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Context and Motivations
Memory effects
Permanent shifts in relative observables associated to a couple of test particles after the
passage of a gravitational wave:

Displacement memory → relative distance

Effects induced by the non-oscillatory contribution to the gravitational wave

Relevance for gravitational waves astronomy
Stand as one of the last predictions of general relativity yet to be confirmed
Relevant for building accurate waveforms for gravitational wave astronomy

Already existing constraints from the NanoGrav collaboration [Aggarwal and all 19’]
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Context and Motivations
History of memory effects in short:

Linearized gravity: displacement memory [Zel’dovich and Polnarev ’74]

Velocity memory [Braginsky and Grishchuk ’85]

Non-linear gravity [Christodoulou ’91] [Blanchet, Damour ’92]

Relation between memory and the symmetries of spacetime

Associated to the degeneracy of the vacuum in any gauge theory

Gravitational memory effects ↔ flux-balance laws ↔ symmetries of open systems

δQ = F (1)

Reveal the fine structure of the infrared regime of asymptotically flat gravity

Memory effects tells us about the explicit and hidden symmetries of spacetime and vice-versa

New memories recently identified: Spin memory, centered-of-masse memory, gyroscope
[Pasterski, Strominger, Zhiboedov ’16] [Nichols ’18][Seraj, Oblak ’23]

Higher memories not always related to symmetries [Flanagan, Grant, Harte, Nichols ’19]
[Grant, Nichols ’22]

How can we relate memory effects to explicit or hidden symmetries of spacetimes?
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Context and Motivations

Memory effects have been studied extensively in asymptotically flat case

Studying the realization of memories in a different context can help understanding this
memory tower and its relation to symmetries
→ Study memories induced by gravitational plane wave

Since 2017, vast literature on memory starting with [Duval, Gibbons, Horvathy, Zhang ’17]

Main claim: no displacement memory / only velocity .... and later spin memory from gyraton
[Shore ’20]

Need a careful classification of memories in pp-wave geometries

Step by step

Identify all the symmetries of the geometries

Solve the geodesic motion

Construct the Fermi coordinates

Solve the geodesic deviation equation

Compare the asymptotic behavior → symmetry interpretation
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Generalities on vacuum pp-wave
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Generalities
A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (2)

with

Ai j =

(
A11 A12

A12 A22

)
. (3)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Add a off-diagonal term guidudx i : gyratonic pp-wave describing spinning radiation

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (4)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (5)

BJR coordinates are not global. Need to switch to Brinkman coordinates which play the role
of null Fermi coordinates when studying memories ...
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A new symmetry of vacuum gravitational plane wave
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Raychaudhuri as a Schwarzian

Symmetries of Einstein equation

Metric

ds2 = 2dudv + Ai j (u)dx idx j

Non-linear field equation for relating the components of the polarized waves[
Ä11

A11
−

1

2

(
Ȧ11

A11

)2
]

+

[
Ä22

A22
−

1

2

(
Ȧ22

A22

)2
]

= 0 .

Most of the investigations remain numerical

Introducing Ai i (u) ≡ A2
i (u), one gets

Ä1

A1
+
Ä2

A2
= 0 .

→ much simpler to deal with later on

First point: the Raychaudhuri equation admits a SL(2,R) symmetry
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Ä1

A1
+
Ä2
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Raychaudhuri as a Schwarzian
Conformal symmetry of the Raychaudhuri equation
Non-linear field equation[

Ä11

A11
−

1

2

(
Ȧ11

A11

)2
]

+

[
Ä22

A22
−

1

2

(
Ȧ22

A22

)2
]

= 0 . (6)

Introduce the new fields
A11 =

1

Ḟ
A22 =

1

Ġ
. (7)

Einstein equation recast into

Sch[F ] + Sch[G] = 0 (8)

wehre Sch[f ] denotes the Schwarzian derivative of the function f

Sch[f ] =

...
f

ḟ
−

3

2

f̈ 2

ḟ 2
. (9)

Invariant under Möbius reparametrization : new solution generating map [JBA, Uzan ’24]

Sch[M ◦ f ] = Sch[f ] where M(u) =
au + b

cu + d
ad − bc 6= 0 , (10)

Simplest solutions:

F (u) =
au + b

cu + d
, G(u) =

ãu + b̃

c̃u + d̃
→ A11(u) = (cu + d)2 , A22(u) = (c̃u + d̃)2 .

