac{\lambda}{N}m$ y^+ : $m = 2$
 $q = 9$ **AB** dx^A dx^B \Rightarrow $\xi = y^A(x)2_A + (\tau(x) + 2 \mu B_A)^A$
 $\int_{\text{density of complex and weight -2}}^{\text{density}} D_A y^A dy$ NEWMAN-UNTI ALGEBRA (NU) $\begin{array}{ccc} \mathcal{L}_{g}g=\lambda g & \exists \text{subalfera}: (\mathcal{L}_{m})^N\in=0\\ \mathcal{L}_{g}=\sqrt{\lambda}(\lambda) \partial_{A^{+}}\frac{\partial}{\partial(u,\lambda)}\partial_{u} & \text{INU}_{2} \dots & \text{IVU}_{n} \end{array}$

OUTLINE

 \mathcal{A}

BLACK HOLE HORIZON VS NULL INFINITY A) GEOMETRY
B) INFINITE SYMMETRIES

2 HG/J «DUALITY,

3 MAP OF DO CONSERVED
QUANTITES 26

Alhambra المَمْراء tile (13th century)

Null infinity as an extremal horizon

is an **extremal non-expanding horizon** for the (unphysical) conformally completed spacetime

$$
d\tilde{s}_{\mathscr{I}^+}^2 = \Omega^2 ds_{\mathscr{I}^+}^2 \,, \quad \Omega = \frac{\alpha}{r}
$$

[Ashtekar, Khera, Kolanowski, Lewandowski '22] [Ashtekar, Speziale '24]

- The expansion of all normal vanishes at $\mathscr{I} \longrightarrow$ non-expanding
- $g_{uA} \sim \mathcal{O}(1) \longrightarrow \mathcal{I}$ is non-twisting
- Subcase: no **radiation** \leftrightarrow **isolated** horizon

 $N_{AB}=-\partial_{v}\lambda_{AB}$

Null infinity as an extremal horizon

is an **extremal non-expanding horizon** for the (unphysical) conformally completed spacetime

$$
d\tilde{s}^2_{\mathscr{I}^+} = \Omega^2 ds^2_{\mathscr{I}^+} \,, \quad \Omega = \frac{\alpha}{r}
$$

$$
d\tilde{s}_{\mathscr{J}^{+}}^{2} = \Omega^{2} d s_{\mathscr{J}^{+}}^{2} = \Omega^{2} \left[-F du^{2} - 2 du dr + r^{2} \mathcal{H}_{AB} \left(dx^{A} - \frac{U^{A}}{r^{2}} du \right) \left(dx^{B} - \frac{U^{B}}{r^{2}} du \right) \right]
$$
\nspatial inversion

\n
$$
r = \frac{\alpha^{2}}{\rho}, \quad u = v
$$
\n
$$
d\tilde{s}_{\mathscr{J}^{+}}^{2} = ds_{\mathscr{H}^{+}}^{2}
$$
\nwith

\n
$$
\mathcal{F} = \alpha^{-2} F, \quad \theta^{A} = -\rho \alpha^{-4} U^{A}
$$
\n
$$
\kappa = 0 \qquad \qquad \Theta = 0 \qquad \qquad \omega_{A} = 0
$$
\nextremal non-expanding non-rotating

Null infinity as an extremal horizon

is an **extremal non-expanding horizon** for the (unphysical) conformally completed spacetime

$$
d\tilde{s}^2_{\mathscr{I}^+} = \Omega^2 ds^2_{\mathscr{I}^+} \,, \quad \Omega = \frac{\alpha}{r}
$$

This black hole horizon `dual' to null infinity is in general **not part of the physical spacetime**

BUT

A consequence of this duality is

If the physical spacetime contains an **extremal non-rotating horizon**, then

the map $\mathscr{H}^{\pm} \longrightarrow \mathscr{I}^{\pm}$ should be an **exact isometry** of that spacetime

This 'explains' the **Couch-Torrence symmetry** of $\qquad \qquad \rightarrow$ **extreme Reissner-Nordstrom (ERN)** black holes

