
Commuting ODOs BC/elimination ideal Computing spectral curves Factorization

Computing spectral curves for third order ODOs

Sonia L. Rueda, Universidad Politécnica de Madrid
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The theory of commuting ODOs

The theory of commuting ODOs has broad connections with many
branches of modern mathematics:

• Non-linear partial differential equations (find new exact
solutions).

• Algebra (the Dixmier or Jacobian or Poisson conjectures,
highly non-trivial and still open).

• Complex analysis. Deformation quantisation. . . .
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The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP)
Korteweg-de Vries equation modeled the solitary waves (solitons)

in shallow water.
⇕

COMMUTING ODOs
−→←− ALGEBRAIC CURVES

Schur, Wallemberg, Baker, Krichever, Mumford ...
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The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP)
⇕

COMMUTING ODOs
−→←− ALGEBRAIC CURVES

DIRECT PROBLEM −→
Implicitization

Inverse problem ←−
Parametrization

Beret’s conjecture [Guo, Zheglov 2022].
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Spectral problem

Schrödinger equation

Ψxx − u(x)Ψ = λΨ (1)

with u(x) satisfying a Korteweg de Vries (KdV) equation of the
celebrated KdV hierarchy. For instance, the classical stationary
KdV equation

uxxx − 6uux = 0.

λ spectral parameter

(Drach’s Ideology, 1919) Brehznev 2008, 2012, 2013.
Integrate (1) as an ODE to obtain a parametric solution Ψ(x ;λ)
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Spectral problem

(Σ, ∂) ordinary differential field
field of constants C = C , characteristic 0.

Given
L in Σ[∂]\C [∂]

assuming

NON-TRIVIAL CENTRALIZER Z(L)

Parametric solutions Ψ(x ;λ, µ)

L(Ψ) = λΨ, B(Ψ) = µΨ

for B ∈ Z(L), ∂(λ) = 0, ∂(µ) = 0.
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Centralizers and spectral curves

Schur, Flanders, Krichever, Amitsur, Carlson, Ore....
[Goodearl, 1983]

Z(L) = {A ∈ Σ[∂] | [L,A] = 0}

• Trivial Z(L) = C [L]

• Non-trivial Z(L) is a free C [L]-module, the cardinal of a basis
divides ord(L).

SPECTRAL CURVE Γ := Spec(Z(L))

Z(L) maximal commutative domain in Σ[∂].
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(with M.A. Zurro)
Computing defining ideals of space spectral curves for

algebro-geometric third order ODOs. arXiv:2311.09988, 2023.
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BC Ideal of a pair

Commuting P and Q in Σ[∂]

eP,Q : C [λ, µ]→ Σ[∂]

homomorphism of C -algebras defined by

g(P,Q) := eP,Q(g) = eP,Q(σi ,jλ
iµj) = σi ,jP

iQ j .

Define the Burchnall-Chaundy BC ideal of the pair P and Q as

BC(P,Q) := Ker(eP,Q) = {g ∈ C [λ, µ] | g(P,Q) = 0}.

Its elements are BC polynomials
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Spectral curve of a pair

Commuting P and Q in Σ[∂]\C [∂]

Z(P) finitely generated C [P]-module ⇒ BC(P,Q) non zero ideal.

Σ[∂] domain ⇒ BC(P,Q) prime ideal.

Spectral curve ΓP,Q := V (BC(P,Q))

Coordinate ring of ΓP,Q

C [λ, µ]

BC(P,Q)
≃ C [P,Q].
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Spectral curve of a pair

There exists an irreducible polynomial f ∈ C [λ, µ] such that

BC(P,Q) = (f )

ΓP,Q =
{
(λ0, µ0) ∈ C 2 | f (λ0, µ0) = 0

}
.

How do we compute f ?
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Computing BC ideals

Given (monic) P, Q ∈ Σ[∂], then P − λ, Q − µ in D = Σ[λ, µ].

ord(P) = n, ord(Q) = m

h(λ, µ) =∂Res(P − λ,Q − µ) = µn − λm + ...

a non trivial polynomial in Σ[λ, µ]

Generalize [Wilson, 1985], [Previato, 1991].

(RZ 2023) Arbitrary (Σ, ∂), Const(Σ) = C = C .

If [P,Q] = 0 then h(λ, µ) ∈ BC(P,Q).