(11)

This is just Minkowski after performing

v → v −
1

2
c(cu + d)x2 −

1

2
c̃(c̃u + d̃)y2 x → (cu + d)x y → (c̃u + d̃)y (12)
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Ḟ
A22 =

1

Ġ
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Ȧ11

A11

)2
]

+

[
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Raychaudhuri as a Schwarzian

For polarized vacuum GPW, the Raychaudhuri equation recasts into a balance equation
between the Schwarzian derivatives of the two field (F,G) related to the components of the
wave-profile

Provide a solution generating map for the wave profiles

Large freedom in the choice of wave-profile solving the Einstein equation

Symmetry reduced version of a more general structure found later for any null hypersurfaces
[Ciambelli, Leigh, Freidel ’24]
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Explicit and hidden symmetries of pp-waves
(for the geodesic motion)
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Explicit and hidden symmetries

Conformal isometries of pp-waves

At this level, the statements are valid also when A12 6= 0

Isometries of pp-waves have been studied long time ago
[Souriau ’73] [Sippel ’86][Maartens ’91][Horvathy ’17]

Consider first the conformal killing equations:

Lξgµν = Ωgµν ,

which splits into

∂v ξ
u = 0 ,

∂uξ
v = 0 ,

∂iξ
u + Ai j∂v ξ

j = 0 ,

∂iξ
v + Ai j∂uξ

j = 0 ,

∂v ξ
v + ∂uξ

u = Ω ,

ξu∂uAi j + Aik∂jξ
k + Ajk∂iξ

k = ΩAi j .

We are interested in the CKV which hold for any wave-profile Ai j (u)
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Explicit and hidden symmetries

Conformal isometries of pp-waves

5d isometry group : focus first on KV, i.e. on Ω = 0

Three translations
Nα∂α = ∂v , Pα+∂α = ∂x Pα−∂α = ∂y

Two carrollian boosts

Bα+∂α = Hxx (u0, u)∂x +Hxy (u0, u)∂y − x∂v
Bα−∂α = Hyy (u0, u)∂y +Hyx (u0, u)∂x − y∂v

where we have introduced

Hi j (u0, u) ≡
∫ u

u0

Ai j (w)dw

Algebra of KV : Carrolian Lie algebra in 2 + 1 dimensions without rotation

[B±, P±] = N ,

In a more condensed form, the KV are given by

Lξgµν = 0 ξα∂α =
{
h + bix

i
}
∂v +

[
χi + bjH

i j (u0, u)
]
∂i .

with 5 parameters (h, χi , bi )

Does the pp-wave admit more symmetries ? Hidden symmetries ?
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Explicit and hidden symmetries

Conformal isometries of pp-waves

Consider the CVK: Ω 6= 0

If we look for a CKV for any Ai j , only one solution: HKV for Ω = 2

Zα∂α = 2v∂v + x i∂i . (13)

CKV algebra

[P±, Z] = P± , [B±, Z] = B± , [N , Z] = 2N . (14)

This homothety is the freedom to rescale the light front

It generates another hidden symmetry: a non-trivial Killing tensor
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Explicit and hidden symmetries
Hidden symmetry of pp-waves

Koutras theorem:
if a spacetime admits both a gradient Killing vector and a HKV then it also admits a
non-trivial rank-2 Killing tensor (KT) which generates an additional symmetry.
With the gradient KV and the HKV given by