[Agrawal, Charalambous, LD'24]

ERN as a self-dual example: the Couch-Torrence inversion symmetry

Extremal Reissner-Nordström (ERN) black hole

$$
ds_{\text{ERN}}^2 = -\frac{\Delta(r)}{r^2}dt^2 + \frac{r^2}{\Delta(r)}dr^2 + r^2d\Omega_2^2 \qquad \Delta(r) = (r - M)^2
$$

Couch-Torrence (CT) inversion **symmetry** [Couch, Torrence '84]

$$
r\xrightarrow[]{\mathrm{CT}}\tilde{r}=\frac{Mr}{r-M}\,:\ \ \, \text{isometry of}\ \, r^{-2}ds^2_{\mathrm{ERN}}
$$

Note: isometry of the conformal metric [Borthwick, Gourgoulhon, Nicolas '23]

CT inversion : maps null infinity to the horizon!

$$
r_* \xrightarrow{\text{CT}} -r_* \qquad r_* = r - M - \frac{M^2}{r - M} + 2M \ln \left| \frac{r - M}{M} \right|
$$

$$
\Rightarrow (v, r, x^A) \xleftarrow{\text{CT}} \left(u, \frac{Mr}{r - M}, x^A \right) \qquad \Leftrightarrow \qquad \mathscr{H}^{\pm} \xleftarrow{\text{CT}} \mathscr{I}^{\pm}
$$

ERN as a self-dual example: the Couch-Torrence inversion symmetry

Extremal Reissner-Nordström (ERN) black hole

$$
ds_{\text{ERN}}^2 = -\frac{\Delta(r)}{r^2}dt^2 + \frac{r^2}{\Delta(r)}dr^2 + r^2d\Omega_2^2
$$

$$
\Delta(r) = (r - M)^2
$$

Couch-Torrence (CT) inversion **symmetry** [Couch, Torrence '84]

$$
r\xrightarrow{\operatorname{CT}}\tilde{r}=\frac{Mr}{r-M}\,:\quad\text{isometry of}\;\,r^{-2}ds^2_{\operatorname{ERN}}
$$

CT inversion : maps null infinity to the horizon!

 \Rightarrow

$$
r_* \xrightarrow{\text{CT}} -r_* \qquad r_* = r - M - \frac{M^2}{r - M} + 2M \ln \left| \frac{r - M}{M} \right|
$$

$$
(v, r, x^A) \xleftarrow{\text{CT}} \left(u, \frac{Mr}{r - M}, x^A \right) \qquad \Leftrightarrow \qquad \mathscr{H}^{\pm} \xleftarrow{\text{CT}} \mathscr{I}^{\pm}
$$

OUTLINE

 $\left(\mathcal{A}\right)$

BLACK HOLE HORIZON VS NULL INFINITY A) GEOMETRY
B) INFINITE SYMMETRIES

2 HG/J «DUALITY,

MAP OF DO CONSERVED
QUANTITES $\frac{1}{2}$ (3)

Matching of near- $\mathscr I$ charges to near- $\mathscr H$ charges

Massless **scalar perturbations** on ERN black hole

$$
\Box_{\rm ERN} \Phi = 0
$$

• Near \mathscr{I}^+ expansion:

$$
\Phi \sim \frac{1}{r} \sum_{n=0}^{\infty} \frac{\Phi^{(n)}(u, x^A)}{r^n} \qquad \qquad \Phi^{(n)}(u, x^A) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \Phi_{\ell m}^{(n)}(u) \, {}_0Y_{\ell m}(x^A)
$$

$$
r^2 \Box_{\text{ERN}} = \partial_r (r - M)^2 \partial_r - 2r \partial_u \partial_r r + 2\eth \eth'
$$

$$
N_{\ell m} = \sum_{n=1}^{\ell+1} (-1)^{\ell+1-n} \frac{n}{\ell+1} { \ell \choose n-1} M^{\ell+1-n} \Phi_{\ell m}^{(n)}(u) \Rightarrow \partial_u N_{\ell m} = 0, \quad \ell \ge 0
$$

infinite tower of conserved quantities

NP conserved quantities [Newman, Penrose '65 '68]

