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Why to study (Euclidean) Wormholes
Wormholes are interesting (exotic) solutions of GR + matter

• Proposed physical effects due to wormholes
◦ They lead to a non-trivial topology of space(time)
◦ Implications on the information paradox? - Connect the black hole interior

with exterior?
◦ Affecting the low energy coupling constants? (α-parameters)

[Lavrelashvili, Rubakov, Tinyakov, Coleman, Hawking ...]
- Resolving the Cosmological Constant problem?

◦ Related to cosmological spacetimes upon analytic continuation

• Different types of wormholes
◦ Lorentzian vs Euclidean
◦ Macroscopic multi-boundary geometries (saddles) vs.

Microscopic "gas of wormholes" (α-parameters)
◦ Different characteristic scales

LP ≪ LW ∼ Lmacro vs. LP ≤ LW ≪ Lmacro ex: Lmacro = LAdS

• Our main focus will be macroscopic (Euclidean) wormholes in the context
of holography (AdS/CFT )
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Lorentzian wormholes or "ER = EPR"
• Einstein - Rosen Bridge: Connects the two sides of the eternal black hole
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Euclidean Wormholes (saddles)

• Now the complete space (Euclidean) is a wormhole
No additional Lorentzian time direction

• To have such solutions, one needs locally negative
Euclidean Energy to support the throat from collapsing

• Such energy can be provided by axionic fields or
"magnetic" fluxes

• Existence of solutions in various dimensions/setups and with different
asymptotics (i.e. flat vs. AdS)

• Some can even be embedded in the standard model + gravity

• A subset of those is perturbatively stable
[Marolf-Santos, Hertog-Van Riet ...]

• What about their analytic continuation into Lorentzian?
This gives a further reason why Euclidean wormholes are interesting
(see [Olga’s] talk)
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Euclidean Wormholes and Cosmologies
AdS/CF T context: [Maldacena-Maoz (04), PB-Gaddam-Papadoulaki (17) + Kiritsis
(19-21), Van Raamsdonk et. al. (20-23) ...]

• Euclidean geometries have interesting connections to Lorentzian
geometries via analytic continuation: Slicing them (Z2 symmetry) we
define states/wavefunctions

• Ex: Sphere ↔ Hartle-Hawking wavefunction (no boundary state) for
Cosmology, Euclidean cigar ↔ (TFD state) for the eternal black hole

• A common misconception: Euclidean Wormholes are NOT related to
Black Holes (horizons) via analytic continuation - Instead:

EAdS

EAdS

Big-Bang

Big-Crunch • The most interesting analytic continuation
(radial) is related to Cosmologies - these can
exist even for negative Λ (Bang/Crunch)

• Along the boundary: leads to traversable
wormhole geometries (various known saddles
develop pathologies i.e. complex background
fields - much harder to obtain negative null
energy than negative Euclidean energy)
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Euclidean AdS Wormholes (saddles)
• Focus in the case of Euclidean wormhole saddles with

Anti-de Sitter asymptotics i.e.

ds2 = dτ2 + a2(τ)dΣ2
d

a(τ = 0) ̸= 0 , a(τ) ≃ eH|τ | , τ → ±∞

Pertinent Open Questions

• Microscopic UV complete models of EWs? In AdS/CFT? (we want to
understand string theory on target space wormhole backgrounds)

• Worldsheet description of target space wormholes? (putative WZW coset
models in [PB - Gaddam - Papadoulaki (2023) + in progress])

• Unfortunately no clear embedding/understanding of such geometries in
fully fledged string theory or AdS/CFT so far

• This question is closely related to the factorization problem:
Entanglement "holds up the throat" of a two sided eternal black hole, but
it is not clear what is the analogue for Euclidean wormholes
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Symmetries and correlators of local operators
[PB - Kiritsis - Papadoulaki (19), PB - Papadoulaki (23)]

• No obvious entanglement as for Lorentzian wormholes (BH horizons)

• Global symmetries for the boundary theories? ↔ A common Bulk "Gauss
Law constraint" and gauge field

• Symmetries are broken to their diagonal part: G1 × G2 → Gdiag.

