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Introduction

Introduction

Figure: Illustration of a pair of coalescing black holes (credit : (Top) Kip Thorne; (Bottom) B. P.
Abbott et al. [8]; adapted by APS/Carin Cain)

Ringdown

Sum of damped oscillators

Ψℓ,m(t) ∼
∑
n

Aℓ,m,ne
iωℓ,m,nt
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Introduction

Introduction : the conservative case

The conservative case
Example of system : guitar string struck
Consider the linear equation {

∂tu = iHu

u(t = 0, x) = u0(x)

where H is self-adjoint and the eigenfunctions v̂n form an orthonormal basis of
the Hilbert space. The solution can be written as a convergent sum over the
harmonics

u(x, t) =

∞∑
n=0

anv̂n(x)e
iωnt

where

an = ⟨v̂n, u0⟩G , Hv̂n = ωnv̂n
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Introduction

Introduction : quasinormal modes definitions and BH
perturbation theory

Quasi-normal modes (QNMs)

Definition : Resonant response under linear perturbation characterized by
complex frequencies. QNMs probe the background spacetime geometry
Lax-Phillips theory : QNMs as poles of the resolvent

Perturbation theory on Schwarzschild black hole

Scalar, electromagnetic and gravitational perturbations reduce to the
following wave equation in the tortoise coordinates(

∂2

∂t2
− ∂2

∂r∗2
+ Vℓ(r∗)

)
ϕℓm = 0 + boundary conditions

where Vℓ depends on the type of perturbation (spin s = 0, 1 or 2).
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Scalar, electromagnetic and gravitational perturbations reduce to the
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∂t
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+ λ2Vℓ(x)
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ϕℓm = 0 + boundary conditions

where Vℓ depends on the type of perturbation (spin s = 0, 1 or 2).
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Introduction

Introducing hyperboloidal slicings

Figure: Picture of the compactified hyperboloidal coordinates (credit : Lamis El
Sheikh PhD thesis)
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Introduction

Pöschl-Teller : a toy model (part 1)

Pöschl-Teller (1/2)

(
∂2

∂t
2 − ∂2

∂x2
+ V (x)

)
ϕ = 0, V (x) = V0 sech

2(x)

The following change of variablea defines a compactified hyperboloidal
foliation : {

τ = t− ln(coshx)

x = tanh−1(x)

t, x ∈ R;x ∈ [−1, 1]

a
El Sheikh,Jaramillo,Macedo;2004.06434, Bizoń,Chmaj,Mach;2002.01770
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Introduction

Introducing hyperboloidal slicings

Figure: Example of hyperboloidal slicing (credit : hyperboloid.al)
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Introduction

Pöschl-Teller : a toy model (part 2)

Pöschl-Teller (2/2)

First order reduction : u(x, τ) =

(
ϕ
ψ

)
with ψ := ∂τϕ,

∂τ

(
ϕ
ψ

)
=

(
0 1

∂x((1− x2)∂x)− V0 −(2x∂x + 1)

)(
ϕ
ψ

)
Differential equation :

∂τu = iLu, u(x, τ = 0) = u0(x)

Spectral problem : Lvn = ωnvn

Analytical Pöschl-Teller QNMs

ϕn(x) = Gegenbauer polynomials C
(iωn− 1

2 )
n (x), ωn = ±

√
3

2
+ i

(
n+

1

2

)
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Introduction

Pöschl-Teller quasi-normal frequencies

Figure: View of the Pöschl-Teller QNMs frequencies in the complex plane

Quasi-normal mode expansion of black hole perturbation : a hyperboloidal Keldysh approach 10 / 43



Compactified hyperboloidal approach

Table of Contents

1 Introduction

2 Compactified hyperboloidal approach

3 Keldysh resonant expansion

4 Cases of study and simulations

5 Pseudospectra and regularity

6 Conclusions

Quasi-normal mode expansion of black hole perturbation : a hyperboloidal Keldysh approach 11 / 43