Matching of near- $\mathscr I$ charges to near- $\mathscr H$ charges

Massless **scalar perturbations** on ERN black hole

$$
\Box_{\rm ERN} \Phi = 0
$$

• Near \mathscr{H}^+ expansion:

$$
\Phi \sim \sum_{n=0}^{\infty} \hat{\Phi}^{(n)}(v, x^A) \left(\frac{\rho}{M}\right)^n \qquad \hat{\Phi}^{(n)}(v, x^A) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \hat{\Phi}_{\ell m}^{(n)}(v) {}_{0}Y_{\ell m}(x^A)
$$

$$
(M+\rho)^{2}\Box_{\text{ERN}} = \partial_{\rho}\,\rho^{2}\partial_{\rho} + 2\,(M+\rho)\,\partial_{\nu}\partial_{\rho}\,(M+\rho) + 2\eth\eth'
$$

$$
A_{\ell m} := \hat{\Phi}_{\ell m}^{(\ell+1)}(v) + \frac{2\ell+1}{\ell+1} \hat{\Phi}_{\ell m}^{(\ell)}(v) + \frac{\ell}{\ell+1} \hat{\Phi}_{\ell m}^{(\ell-1)}(v) \Rightarrow \partial_v A_{\ell m} = 0, \quad \ell \ge 0
$$

infinite tower of conserved quantities

Aretakis charges [Aretakis '11]

Matching of near- $\mathscr I$ charges to near- $\mathscr H$ charges

Conserved quantities near \mathscr{H}^+

Conserved quantities near \mathscr{I}^+

$$
A_{\ell m} = \hat{\Phi}_{\ell m}^{(\ell+1)}(v) + \frac{2\ell+1}{\ell+1} \hat{\Phi}_{\ell m}^{(\ell)}(v) + \frac{\ell}{\ell+1} \hat{\Phi}_{\ell m}^{(\ell-1)}(v) \left\{ \begin{array}{c} N_{\ell m} = \sum_{n=1}^{\ell+1} (-1)^{\ell+1-n} \frac{n}{\ell+1} {n \choose n-1} M^{\ell+1-n} \Phi_{\ell m}^{(n)}(u) \end{array} \right.
$$

$$
\text{Couch-Torrence (CT) inversion:} \quad \hat{\Phi} \left(\upsilon, \rho, x^A \right) \stackrel{\text{CT}}{\longrightarrow} \tilde{\Phi} \left(u, r, x^A \right) = \left(\frac{M}{r - M} \right) \hat{\Phi} \left(\upsilon \mapsto u, \rho \mapsto \frac{M^2}{r - M}, x^A \right)
$$

$$
\text{if }\ \Box_{\mathscr{H}^+} \hat{\Phi}\left(\upsilon,\rho,x^A\right) = 0 \text{ , then }\ \Box_{\mathscr{I}^+} \tilde{\Phi}\left(u,r,x^A\right) = 0
$$

$$
\longrightarrow \int M^{\ell+2} A_{\ell m} = N_{\ell m}
$$

Map between Aretakis and Newman-Penrose **conserved quantities**

[Bizon, Friedrich '12][Lucietti, Murata, Reall, Tanahashi '12] [Fernandes, Ghosh, Virmani '20]

Linearized gravitational perturbations on ERN

$$
\psi_0^{(j)} = \begin{cases} \Phi & \text{for } j = 0 \\ \phi_0 & \text{for } j = 1 \\ \Psi_0 & \text{for } j = 2 \end{cases}
$$