(spontaneous vs. explicit - whether there is a competing factorised saddle
or not with the same bcs for bulk fields)

• We find two types of correlation functions,
either on a single boundary such as ⟨O1O1⟩
or ⟨O2O2⟩, or cross-correlators across the
two boundaries such as ⟨O1O2⟩

• No short distance singularities in the cross-correlators

• One might have expected: different decoupled EQFTs on ∂M = ∪i∂Mi

⇒ Cross correlators are zero or Z(J1, J2) = Z1(J1)Z2(J2)

• Wormhole Bulk dictates otherwise ⇒ What gives rise to the peculiar
properties of the cross-correlators?

7/33
7/33



The factorisation problem: Z(J1, J2) ̸= Z1(J1)Z2(J2)
[Maldacena - Maoz (2004) ...]

= + + ...

(other?)

Possible resolutions in the literature :

• The QGR path integral corresponds to an average:
⟨Z(J1)Z(J2)⟩ ⇒ Several options [...]

• Explicit averaging over ensembles of CFT’s - (Unitarity crisis)
• In canonical AdS/CFT there is a single theory with fixed parameters

• Approximate statistical averaging ("ETH" - "Quantum Chaos")
⇒ "Statistical wormholes" from complicated/almost random
Hamiltonians [...]

• Consistency with N = 4 planar integrability?
⇒ Observables/states above the BH threshold [Schlenker - Witten ...]

The "statistical wormholes" need not be saddles of (SU)GRA eoms
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No factorisation problem due to interactions?
[PB - Kiritsis - Papadoulaki (19 - 21)], see also related work by [Van Raamsdonk et.
al. (20-22)] and [Bachas - Lavdas (18)]

A straightforward resolution for wormhole saddles:

• Interactions between holographic QFT’s
• It is actually quite subtle!: "Why to have a disconnected pair of

boundaries and not a single one?" ⇒ UV soft - IR strong interactions
(reminiscent of confinement...)

• Or: can the exact Schwinger functional acquire an "averaged" form

Zsystem(J1, J2) =
∑

S

ew(S)Z
(QF T 1)
S (J1)Z(QF T 2)

S (J2)

in a single unitary/reflection positive system? (S some “sector" )
[PB - Kiritsis - Papadoulaki (21)]

• Cross correlators ⇒ averages of lower point correlators in individual
subsystems - no short distance singularities
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Further (non-local) observables: Wilson Loops
[PB - Kiritsis - Papadoulaki (2019), Refined in: PB - Papadoulaki (2023)]

• Wilson loop observables W (C) = tr
(
P exp i

∮
C

Aµdxµ
)

refine the
analysis of [Schlenker - Witten (2022)] that studied the compressibility
properties of various boundary cycles C in the wormhole bulk

• In holography: Find the string worldsheet ending on the corresponding
loop C on a boundary (if it exists) and minimize its area

• Simplest observable: expectation
value of a single Wilson loop ⟨W (C)⟩

Universal features:
• Large loops on the boundary

penetrate further in the bulk and we
can probe the IR properties of the
boundary dual

• Typically we find an Area law
behaviour in the IR

• If the EW geometry contains a non-contractible (thermal) cycle Cβ : S1
β ,

then there is no bulk surface ending on it, so that ⟨WP (Cβ)⟩ = 0
• Again reminiscent of some kind of confining behaviour (center symmetry)

In contrast with the BH cigar for which ⟨WP (Cβ)⟩ ≠ 0 (deconfinement)
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Wilson Loop correlators (universal results)

• Study loop cross-correlators
⟨W (C1)W (C2)⟩, the two loops residing on
different boundaries

• As we shrink the boundary loops, we find
that the leading configuration of lowest
action is the one for two disconnected loops

• In the regime of large Wilson loops, the
leading contribution originates from a single
surface connecting the two loops having a
cylinder topology S1 × R

• Large loops ⇒ Strong IR cross-coupling

• In the presence of a a non-contractible (thermal) cycle Cβ : S1
β , we find

only a connected cylindrical bulk surface (⟨WP (C(1)
β )WP (C(2)

β )⟩ ≠ 0)
• Consistent with unbroken diagonal center symmetry ex:

Z
(1)
N × Z

(2)
N → Zdiag.