Compactified hyperboloidal approach

Compactified hyperboloidal approach

Compactified hyperboloidal slicing{
t = τ − h(x)

x = g(x)
g : [a, b] → [−∞,+∞]

x 7→ g(x) = x

First order reduction
We define the field ψ := ∂τϕ, the linear problem becomes

∂τ

(
ϕ
ψ

)
=

(
0 1
L1 L2

)(
ϕ
ψ

)

Outgoing boundary conditions

Geometric interpretation : outgoing null cones

Analytic interpretation : singular Sturm-Liouville operator, the boundary
conditions are built-in as regularity conditions
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Compactified hyperboloidal approach

Compactified hyperboloidal approach

∂τ

(
ϕ
ψ

)
=

(
0 1

L1 L2

)
︸ ︷︷ ︸

iL

(
ϕ
ψ

)

All the space derivatives are contained within the matrix.

L1 =
1

w(x)
(∂x(p(x)∂x)− q(x))

L2 =
1

w(x)
(2γ(x)∂x + ∂xγ(x))

where
w(x) =

g′(x)2 − h′(x)2

|g′(x)|

p(x) =
1

|g′(x)|

q(x) = |g′(x)|Vℓ(x)

γ(x) =
h′(x)

|g′(x)|
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Compactified hyperboloidal approach

Scalar product and non-selfadjointness

The energy scalar product is related to the energy-momentum tensor of a
complex scalar field on a Minkowski spacetime with a potential Vℓ.〈(

ϕ1
ψ1

)
,

(
ϕ2
ψ2

)〉
E

=
1

2

∫ b

a
w(x)ψ1ψ2 + p(x)∂xϕ1∂xϕ2 + qℓ(x)ϕ1ϕ2dx

We use this to justify that L2 is a dissipative term and is responsible for
non-self adjointness

L† = L+
1

i

 0 0

0 2 γ(x)
w(x) (δ(x− a)− δ(x− b))


Instability of the QNMs

The eigenvalues can be greatly perturbed upon a small perturbation of the
potential
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Keldysh resonant expansion

Keldysh’s expansion of the resolvent

Consider the application

F : Ω → L(H,K)

ω 7→ F (ω)

Assume F (ω) is a Fredholm operator. The transpose application of F is

F (ω)t : K∗ → H∗

The spectral problems are rewritten

F (ωn)vn = 0, F (ωn)
tαn = 0, vn ∈ H,αn ∈ K∗

Keldysh’s theorem gives an expansion of the resolvent applicationi.

F−1(ω) =
∑

ωn∈Ω0

⟨α̃n, .⟩
ω − ωn

vn +H(ω) with

〈
α̃n,

dF

dω
(ωn)(vn)

〉
= 1.

iBeyn,Latushkin,Rottmann-Matthes;1210.3952
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Keldysh resonant expansion

Keldysh’s resonant expansion for non-generalized
eigenvalue problems

We use the recipe with F (ω) = L− ωI, the spectral problems are :

(L− ωnI)vn = 0, (Lt − ωnI)αn = 0, vn ∈ H,αn ∈ H∗

The resolvent of L is constructed in a bounded domain Ω can be written

RL(ω) = (L− ωI)−1 =
∑

ωn∈Ω0

⟨α̃n, .⟩
ω − ωn

vn +H(ω)

On the other hand, the Laplace transform of the differential equation yields

(L− ω)u(x, ω) = iu0(x)

The asymptotic resonant expansion is then found by multiplication by the
resolvent and inverse Laplace transform

u(τ, x) ∼
∑
n

⟨αn, u0⟩vn(x)eiωnτ , with ⟨αn, vn⟩ = 1
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Keldysh resonant expansion

Asymptotic resonant expansion

Bound of the error of the Keldysh expansion

Given a bounded domain Ω in C and R = maxω∈Ω Im{ω}, we have

u(τ, x) =
∑

Im{ωn}≤R

⟨αn, u0⟩vn(x)eiωnτ + ER(τ ;u0)(x)

with
∥ER(τ ;u0)∥E ≤ ∥u0∥ECR(L)e

−Rτ

Notation

An(x) = ⟨αn, u0⟩vn(x), with ⟨αn, vn⟩ = 1

A∞
n = An(x)|x=null infinity
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Cases of study and simulations