ξαdxα = (∂αΦ)dxα Zαdxα (15)

the KT is explicitely given by

Kµνdxµdxν =
[
Z(µξν) −Φgµν

]
dxµdxν . (16)

Killing tensor for pp-waves

For the pp-wave, we have a gradient KV and a HKV given by

Nαdxα = du Zα∂α = 2v∂v + x i∂i (17)

hence a KT

Kµνdxµdxν = 2vdu2 − u(2dudv + Ai jdx idx j ) + Ai jx
jdudx i . (18)

All these symmetries hold for any wave-profile Ai j (u) !

Can be use to integrate the geodesic motion ... and the geodesic deviation equation
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Integrating the geodesic motion from the symmetries
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Geodesic motion
Lagrangian

L =
1

2
gµν ẋ

µẋν = u̇v̇ +
1

2
Ai j ẋ

i ẋ j (19)

gives the equations

v̈ −
1

2
A′i j ẋ

i ẋ j = 0 , Ai j ẍ
j + A′i j ẋ

j u̇ = 0 , ü = 0 , (20)

with a prime refering to a derivative w.r.t. u.
Phase space of geodesic motion

{v, pv} = {u, pu} = 1 , {x i , pj} = δi j . (21)

with momenta

pu =
δL
δu̇

= v̇ , (22)

pi =
δL
δẋ i

= Ai j ẋ
j , (23)

pv =
δL
δv̇

= u̇ , (24)

and hamltonian

H = pupv +
1

2
Ai jpipj =

ε

2
. ε = {0,−1} (25)

What are the conserved charges ?
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Geodesic motion
Algebraic integration of the geodesic flow

Conserved charges

ξα∂α → O = ξαpα Kµνdxµdxν → K = Kµνpµpν (26)

Translations: Since the Hamiltonian does not depend on neither v nor x i , pv and pi are
automatically conserved. We denote them as

N = pv , P+ = px , P− = py , (27)

Carrolian boost: The conserved charges generating the boosts are given by

B+ = Hxx (u)px +Hxy (u)py − pv x(u) , (28)

B− = Hyy (u)py +Hyx (u)px − pv y(u) . (29)

Hidden Killing tensor charge: charge coming from the Killing tensor reads

K = Kµνpµpν = pvZ − 2uH with Z = 2pv v + pix
i , (30)

Charge algebra

{P±,B±} = N . (31)

{P±,K} = NP± , {B±,K} = NB± , {N ,K} = 2N 2 , (32)

Geodesic motion integrable since (N ,B±, H) are in involution
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Geodesic motion
Algebraic integration of the geodesic flow

Trivial equation for u̇:
u = pvτ = Nτ. (33)

Transverse motion: Carrolian boosts allows to write the x and y trajectories as

x(u) =
1

N
[Hxx (u0, u)P+ +Hxy (u0, u)P−]−

B+

N
, (34)

y(u) =
1

N
[Hyy (u0, u)P− +Hyx (u0, u)P+]−

B−
N

, (35)

Longitudinal motion: Combining the HKV and the KT charge give v -trajectory

v(u) =
1

2N 2

[
εu −Hi j (u0, u)pipj + piBi +K

]
. (36)

Relations between initial conditions and conserved charges

v0 ≡ v(u0) =
1

2N 2

[
εu0 −Npix i0 +K

]
. x i0 ≡ x i (u0) = −

Bi

N
. (37)

More important for the memories, the x-trajectory reduces to

x i (u) =
1

N

[
Hi j (u0, u)pj − Bi

]
(38)
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Geodesic motion

Properties of a timelike geodesic congruence

With the exact solution to the geodesic, we have the 4-velocity

uu =
du
dτ

= N ,

ui =
dx i

dτ
= Ai jpj ,

uv =
dv
dτ

=
1

2N

(
ε− Ai jpipj

)
. (39)