N "cross-confining behaviour" - diagonal singlets
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Dual QFT models
(reflection positive)
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Tripartite BQFT construction
[van Raamsdonk (20) - (22)], [PB - Kiritsis - Papadoulaki (21)]

• Two d-dim (holographic) BQFT’s on Σ coupled through a d + 1-dim
intermediate ("messenger") theory on I × Σ

• Consider a system for which
cd+1 ≪ cd

• We would like the system to flow to a
gapped/confining theory in the IR

• The geometric idea: The dual bulk gravity
can localise on d + 1-dim EOW branes that
bend and connect in the IR [van Raamsdonk ]

• We focus in the case where the messenger theory is (quasi) topological
(TQFTd+1) ⇒ No contamination from d + 2 bulk perturbative modes,
natural gap in the IR ... [PB - Kiritsis - Papadoulaki]

• Integrate out TQFTd+1 ⇒ The Schwinger functional does become

Zsystem =
∑

S

ew(S)Z
(BQF T1)
S (J1)Z(BQF T2)

S (J2)
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Solvable microscopic tripartite model (2d − 1d)
[PB - Kiritsis - Papadoulaki (21), PB - Papadoulaki (23)]

• Consider a generalised YM in 2d (τ, z) with BF action

SgY M =
1

g2
Y M

∫
Σ

tr BF +
θ

g2
Y M

∫
Σ

tr B dµ −
1

2g2
Y M

∫
Σ

tr Φ(B) dµ

where F = dA + A ∧ A

• Couple it with two 1d U(N) gauged matrix quantum mechanics theories
M1,2(τ) at the endpoints of an interval I (z = ±L)

SMQM1,2 =
∫

dτ tr
(1

2
(Dτ M1,2)2 − V (M1,2)

)
, Dτ M1,2 = ∂τ M1,2+i[A1,2

τ , M1,2]

Aτ (τ, z = ±L) = A1,2
τ (τ) is the value of the 2d gauge field on the two

boundaries

• Solvable system: 2d YM - ( Φ(B) = B2 ) coupled to two Gaussian MQM
(V (M1,2) = 1

2 M2
1,2)
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"Entangling" the representations (compact τ ∼ τ + β)

• Place the system on I × S1 (cylinder) of length L and circumference β

• The 2d YM amplitude on the cylinder is

ZY M (U1, U2) =
∑

R

χR(U1)χR(U†
2 )e−L

g2
Y M
N C

(2)
R

+iθC
(1)
R

and depends on the two asymptotic holonomies U1,2 = exp
∮

dτA1,2
τ

(zero modes of the gauge field)

• R a U(N) representation, C
(1,2)
R its Casimirs and χR(U) are U(N)

characters/wavefunctions at the ends of the cylinder

• Integrate out M1,2 to obtain the (twisted) MQM partition functions
ZMQM

1,2 (U1,2; β) =
∫

DM1,2 ⟨U1,2M1,2U†
1,2 | M1,2⟩H.Osc.

• Couple the 2d YM amplitude ZY M (U1, U2) to the two MQM partition
functions ZMQM

1,2 (U1,2; β) and integrate over the zero modes U1,2
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"Entangling" the representations (compact τ ∼ τ + β)
• The complete partition function on I × S1 is

Zsystem =
∑

R

e−L
g2

Y M
N C

(2)
R

+iθC
(1)
R ZMQM1

R (β)ZMQM2
R (β) ,

ZMQM
R (β) = trHR

e−βĤMQM
R =

∫
DUχR(U)ZMQM (U ; β)

with β the S1 size and HR the Hilbert space of MQM in a fixed
representation R [Kazakov, Klebanov ...]

• The two MQM representations R are correlated/"entangled"∑
R ⇒ is a form of "averaging", consistent with unitarity (reflection

positivity) for a single (tripartite) quantum mechanical system
⇒ What we previously called "the sectors S"

• No approximation (such as ETH or coarse graining) or averaging over
theories involved!