Cases of study

Pöschl-Teller (toy model)

x ∈ [−1, 1] {
h(x) = log

(
1− x2

)
g(x) = arctanh(x)

Schwarzschild

σ ∈ [0, 1], λ = 4M . {
h(σ) = 1

2

(
log σ + log(1− σ)− 1

σ

)
g(σ) = 1

2

(
1
σ + log(1− σ)− lnσ

)

L1 =
1

2(1 + σ)

[
∂σ

(
2σ2(1− σ)∂σ

)
− 2ℓ(ℓ+ 1)− (1− s2)σ

]
L2 =

1

2(1 + σ)
[2(1− 2σ2)∂σ − 4σ]
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Cases of study and simulations

Cases of study

Schwarzschild-de Sitter
p vanish linearly at the event horizon and at the cosmological horizon, its
expression depends on the surface gravitya

aSarkar,Rahman,Chakraborty;2304.06829

Schwarzschild-Anti de Sitter

Reflexive (Dirichlet) boundary conditions imposed at the AdS boundary : acts like
a box that confines the field. There are only dissipations at the event horizona

aBoyanov,Cardoso,Destounis,Jaramillo;2312.11998
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Cases of study and simulations

Numerical methods

−1 +10

Figure: Chebyshev-Lobatto grid,
xj = cos

(
πj
N

)
Numerical instability : we work with
arbitrary precision numerics,

The discretized counterpart of ϕ is a vector
with N + 1 entries :

ϕ1
ϕ2
...
ϕN
ϕN+1

 , ϕ(xj) = ϕj

L : (2N + 2)× (2N + 2) entries (matrix)

u : (2N + 2) entries (vector)
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Cases of study and simulations

Time evolutions

Figure: Parameters for the simulations
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Cases of study and simulations

Time evolutions

Figure: Initial data

Figure: Waveforms at future null infinity
(event horizon for the AdS case)
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Cases of study and simulations

Spectra

Figure: Spectra of the cases of study (event horizon for the AdS case)
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Cases of study and simulations

Spectra

Figure: Spectra of the cases of study for different gridsizes N
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Cases of study and simulations

Comparing the time and the spectral domain analysis

Figure: We compare the ODE solution and the Keldysh QNM expansion at future
null infinity (event horizon for the AdS case)
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Cases of study and simulations

Comparing the time and the spectral domain analysis

Figure: Difference between the ODE solution and the Keldysh QNM expansion at
future null infinity
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Cases of study and simulations

Coefficients of the timeseries at future null infinity

Figure: Log plot of the modulus of the coefficients A∞
n
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Cases of study and simulations

Schwarzschild case : separating tails and QNMs

Figure: Separating tails and QNMs
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Cases of study and simulations

Polynomial tails and branch cut modes

Figure: Polynomial tails in the Schwarzschild case
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Cases of study and simulations

Role of overtones : Pöschl-Teller

Figure: We show we recover the early times of the waveform by adding enough
overtones. The panel on the right is a zoom.

Completeness ? We can describe the waveform using 310 modes with a
maximum error ≈ 10−40, this begs the question whether the sum is
convergent or not. What meaning do we give to the word ”convergent”
here ?
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Cases of study and simulations

Role of overtones : Pöschl-Teller

u(τ, x) =
∑

Imωn≤R

An(x)e
iωnτ + ER(τ ;u0)(x), ∥ER(τ ;u0)∥E ≤ ∥u0∥ECR(L)e

−Rτ

We plot ∥ER(τ ;u0)∥E as a function of R, does

∀ε > 0,∃M ∈ N, ∀n > M, ∥ER(τ ;u0)∥E < ε?

Figure: Norm of the error as we add more terms to the QNM expansion. A color
corresponds to a time τ .
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Pseudospectra and regularity

Pseudospectrum

Given a perturbation δL of L of norm ε, what is the set of complex
numbers λ which are actual eigenvalues of some perturbed operator
L+ δL ?