We can compute the invariant quantities: expansion, shear and rotation

Θ = ∇µuµ = N% (40)

σ = σµνσ
µν = −N 2

[
Ȧi j Ȧi j +

2

3
%(%+ Ȧi jp

ipj )−
1

9
%2(pip

i )2

]
, (41)

ωαβ = ∇[αuβ] = 0 (42)

with % = Ai j Ȧi j

uα∂α is hyper-surface orthogonal and the effect of the wave is to expand/contract and shear
the congruence of geodesics
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Constructing the Fermi coordinates
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Fermi coordinates

Geodesic deviation cannot be analyzed in an arbitrary coordinates system

First task, construct the adapted Fermi normal coordinates (either null or timelike)

For null geodesic, the procedure is closely related to the Penrose limit [Penrose ’76]

21 / 46



Fermi coordinates

Adapted Fermi normal coordinates

Pick up a null geodesic γ̄ with tangent vector

ūµ∂µ = ∂u ūµdxµ = dv . (43)

Introduce a set of adapted Fermi coordinates, XI , with I ∈ {0, . . . , 3} related to the initial
coordinates xµ via

EIµ ≡
∂XI

∂xµ
. (44)

Choose the "time-leg" such that the coordinate X0 coincides with the affine parameter of the
geodesic

Ē0
µdxµ = ūµdxµ . (45)

Impose that i) the remaining legs be parallel transported along the null geodesic, and ii) the
orthogonality relations

ūµ∇µEI ν = 0 gµν |γ̄ = ĒIµĒ
J
νηIJ (46)

In our case, one obtains

ĖAi =
1

2
Ajk ȦkiE

A
j , Ė i A = −

1

2
Aik ȦkjE

j
A (47)

Analyzing the effects in the Fermi coordinates requires to analytically solve this PT equation
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Fermi coordinates

Fermi coordinates : X0 = U, X1 = V and XA = {X, Y } such that the transverse space w.r.t.
the reference geodesic admits the coordinates Xa ∈ {V,XA}.
Then, the Taylor expansion of the BJR coordinates xµ(U, V,XA) up to second order reads

xµ(U, V,XA) = xµ(U) + Ēµa(U)Xa −
1

2
Ēαa(U)Ēβb(U)Γµαβ(U)XaXb . (48)

It follows that the Fermi and BJR coordinates are related by

u = U , (49)

v = V +
1

4
Ȧi j Ē

i
AĒ

j
BX

AXB , (50)

x i = Ē i AX
A . (51)

Ssetting V = 0 and XA = 0, one recovers the position of the reference geodesic γ̄.

The vacuum GPW metric becomes in the Fermi coordinates

ds2 = 2dUdV + δABdXAdXB +HAB(U)XAXBdU2 , (52)

with the wave-profile

HAB =
1

2
E i A ∂u

(
Ȧi jE

j
B

)
. (53)

Known as the Brinkmann coordinates which are the one use to analyze the physical effects
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Fermi coordinates
A quick look at Einstein equation in the Brinkmann form
The vacuum GPW metric becomes in the Fermi coordinates

ds2 = 2dUdV + δABdXAdXB +HAB(U)XAXBdU2 , (54)

with the wave-profile

HAB =
1

2
E i A ∂u

(
Ȧi jE

j
B

)
. (55)

Einstein equation translates into

HAA = 0 → HAB =

(
H+ H×
H× −H+

)
(56)

Any profile (H+, H×) is solution of Einstein equation
Relation to initial description for the polarized wave-profile

H+ =
1

2

[
Ä11

A11
−

1

2

(
Ȧ11

A11

)2
]

= −
1

2

[
Ä22

A22
−

1

2

(
Ȧ22

A22

)2
]
. (57)

= Sch[F ] = −Sch[G] (58)

or with Ai i (u) ≡ A2
i (u)

H+ =
Ä1

A1
= −
Ä2

A2
(59)