• The allowed representations in the sum are center symmetric (zero
n-ality) , so indeed g

(1)
c × g

(2)
c → g

(diag.)
c [PB - Papadoulaki (23)]
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Higher Dimensional Examples
Sketch of the prescription

• Consider a space with the topology M = Σ × I

• Couple two holographic BQFT’s on the interval ends Σ1,2 using the
interval transition amplitude of a (quasi) - topological TQFT in Σ × I

2D/3D dimensional example in [PB - Kiritsis - Papadoulaki]

• Two 2D BQFT’s coupled through a Chern-Simons theory living in 3D

• Convenient to use radial quantisation (Ar = 0) to define the interval
transition amplitude [Elitzur-Moore-Schwimmer-Seiberg])

• Couple the CS. transition amplitude to the two 2D (gauged) BQFT’s
and integrate over the gauge field zero modes

• Ex: Σ = T 2: Replace the wavefunctions χR(U) of the 2D YM model
with Weyl-Kac characters χR,k(α, τ)

• Important to construct a higher dimensional (SUSic) model with control
on both sides of the duality ...
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N = 4 Wilson loops and

type IIB "bubbling wormholes"
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Wilson loops in N = 4 SYM

• Our 2d/1d model is reminiscent of SUSY localization computations of
line/defect operators in N = 4 SYM [...]

• Our Idea: correlate representations of (1/2-BPS) Wilson loops WR in
higher dimensional examples with explicit semiclassical holographic duals.
Here: Consider two (non-interacting) copies of N = 4 SYM and a
correlated observable∑

R

ew(R) ⟨WR⟩1 ⟨WR⟩2 WR = trR P exp
[
i

∮
ds(iAµẋµ + n⃗ · Φ⃗|ẋ|)

]

• A single 1/2-BPS Wilson loop in the representation R is computed via
localization resulting in a Hermitean matrix integral [Pestun ...]

⟨WR⟩ = ⟨trR(eM )⟩M = 1
Z

∫
DMe− 2N

λ tr M2
χR

(
eM

)
• We would like to understand the limit where the operator is "very heavy"

and backreacts strongly in the dual geometry
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Wilson loops in large (O(N2)) representations
[Gomis, Okuda, Trancanelli ...]

• Representations with O(N) boxes are still light (D-branes etc.)
• We need to consider representations R : {R1, ..RN } with O(N2) boxes

and the highest weights Ri ∼ O(N)

k

R

1
n1

kgkg+1 ng
ng+1

n2
• The Young diagram of such reps is

described by a collection of
rectangular blocks (each with O(N2)
boxes), of size (nI , kI) specifying the
number of rows/columns

• Once projected onto the real line, a
"Maya diagram" is produced
consisting of black and white lines

• The lines correspond to the cuts of the matrix model resolvent ωR(z),
which in turn dictates the form and properties of the dual SUGRA
geometry as we shall find out
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The type IIB backreacted geometries

• The geometry dual to a backreacted loop in rep R, has an
SO(2, 1) × SO(3) × SO(5) isometry [D’Hoker-Estes- Gutperle, ...]

ds2 = f2
1 ds2

AdS2
+ f2

2 ds2
S2 + f2

4 ds2
S4 + 4ρ2dzdz

where z, z parametrise a Riemann surface Σ and f1,2,4(z, z), ρ(z, z).

• The Wilson loop is on the S1 boundary of the AdS2 disk

• The solution also contains a non-trivial dilaton and
3-cycles/5-cycles/7-cycles with RR/RR/NSNS fluxes supporting them
(D5/D3/F1)
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The type IIB backreacted geometries

• The metric, dilaton and fluxes are determined just by two harmonic
functions h1,2(z, z)

• h2 = 0 determines the boundary of the Riemann surface Σ (taken to be
the upper half-plane)

C , C3 7 C , C5 7C , C5 7C , C5 7

S 4 0S 4 0S 4 0S 4 0S 4 0
S 2 0 S 2 0 S 2 0

C , C5 7
C , C3 7

• h1(z, z) = A(z) + A(z) contains all the data of the "bubbling" geometry

• A(z) cuts ↔ determine the fluxes and brane charges
Singularity ↔ determines the asymptotic AdS5 × S5 region
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Connecting the MM resolvent with the harmonic functions
• One can show that the matrix model resolvent is related to the two

harmonic functions h1,2 via (y(z) : "spectral - curve")

2ω(z) = V ′
c (z) − y(z) , ρ(z) = 1

2π
ℑy(z) , z ∈ C

h1(z, z) = A + A , h2(z, z) = B + B

iV ′
c (z) = 2i

λ
z = B(z) , iy(z) = A(z)

• This means that it completely determines the properties of the dual
SUGRA geometry

• h1,2 need to have common singularities on ∂Σ. Near such singularities
the metric asymptotes to AdS5 × S5. ex:

h1 = 2i

λ

√
z2 − λ + c.c. , h2 = 2i

λ
z + c.c.