Perturbative approach

σε(L) = {λ ∈ C, ∃δL ∈Mn(C), ∥δL∥ < ε : λ ∈ σ(L+ δL)}

Resolvent norm approach

σε(L) = {λ ∈ C : ∥RL(λ)∥ =
∥∥(λI − L)−1

∥∥ > 1/ε}
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Pseudospectra and regularity

Pseudospectrum

The colors correspond to
log10 ε.
The contour lines form circles
centered on the eigenvalues
and horizontal lines far away
from the eigenvalues.

Figure: Pseudospectrum in the self adjoint case.
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Pseudospectra and regularity

Pseudospectrum

The contour lines are open and
the eigenvalue can migrate very far
from the eigenvalues of the non
perturbed operator.
Issue : The (numerical) pseu-
dospectrum doesn’t converge with
N

Figure: Pöschl-Teller pseudospectrum.
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Pseudospectra and regularity

Hp−pseudospectrum

Hp−QNMs
Hp-QNMs are eigenfunctions of the
Hp-regular operator

Lp : H
p ×Hp−1 → Hp ×Hp−1

(ϕ, ψ) 7→ L(ϕ, ψ)

they constitute a finite set below
Im(λ) < a+ κ

(
p− 1

2

)
with κ the surface

gravity and some constant a. QNMs
contained in the first p bands of width κ are
required to have Hp regularity. We
introduce a norm that make the
Pöschl-Teller pseudospectrum converge in
bands and increases the regularity of the
QNMs in these bands.a

aWarnick;1306.5760, Boy-
anov,Cardoso,Destounis,Jaramillo;2312.11998

Figure: H5−pseudospectrum.
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Pseudospectra and regularity

Hp−pseudospectrum

Hp−QNMs
Hp-QNMs are eigenfunctions of the
Hp-regular operator

Lp : H
p ×Hp−1 → Hp ×Hp−1

(ϕ, ψ) 7→ L(ϕ, ψ)

they constitute a finite set below
Im(λ) < a+ κ

(
p− 1

2

)
with κ the surface

gravity and some constant a. QNMs
contained in the first p bands of width κ are
required to have Hp regularity. We
introduce a norm that make the
Pöschl-Teller pseudospectrum converge in
bands and increases the regularity of the
QNMs in these bands.a

aWarnick;1306.5760, Boy-
anov,Cardoso,Destounis,Jaramillo;2312.11998

Figure: H11−pseudospectrum.

Quasi-normal mode expansion of black hole perturbation : a hyperboloidal Keldysh approach 38 / 43



Pseudospectra and regularity

Convergence of the Hp−pseudospectrum

Re{z}

Im{z}

−4 −3 −2 −1 1 2 3 4
1i

2i

3i

4i

5i

6i

7i

8i

9i

10i

Figure: We pick some points in the
complex plane

Figure: H5−pseudospectrum
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Pseudospectra and regularity

Convergence of the H1−pseudospectrum

Figure: Norm of the resolvent for the H1 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H2−pseudospectrum

Figure: Norm of the resolvent for the H2 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H3−pseudospectrum

Figure: Norm of the resolvent for the H3 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H4−pseudospectrum

Figure: Norm of the resolvent for the H4 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H5−pseudospectrum

Figure: Norm of the resolvent for the H5 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H6−pseudospectrum

Figure: Norm of the resolvent for the H6 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H7−pseudospectrum

Figure: Norm of the resolvent for the H7 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H8−pseudospectrum

Figure: Norm of the resolvent for the H8 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H9−pseudospectrum

Figure: Norm of the resolvent for the H9 norm and different z in the complex
plane.
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Pseudospectra and regularity

Convergence of the H10−pseudospectrum

Figure: Norm of the resolvent for the H10 norm and different z in the complex
plane.
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Pseudospectra and regularity

Qualitative control of QNMs? Coefficients an

Notations : An(x) = anv̂n(x) where the vn are the normalized
eigenfunctions of L.

Figure: Coefficients an for various Hp norms.
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Conclusions

Conclusions

Agnostic nature of the Keldysh QNM expansion : the expansion is
independant of a scalar productii

Unique expansion at null infinity

Role of overtones at early times of the waveforms

Hp−pseudospectra converge according to Warnick’s criterion

Polynomial tails are recovered and follow the Price law

iiGaspeŕın,Jaramillo;2107.12865
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