For a given example, either choose H+ and determine (A11, A22) or the reverse:
not so easy in practice

What is the relationship of the Brinkman coordinates with the Penrose limit ?
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A brief shortcut to the Penrose limit
Concretely, pick up a null geodesic γ and construct null Fermi coordinates XA = (U, V,X i )

with i ∈ (1, 2) adapted to the region around the geodesic

xa = EaAX
A + EaµΓ̄µABX

AXB +O((XA)3) (60)

In the region around the geodesic γ, the gravitational field can be described as

ds2 = 2dUdV + δi jdX idX j − R̄λiλj (U)X iX jdU2

−
4

3
R̄λjik(U)X jXkdUdX i −

1

3
R̄i jk`(U)XkX`dX idX j

+O(X3) (61)

Organize this expansion in XA using conformal transformation of the transverse space:

(U, V,X i )→ (U, λ2V, λX i ) (62)

Peeling behavior of the Weyl scalars

Ψi = O(λ4−i ) for i ∈ (0, ..., 4) (63)

Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave

ds2 = 2dUdV + Ai j (U)X iX jdλ2 + δi jdX idX j (64)

with
Ai j (U) = R̄UiUj (U) = R̄µνρσE

µ
UE

ν
i E

ρ
UE

σ
j (65)

[Penrose ’76][Blau ’19]
Read the polarizations from the matrix Ai j (U)

Full non-perturbative approach: we never ask that Ai j (U) be "small"
For pp-wave, the Penrose limit is exact→ simply construct the Fermi or Brinkman coordinates
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Geodesic deviation from the symmetries
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Symmetries of the geodesic deviation equation
Geodesic deviation
Consider two nearby curves X̄µ(τ) := Xµ(τ, σ = 0) and Xµ(τ, σ)

Their relative distance expands as folllows

∆Xµ(τ, σ) = Xµ(τ, σ)− X̄µ(τ, 0) = σNµ(τ) (66)

+ σ2
(
Bµ − Γ̄µαβN

αNβ
)

(τ) +O(σ3) (67)

First order deviation vector satisfies the following dynamics

D2Nµ

dτ2
= R̄µαβγ ū

αūβNγ (68)

Second order deviation equation: Bazanski equation

D2bµ

dτ2
= R̄µαβγ ū

αūβbγ +
[
∇̄νR̄λρσµ − ∇̄λR̄νσρµ

]
ūλūσNρNν + 4R̄λρσ

µūλNρūα∇αNσ (69)

And so on ...

Parallel versus orthogonal deviation
Split parallel and orthogonal contributions to the deviation: same for memories

N = N‖ + N⊥ N‖ = f (τ)ū f (τ) = C1τ + C2 . (70)

The remaining equation is hard to solve in general
What are the symmetry of this geodesic deviation equation ?
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Symmetries of the geodesic deviation equation

Relation to hidden symmetries

The solution space related to the explicit and hidden symmetries of the spacetime:
The Caviglia, Zordan, and Salmistraro theorem

Lagrangian formulation

L[N] =
1

2
ḡµν ū

αūβ∇̄αNµ∇̄βNν −
1

2
R̄µναβ ū

µūαNνNβ (71)

Admit a hidden symmetry given by

δNµ = K̄µα1....αp ū
α1 ....ūαp → δL = ∇α

(
Nµū

αūβ∇βδNµ
)

(72)

where K̄µα1....αp is a rank-p (conformal) Killing tensor (similar to higher spin generators for
the Laplacian) :

∇(µKνα1....αp) = ξ(µhνα1....αp) (73)

[Caviglia, Zordan, and Salmistraro ’82][BA ’24]

How can we use this symmetry to explicitly solve the GDE ?
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Symmetries of the geodesic deviation equation

Integrability of the geodesic deviation equation (GDE)

Consider the GDE associated to a timelike or null reference geodesic

D2Nµ

dτ2
= R̄µαβγ ū

αūβNγ with ūαūα = ε ūα∇αūµ = 0 (74)