• For a single Wilson loop in any rep, there is only a single such singularity.
The topology of the boundary is an S4 and the half-BPS Wilson loop
wraps a great S1 ⊂ S4
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Wormholes ≡ multiple singularities on ∂Σ

• We found solutions with more than one singularities/asymptotic regions,
still preserving the regularity conditions of [D’Hoker-Estes- Gutperle, ...]

• The simplest such Σ corresponds to a disk with two cuts/singularities ≡
a square with two singularities [PB, Ji Hoon Lee, O. Papadoulaki]

2K

K'

UHP1

LHP
1

LHP
1

LHP
-1

UHP-1
LHP

1

S 
4

0

S 
4

0

S 
2

0

S 
2

0

S 
4

0

S 
4

0

S 
2

0 S 
2

0

h1(z) = i
2

λz

√
(z2 − e2

min)(z2 − e2
max)+cc. , h2(z) = i

2
λ

(
z − eminemax

z

)
+cc.

• We also found more complicated solutions that can be mapped to regular
polygons with 2n edges and n singularities, as well as solutions when Σ is
an annulus
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Geometric properties I: AdS2 factor and "Janus"
• The two boundary wormhole geometry is a form of a double cover of

AdS5 × S5 (dilaton is still constant)

• There is a caveat: The geometry has an EAdS2 factor with disk
topology and its boundary S1 is shared by all the AdS5 asymptotic
boundaries (Σ singularities) that have the topology of S4

• This means that the would-be distinct S4 boundaries are identified on a
common S1, in analogy with other Janus-type of solutions
[D’Hoker, Estes, Gutperle, Bachas, Gomis, Assel ...]

I II

S1 S1

S4 S4

• Still it is possible to connect separate points on the two S4’s by
traversing the bulk wormhole, without ever crossing the common S1
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An aside: Two boundary AdS2 wormhole?
[PB - Papadoulaki (23)]

• What about using global EAdS2 that has two boundaries (cylinder)?

t

T T

σ σ 

σ 

 τ

ρ

π0 π0

• In this case away from the Σ singularities the geometry is the two
boundary EAdS2 × S4 × S2 × R2
(similar to the [Maldacena Milekhin Popov] wormhole geometries)

• At the Σ singularities, the former UV asymptotic S4’s are now replaced
by S3 × S1

• The two asymptotic S1’s of the cylinder EAdS2 comprise the S1’s on
the north and south poles of the S3.

• Consistent with the fact that one needs to have a pair of Polyakov loops
(around the S1), sitting on the north and south poles of S3 (Gauss-law)
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Matrix model dual of Σ wormhole with two S4 boundaries
• The dual matrix model spectral curve needs two cuts and two singularities

• Use an "analogue of the Dirac-δ" for two 1/2-BPS loop operators on two
copies of N = 4 ⇒ "Glue" the two copies of N = 4 Wilson loops

⟨det
(
I ⊗ I − eM1 ⊗ eM2

)−1⟩1,2 =
∑

R

⟨χR(eM1)⟩1 ⟨χR(eM2)⟩2

If the matrices were unitary this would have been a Weyl-invariant delta
function

• This can be analysed as a coupled two matrix model or as a model in the
space of highest weights Ri of R

• For the multi-boundary wormholes use an Âr necklace matrix chain and
connect the nodes with determinant operators

N2

N3

N1

N4 ΣΣ

26/33
26/33



Intuitive understanding of the 2MM: Two component gas
• The 2MM saddle point equations describe two types of particles

−4N1

λ1
µ

(1)
i −

N2∑
k=1

2
sinh(µ(1)

i + µ
(2)
k )

+
∑
j ̸=i

2
µ

(1)
i − µ

(1)
j

= 0 ,

−4N2

λ2
µ

(2)
k −

N1∑
i=1

2
sinh(µ(1)

i + µ
(2)
k )