1. Proof by Poisson’s Formula h(λ, µ) ∈ C [λ, µ].

2. Proof by elimination ideals h(P,Q) = 0.
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Rosen-Morse potential u1 =
−2

cosh2(x)

L1 = −∂2 + u1, [L1,A3] = KdV0(u1) +KdV1(u1) = 0

f1(λ, µ) = −µ2 − λ(λ− 1)2 =

= ∂Res(L1 − λ,A3 − µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 −2
(cosh(x))2 − λ 8 sinh(x)

(cosh(x))3
4

(cosh(x))2 − 12 (sinh(x))2

(cosh(x))4

0 −1 0 −2
(cosh(x))2 − λ 4 sinh(x)

(cosh(x))3

0 0 −1 0 −2
(cosh(x))2 − λ

−1 0 −3
(cosh(x))2 + 1 9 sinh(x)

(cosh(x))3
− µ 3

(cosh(x))2 − 9 (sinh(x))2

(cosh(x))4

0 −1 0 −3
(cosh(x))2 + 1 3 sinh(x)

(cosh(x))3
− µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Elimination ideals

Left ideal

(P − λ,Q − µ) = {C (P − λ) + D(Q − µ) | C ,D ∈ Σ[λ, µ][∂]}

Two sided ideals

E(P − λ,Q − µ) := (P − λ,Q − µ) ∩ Σ[λ, µ].

and
EC (P − λ,Q − µ) := (P − λ,Q − µ) ∩ C [λ, µ].

By definition of the differential resultant

h(λ, µ) = ∂Res(P − λ,Q − µ) ∈ EC (P − λ,Q − µ).

Thus both elimination ideals are nonzero.
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Elimination ideals

Commuting P and Q in Σ[∂]\C [∂], both of positive order,

f =
√
h, with h = ∂Res(P − λ,Q − µ).

(RZ 2023)

1. The radical of the elimination ideal EC (P − λ,Q − µ) equals

BC(P,Q) = (f ).

2. The radical of the elimination ideal E(P −λ,Q−µ) equals [f ].

Recall f ∈ C [λ, µ],

(f ) = C [λ, µ]f and [f ] = Σ[λ, µ]f differential ideal.
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Spectral curve of L

Generalized Schur’s Theorem [Goodearl, 1983]

Z((L)) =


m∑

j=−∞
cjQ

j | cj ∈ C ,m ∈ Z


Commutative differential domain

Z(L) = Z((L)) ∩ Σ[∂]

Spec(Z(L)) is an abstract algebraic curve Γ

Compute the defining ideal of Γ
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Centralizer ord(L) = 3

Given L ∈ Σ[∂]\C [∂], with Z(L) ̸= C [L].

Z(L) is a free C [L]-module of rank 3.

{1,A1,A2} basis of Z(L) as a C [L]-module. Each Ai is a monic
operator in Z(L)\C [L] of minimal order

oi := ord(Ai ) ≡ i (mod 3).

Z(L) = C [L]⊕ C [L]A1 ⊕ C [L]A2 = C [L,A1,A2]
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BC ideal ord(L) = 3

eL : C [λ, µ1, µ2]→ Σ[∂]

eP,Q(λ) = L, eP,Q(µ1) = A1, eP,Q(µ2) = A2.

Image of eL,
Z(L) = C [L,A1,A2]

Given g ∈ C [λ, µ1, µ2] denote

g(L,A1,A2) := eL(g).

BC(L) := Ker(eL) = {g ∈ C [λ, µ1, µ2] | g(L,A1,A2) = 0}.
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Spectral curve ord(L) = 3

ord(L) = 3 in Σ[∂], Z(L) = C [L,A1,A2], ord(Ai ) ≡3 i{
fi = ∂Res(L− λ,Ai − µi ), i = 1, 2
f r3 = ∂Res(A1 − µ1,A2 − µ2)

are irreducible in C [λ, µ1, µ2] since

BC(L,Ai ) = (fi ) and BC (A1,A2) = (f3)

(0) ⊂ (fi ) ⊂ (f1, f2) ⊆ (f1, f2, f3) ⊆ BC(L), i = 1, 2.

Γ := V (BC(L)) ⊆ γ := V (f1, f2, f3) ⊆ β := V (f1, f2).

Space algebraic curveβ = V (f1) ∩ V (f2) is the intersection of the
irreducible surfaces defined by f1(λ, µ1) = 0 and f2(λ, µ2) = 0.
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Spectral curve ord(L) = 3

Theorem: (RZ 2023) BC(L) is a prime ideal

BC(L) = (f1, f2, f3)

Irreducible affine algebraic curve in C 3

Γ = V (BC(L))

Z(L) ≃ C [Γ] =
C [λ, µ1, µ2]

BC(L)
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If ord(A2) = 2 then A1 = A2
2 implying that f3 = (µ− γ2)2.