Consider any conformal Killing tensor (generalization of familiar Killing vectors):

∇(µKαβ) = ξ(µgαβ) with ∇(µξν) = Ωgµν (75)

Rank-2 Killing tensor → exact solution of the GDE

Nµ = K̄µαū
α (76)

Generalize to any rank-p conformal Killing tensor Nµ = K̄µα1....αp−1 ū
α1 .......ūαp−1

Suppose we have killing vectors and rank-2 KT, then the solution space reads

Nµ = {ξ̄µ, K̄µν ūν} (77)

For radiative spacetime, relate memory effects to explicit and hidden symmetries of spacetime
[Caviglia, Zordan, and Salmistraro ’82][BA ’24]
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Suppose we have killing vectors and rank-2 KT, then the solution space reads

Nµ = {ξ̄µ, K̄µν ūν} (77)
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Rank-2 Killing tensor → exact solution of the GDE

Nµ = K̄µαū
α (76)

Generalize to any rank-p conformal Killing tensor Nµ = K̄µα1....αp−1 ū
α1 .......ūαp−1

Suppose we have killing vectors and rank-2 KT, then the solution space reads
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Symmetries of the geodesic deviation equation
Geodesic deviation vector
With the Fermi coordinates X0 = U, X1 = V and XA = {X, Y } at hand, we can analyze the
geodesic deviation
The position and the velocity of the test particle are given in Brinkmann coordinates by

XA = EAi

(
Hi jpj − Bi

)
, (78)

ẊA = ĖAi

(
Hi jpj − Bi

)
+ EAiA

i jpj . (79)

Parametrized by the two charges (pi ,Bi ) : 2d translations and carrolian boosts
Consider the null reference geodesic with trajectory X̄µ and a second arbitrary test particle Xµ

ζA ≡ Y A − X̄A , (80)

encodes their relative distance
We want to analyze

ζA(u) = ζi (u)EAi (u0) with ζi (u) = Ai (u)
[
Hi i (u0, u)pi − Bi

]
. (81)

Its dynamics satisfies the geodesic deviation equation

ζ̈A = RAUUBζ
B (82)

= RiuujE
i
AE

j
Bζ

B (83)

=
1

2

(
Äi j −

1

2
AkmȦki Ȧmj

)
E i AE

j
Bζ

B . (84)

30 / 46



Classification of memory effects

31 / 46



Classification of memory effects

The three different types of memory effects

Consider situations for which asymptotycally, i.e. for u < u0 and u > uf , one has

ζi 6= 0 and ζ̈i = 0 . (85)

Velocity Memory (VM):
When the relative velocity in the two asymptotic regions satisfies

∆ζ̇ = ζ̇f − ζ̇0 6= 0 (86)

→ constant shift on the asymptotic value of the relative velocity.

Vanishing Velocity Memory (VM0): Subcase corresponding to

∆ζ̇ = ζ̇f − ζ̇0 = 0 (87)

→ no velocity memory but still interesting effects on the couple of test particles.

Displacement Memory (DM): subcase such that

ζ̇f = 0 and ζf 6= ζ0 (88)

→ the relative velocity vanishes in the asymptotic future
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Classification of memory effects
A brief look at the conclusions so far
First work to analyze the memory effects in vacuum gravitational plane wave
[Zhang, Duval, Gibbons, Horvathy ’17 ’18]
VGPW only exhibits velocity memory effects / displacement memory effect can never occur
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Classification of memory effects

A brief look at the conclusions so far

Very recently, two numerical examples where a displacement occurs have been presented in
[Zhang, Horvathy ’24]

No analytic conditions were provided leaving the question of the classification of the
conditions to have a velocity versus a displacement memory open
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Classification of memory effects

Pulse versus step profiles

So far, only pulse profiles have been studied

Full classification holds for both:
very different conditions to realize memories depending on the nature of the wave