+
∑
j ̸=k

2
µ

(2)
k − µ

(2)
j

= 0

with an 1 − 1 and 2 − 2 repulsion and 1 − 2 attraction to "mirror" points
• There is an overall Gaussian attractive potential ⇒ This leads to a paired

1 − 2 condensate at the origin (the additional pole of the planar resolvent)

+-

- - - - -
-
- + + + + +
+
+

◦ After lots of pairs condense, they
create a repulsive effective potential
for the rest of the eigenvalues

◦ The rest of the eigenvalues distribute
on two opposite sides of the origin.
At large-N they form two cuts,
giving rise to the wormhole resolvent
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The resolvent at large-N and strong coupling

• At strong ’t Hooft coupling the saddle point equations simplify in terms
of only rational functions (similar to two coupled O(2) models on a
random lattice) [Kostov, Eynard ... ]

• In this limit we can obtain an exact solution for the resolvent

ω(z) = 2
λ

(
z − ab

z

)
− 2

λz

√
(z2 − b2)(z2 − a2)

a = 1
2(

√
3 − 1)

√
λ , b = 1

2(
√

3 + 1)
√

λ

ρ(μ)

• The normalisability of the density of eigenvalues (
∫

supp.
ρ(µ) = 1) fixes

the end-points a, b in terms of the ’t Hooft coupling λ

• The resulting harmonic functions h1,2 correspond precisely to the ones we
found in the gravitational description
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Further properties of wormhole saddle

• One can compare the free energy of the wormhole saddle with two
disconnected AdS5 × S5 spaces

Fw − 2FAdS = −1
2 log λ

• The wormhole has lower free energy. (Indicative for its stability)

• One can also compute the expectation of probe Wilson loops. For
example Wf = tr eM

⟨Wf ⟩AdS =
∫ ∞

−∞
dzρAdS(z)ez = 2√

λ
I1(

√
λ)

⟨Wf ⟩worm = 4
πλ

∫ b

a

dz

z

√
(b2 − z2)(z2 − a2)ez

It grows with a slower rate with λ wtr to the AdS example

• Interesting to extend this to observables with coordinate dependence,
such as correlators of local operators and match with the gravity side
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Further comments and generalisations
• Take two copies of N = 4 with G1 × G2 symmetry and consider the

general class of correlated observables∑
R

ew(R) ⟨χR(eM1)⟩1 ⟨χR(eM2)⟩2

• w(R) = 0 ⇒ We "identify" the loops
(ex: 161 × 162 → 16diag - identification of supercharges)

I II

S1 S1

S1 S1

L

S4 S4
• If we weigh the average with the quadratic

Casimir ew(R) = e−LC
(2)
R (2d-YM),

⇒ the S1’s start to separate (cylinder)
• We can still find the resolvent in this case

using the techniques in [Gross-Matytsin,
Kazakov ...]

• The density becomes a "time dependent" function ρ(µ, τ) obeying the
EOMs of collective field theory with appropriate bcs (at τ = 0, L)

• Unfortunately we do not have control over the dual geometry to separate
the loops from the bulk side (need a less symmetric ansatze)
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Summary and Future
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Summary and Future Directions
Summary
• We proposed a general class of microscopic models for Euclidean

Wormholes, in terms of BQFTs coupled via a higher dimensional TQFT

• These models are reflection positive and do not require any ad hoc
averaging (over couplings/ensembles of CFTs or otherwise)
- no deviation from the usual holographic prescription and rules
There is though a resulting sum over representations of the gauge group
after we integrate out the "messenger" TQFT

• This makes the resulting field theoretic correlators to be compatible with
dual computations on wormhole saddles

• We found that similar models can also arise by considering heavy
correlated observables in otherwise decoupled QFTs
We analysed the case of correlated Wilson loops between copies of
N = 4 SYM. They give rise to "bubbling" wormhole geometries in IIB

• In the 1/2-BPS case we have exact control on both sides of the duality
but the boundaries touch on one dimensional S1 ⊂ S4’s (similar to Janus)
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A Hilbert space interpretation of our constructions
• For Lorentzian wormholes (eternal BH): H = HCF T 1 ⊗ HCF T 2 and

|Ψ⟩T F D =
∑

n

e− β
2 En |En⟩1 ⊗ |En⟩2

• This correlates the energies of the two subsystems
• Our proposed models for Euclidean wormholes: Correlate ("entangle")