• Near \mathscr{I}^+ expansion:

$$
r^{2}\Box_{\text{ERN}} = \frac{1}{(r-M)^{2j}} \partial_{r} (r-M)^{2(j+1)} \partial_{r} - \frac{2}{r^{2j-1}} \partial_{u} \partial_{r} r^{2j+1} + 2 (\eth \eth' + j)
$$

$$
\psi_{0}^{(j)} \sim \frac{1}{r^{2j+1}} \sum_{n=0}^{\infty} \frac{\psi_{0}^{(j,n)}(u, x^{A})}{r^{n}} \qquad \psi_{0}^{(j,n)}(u, x^{A}) = \sum_{\ell=j}^{\infty} \sum_{m=-\ell}^{\ell} \psi_{0;\ell m}^{(j,n)}(u) + i Y_{\ell m} (x^{A})
$$

$$
N_{\ell m}^{(j)} = \sum_{n=1}^{\ell-j+1} (-1)^{\ell-j+1-n} \frac{n}{\ell-j+1} { \ell+j \choose n+2j-1} M^{\ell-j+1-n} \psi_{0;\ell m}^{(j,n)}(u) \implies \partial_u N_{\ell m}^{(j)} = 0, \quad \ell \ge j
$$
 infinite tower of conserved quantities

NP conserved quantities [Newman, Penrose '65 '68]

Linearized gravitational perturbations on ERN

$$
\psi_0^{(j)} = \begin{cases} \Phi & \text{for } j = 0 \\ \phi_0 & \text{for } j = 1 \\ \Psi_0 & \text{for } j = 2 \end{cases}
$$

Near \mathscr{H}^+ expansion:

$$
(M+\rho)^{2}\Box_{\text{ERN}} = \frac{1}{\rho^{2j}}\partial_{\rho}\rho^{2(j+1)}\partial_{\rho} + \frac{2}{(M+\rho)^{2j-1}}\partial_{\nu}\partial_{\rho} (M+\rho)^{2j+1} + 2(\eth^{2j} + j)
$$

$$
\psi_{0}^{(j)} \sim \frac{1}{r^{2j+1}}\sum_{n=0}^{\infty} \frac{\hat{\psi}_{0}^{(j,n)}(v, x^{A})}{r^{n}} \qquad \hat{\psi}_{0}^{(j,n)}(u, x^{A}) = \sum_{\ell=j}^{\infty} \sum_{m=-\ell}^{\ell} \hat{\psi}_{0;\ell m}^{(j,n)}(v) + jY_{\ell m}(x^{A})
$$

$$
\psi_{0}^{(j)} \qquad \hat{\psi}_{0}^{(j,\ell-j+1)} = 2\ell + 1 \qquad \hat{\psi}_{0}^{(j,\ell-j)} = \frac{\ell + j}{\ell + j} \qquad \hat{\psi}_{0}^{(j,\ell-j-1)} = 2 \qquad \text{and} \qquad \hat{\psi}_{0}^{(j)} = 2 \qquad \text{and} \qquad \hat{\psi}_{0}^{(
$$

 $A_{\ell m}^{(j)} := \hat{\psi}_{0;\ell m}^{(j,\ell-j+1)} + \frac{2\ell+1}{\ell-j+1} \hat{\psi}_{0;\ell m}^{(j,\ell-j)} + \frac{\ell+j}{\ell-j+1} \hat{\psi}_{0;\ell m}^{(j,\ell-j-1)} \Rightarrow \partial_v A_{\ell m}^{(j)} = 0 \,, \quad \ell \ge j$

New infinite tower of near-horizon **conserved quantities** [Agrawal, Charalambous, LD '24]

Summary and outlook

We explored a **geometric duality** between null infinity and black hole horizons

'null infinity is an extremal isolated horizon for the conformally completed asymptotically flat spacetime'

 \bullet $\mathscr I$ and its 'dual' black hole horizon are generically not part of the same spacetime **EXCEPTION :** Extreme RN, hence the 'surprising' Couch-Torrence exact isometry

 $\mathscr{H}^{\pm} \overset{\mathrm{CT}}{\longleftrightarrow} \mathscr{I}^{\pm}$

▪ Under the CT inversion**, Aretakis** conserved quantities and **Newman-Penrose** charges are in 1:1 correspondence

We found a novel infinite tower of conserved quantities for spin-two perturbations

Proof of instability of ERN under gravitational perturbations?

Beyond the ERN case? Derivation of other tower of charges?

Overarching goal: obtain the *global* form of all conservation laws in asymptotically flat spacetimes with black holes