Step profiles are more adapted to model realistic memory contributions [Favata ’19, ’20]
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Memory effects for pulse profiles
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Focus on the polarized case: A12 = 0 / Introduce Ai = Ai i
Past and future asymptotic behavior of the pulse profile:

H+(u) =
Ä1

A1
= −
Ä2

A2
= 0 for u < u0 u > uf (89)

To analyze the memory, we need the dynamics of the geodesic deviation vector

ζ̇i (u) =
Ȧi (u)

Ai (u)
ζi (u) +

pi

Ai (u)
, (90)

ζ̈i (u) =
Äi (u)

Ai (u)
ζi (u). (91)

Asymptotic behavior of the relative acceleration

Äi = 0 → ζ̈i (u) = 0 for u < u0 u > uf (92)

Compute the asymptotic form of the relative distance and velocity (ζf , ζ̇f , ζ0, ζ̇0) in terms of
the initial conditions (pi ,Bi ) and the asymptotic wave form (A0,Af ).
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Asymptotic past: for u < u0, one has

A(u) = Ȧ0(u − u0) +A0 , (93)

H(u, u0) =

∫ u

u0

1

A2(u)
=

u − u0

A0A(u)
such that A(u)H(u, u0) =

u − u0

A0
, (94)

ζ(u) = ζ̇0(u − u0) + ζ0 (95)

Asymptotic future: for u > uf , one has

A(u) = Ȧf (u − uf ) +Af , (96)

H(u0, u) =

∫ uf

u0

1

A2(u)
+

∫ u

uf

1

A2(u)
= H0f +

u − uf
AfA(u)

. (97)

ζ(u) = ζ̇f (u − uf ) + ζf . (98)

Results: relations between (ζf , ζ̇f , ζ0, ζ̇0) the different asymptotic quantities in terms of the
initial conditions (pi ,Bi ) and the asymptotic properties of the wave profile (A0,Af , H0f )

ζ0 = −BA0 , ζ̇0 =
p

A0
− BȦ0 (99)

ζf = Af (H0f p − B) ζ̇f =
p

Af
+ Ȧf (H0f p − B) , (100)
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Classification of memories for pulse profiles

A VM occurs under the condition ζ̇f 6= ζ̇0.
Since pulses profiles enjoy a constant asymptotic velocities

Äi = 0 for u < u0 u > uf (101)

they generically lead to a constant VM whatever the profile H+(u) and the constants of
motions (B, p) or, similarly, whatever the initial conditions (ζ0, ζ̇0).
This is a generic properties of any pulse.

A VM0 occurs in the special cases in which ζ̇f = ζ̇0 . This translates into

(Ȧf − Ȧ0)B = −p
[
Af −A0

AfA0
− ȦfH0f

]
. (102)

A DM occurs when ζ̇f = 0.
This translates into a specific tuning between the two constants of motion,

Ȧf B = −p
(

1

Af
+ ȦfH0f

)
. (103)

Lead to a finer classification depending on Ȧf = Ȧ0 or Ȧf 6= Ȧ0

Let us see some examples.
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Profiles of the relative displacement (ζ1, ζ2) (upper line) and relative velocity (ζ̇1, ζ̇2) (lower
line) for H+ = e−u

2
with initial conditions that ensures Ȧf − Ȧ0 6= 0.

Left panel: assume pi = (1, 1) and Bi = (−1,−1) → clear non vanishing VM, so that
ζ̇f 6= ζ̇0. Projected motion. Longitudinal position can be different so no colliding trajectories.
Middle: pi 6= (0, 0) and Bi is tuned to get a VM0 → a vanishing VM for which ζ̇f = ζ̇0.
Right: pi = 1 (Solid), pi = 1.5 (Dahed) and pi = −0.5 (Dotted) and Bi is tuned to
ζ̇0 = p/A0 − BȦ0 → pure constant DM

New type of memory (middle column) simply switches the projected position of the two
particles !
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Memory effects for step profiles
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Step profile

H+ → λ0,f 6= 0 respectively for u < u0 and u > uf and λ0,f > 0

The solutions for the mode A2 (and hence ζ2) are obtained from the expression of the mode
A1 (and ζ1) by the transformation λ0,f → iλ0,f .