U(N) representations and not energies as in the TFD
• Realisation I: Presence of gauge constraints (messenger TQFT) - the

Hilbert space is reduced into H =
∑

R H1
R ⊗ H2

R. One could think this in
terms of states

|Ψ⟩RD =
∑

R

ew(R)|R⟩1 ⊗ |R⟩2

• Realisation II: Consider insertions of "heavy" operators that correlate the
copies with a similar representation theoretic "entanglement" (ex: Wilson
loops WR in N = 4/IIB)

• Future Realisation? An effective constraint on the Hilbert space could
arise dynamically in the IR
("cross-confinement"/diagonal IR singlets: U(N) × U(N) → Udiag.(N))
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Future Directions

• The MQM non-singlet sectors are also relevant for black hole physics and
involve similar sums over representations (c = 1 MQM). Connections?
[Kazakov et al., PB - Papadoulaki]

• Other top down constructions embeddable in critical string theory
ex: Gaiotto Witten systems on an interval [van Raamsdonk, Bachas, ..]
Simplify by making the theory on the interval a TQFT "messenger"?

• Less (super)symmetric but still controllable examples of correlated loops
or tripartite systems

• Understand better the Lorentzian continuations of our field theoretic
setups and their holographic duals (Cosmologies): See [Olga’s] talk

• Study (target space) Euclidean wormhole backgrounds in string theory
from a worldsheet perspective (WZW cosets?)

• Microscopic "wormhole gas" and replacement of Coleman’s |α⟩ states
with representations |R⟩ of the dual QFT gauge group?
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Thank you!
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Scalar Correlators: Universal properties
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• Momentum space: ⟨O1O1⟩ and ⟨O2O2⟩ have a similar behaviour in the
UV as in the presence of a single boundary (power law divergence)

• In the IR they saturate to a constant positive value

• The cross correlator ⟨O1O2⟩ goes to zero in the UV and has a finite
maximum in the IR

• Position space: (EAdS2) they behave as ∼ 1/ sinh2∆+(∆τ) and
∼ 1/ cosh2∆+(∆τ) respectively ⇒ No short distance singularity for the
cross-correlator

• The qualitative behavior of the correlators is similar for several types of
solutions ⇒ Universality

33/33
33/33



"Entangling" the representations (infinite τ)

• Define: Jτ
MQM1,2

= δSMQM1,2/δA1,2
τ - U(N) MQM charges

• For τ non-compact: Aτ = 0 ⇒ non-perturbative constraint

1
2g2

Y M L
Jτ

Y M =
1

2g2
Y M L

[W −1, ∂τ W ] = Jτ
MQM1

−Jτ
MQM2

, W = P exp
(∫ L

−L

dzAz

)
W a Wilson line extending across the boundaries

• Each MQM Hamiltonian is (M = U†ΛU, J = U†KU)

ĤR
MQM =

[
−

1
2

∑
i

(
∂2

∂λ2
i

+ V (λi)
)

+
1
2

∑
i<j

KR
ijKR

ij

(λi − λj)2

]
acting on wave-functions ΨR(λ) =

∏
i<j(λi − λj)Ψ̃R(λ) transforming in

the U(N) representation R

• The representations of MQM1,2 are "entangled" by the constraint
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Cross-Correlators

• The n-point cross-correlator takes the general form

⟨Oi1(τi1) ... Õi2(τi2) ...⟩ =
∑

R

⟨Oi1(τi1) ...⟩R
1 ⟨Õi2(τi2) ...⟩R

2 e−L
g2

Y M
n C

(2)
R

+iθ|R|

where i1 refers to the first and i2 to the second MQM subsystem

• This correlator generically only depends separately on the differences
τi1 − τj1 and τi2 − τj2 and not on time differences that mix the 1, 2
sub-indices, or Oi1 with Õi2 operators

• No short distance singularities in the cross-correlators!

• The absence of short distance singularities in the cross correlators is a
robust-universal feature of dual wormhole backgrounds
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