A−1 ∼
1

2

(
A0 −

Ȧ0

λ0

)
e−λ0(u−u0) Ȧ−1 = −λ0A−1 Ä−1 = λ2

0A−1 . (104)

A+
1 ∼

1

2

(
Af +

Ȧf
λf

)
e+λf (u−uf ) Ȧ+

1 = λfA+
1 Ä+

1 = λ2
fA

+
1 , (105)

Relative acceleration behaves as

ζ̈− ' −
λ0

2

[
p

A0
+ λ0B

(
A0 −

Ȧ0

λ0

)]
e−λ0(u−u0) when u → −∞ . (106)

ζ̈+ '
λf

2

[
p

Af
+ λf (H0f p − B)

(
Af +

Ȧf
λf

)]
eλf (u−uf ) when u → +∞ . (107)

Choice of step profiles: λ0 = 0 and λf > 0 free automatically gives ζ̈− = 0

Requiring that ζ̈ = 0 when u � uf requires the condition

(Ȧf + λfAf )B = p

[
H0f

(
Ȧf + λfAf

)
+

1

Af

]
(108)
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Step profile Upon imposing the previous condition:

VM: A wave with a step profile generically leads to a rather surprising velocity memory effect
where

ζ̇+ =
1

2

[
p

Af
+ λf (pH0f − B)

(
Af +

Ȧf
λf

)]
eλf (u−uf ) = 0 (109)

ζ̇− =
1

2

[
p

A0
+ B

(
λ0A0 − Ȧ0

)]
eλ0(u−u0) =

1

2

[
p

A0
− BȦ0

]
(110)

so that
ζ̇− 6= 0 while ζ̇+ = 0

The wave cancels the relative motion, i.e. the relative velocity, between the two particles.

VM0: It occurs when one further has ζ̇− = 0, which requires p
A0

= BȦ0. This means that a
VM0 requires that

1

A0Ȧ0
= H0f +

1

Af (Ȧf + λfAf )
, (111)

which is a non-trivial property of the spacetime geometry.

DM: A displacement memory effect requires

ζ̇+ = ζ̇− = 0 while ζ+ 6= ζ−

This implies that one needs Ȧ+ 6= Ȧ− together with the constraint (111).
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Conclusion and perspectives
Hidden symmetries (i.e. conformal Killing tensor) generate solutions of the GDE
→ link between hidden symmetries and memories for radiative spacetime [BA ’24]
Complete classification for the conditions relating both the wave-profile and initial conditions
of relative motion to exhibit a velocity or a displacement memory effects in a vacuum
gravitational plane wave [BA, Uzan ’24]

Classification presented for both pulse wave-profile and step wave-profile
(much more subtle for the later)
Reveal new subtle memories: intermediated between velocity and displacement memories

Next goals

Application to more complicated radiative systems: Robinson-Trautman geometries
Revisit the memories in asymptotically flat spacetime : what are their hidden symmetries ?
can we find asymptotic Killing tensors for asymptotically flat spacetime ? Work in progress
Study the memories of extended quadrupolar bodies described by Dixon’s theory

Dpµ

dτ
= −

1

2
Rµναβv

νSαβ −
1

6
Jαβγδ∇µRαβγδ (112)

DS[µν]

dτ
= 2p[µvν] +

4

3
R[µ

αβγJ
ν]αβγ (113)

→ quasi-conserved charges and Killing-Yano symmetries [Compere, Druart ’23]:
are there new memories to identify ?
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Thank you
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