Z(L) = C(A2) = C [L,A2] ≃
C [λ, µ]

(f2)

coordinate ring of a plane algebraic curve.
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Planar spectral curve

[Dickson, Gesztesy, Unterkofler, 1999] Σ = C(x), ∂ = d/dx

L = ∂3 − 15

x2
∂ +

15

x3
+ h .

Z(L) = C [L,A1,A2] , ord(A1) = 4, ord(A2) = 8.

We compute the generators of the ideal BC(L) = (f1, f2, f3)
using differential resultants

f1 =− µ3
1 + (λ− h)4 , f2 = −µ3

2 + (λ− h)8, f 43 = (µ2 − µ2
1)

4.

Since f3 is the BC polynomial of A1 and A2 we have A2 = A2
1,

implying that

Z(L) = C [L,A1] ≃
C [λ, µ1]

(f1)
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Non-planar spectral curves

(RZ 2022) Σ = C(x), ∂ = d/dx

L = ∂3 − 6

x2
∂ +

12

x3
+ h , h ∈ C.

Z(L) = C[L,A1,A2] with ord(A1) = 4, ord(A2) = 5.
Using differential resultants we compute

f1 = −µ3 + (λ− h)4, f2 = −γ3 + (λ− h)5, f3 = γ4 − µ5.

BC(L) = (f1, f2, f3) is a prime ideal.

First explicit example of a non-planar spectral curve.

The curve defined by BC(L) is a non-planar curve Γ parametrized by

ℵ(τ) = (h − τ3, τ4,−τ5), τ ∈ C.
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Σ = C(z = ex),∂ = d/dx

L = ∂3 +
24z

(z + 1)2
∂ +
−48z(z − 1)

(z + 1)3
, ord(A1) = 4, ord(A2) = 5

Non-planar spectral curve Γ defined by the prime ideal

BC(L) = (f1, f2, f3)

f1 =∂Res(L− λ,A1 − µ1) = 1 + λ4 +
44

27
λ2 − µ3

1 − 4λ2µ1 + 3µ2
1 − 3µ1

f2 =∂Res(L− λ,A2 − µ2) =

λ5 + 16(µ2 − 1)λ2/3 + (4096λ)/729− (µ2 − 1)3

f3 =∂Res(A1 − µ1,A2 − µ2) = ...
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New coefficient field

P,Q ∈ Σ[∂]

[P,Q] = 0⇒ ∂Res(P − λ,Q − µ) = f (λ, µ)r ∈ C [λ, µ].

As differential operators in Σ[λ, µ][∂],

∂Res(P − λ,Q − µ) ̸= 0⇒ gcrd(P − λ,Q − µ) = 1.

Σ(ΓP,Q) = Fr

(
Σ[λ, µ]

[f ]

)
As differential operators in Σ(ΓP,Q)[∂],

∂Res(P − λ,Q − µ) = 0⇒ gcrd(P − λ,Q − µ) ̸= 1.
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New coefficient field

[BC(L)] is a prime differential ideal of Σ[λ, µ1, µ2]

Differential domain

Σ[Γ] =
Σ[λ, µ1, µ2]

[BC(L)]

Its fraction field
Σ(Γ)

is a differential field with the extended derivation.
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Intrinsic right factor

ord(L) = 3 in Σ[∂], Z(L) = C [L,A1,A2]

Theorem: (RZ 2023) The greatest common right divisor in Σ(Γ)[∂]

∂ + ϕ = gcrd(L− λ,A1 − µ1,A2 − µ2)

equals gcrd(L− λ,A1 − µ1) = gcrd(L− λ,A2 − µ2)
and divides gcrd(A1 − µ1,A2 − µ2)).

Assume L = ∂3 + u1∂ + u0

L− λ =
(
∂2 − ϕ∂ + u1 − 2ϕ′ + ϕ2

)
· (∂ + ϕ),

in Σ(Γ)[∂], under the condition

ϕ3 + u1ϕ− 3ϕϕ′ − u0 + ϕ′′ + λ = 0.
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Non-planar spectral curve

ℵ(τ) = (−τ3 + 1, τ4,−τ5), τ ∈ C.

The first differential subresultants of L− λ, A1 − µ1 and A2 − µ2

pairwise are equal to

ϕi ,0 + ϕi ,1∂, i = 1, 2, 3, j = 0, 1,

with

ϕ1,0 = (1− λ)µ1 − 4µ1

x3
+ 8(λ−1)

x4
, ϕ1,1 = (λ− 1)2 − 2µ1

x2
+ 4 (λ−1)

x3
,

ϕ2,0 = (1− λ)3 − 4(1−λ)2

x2
+ 8µ2

x4
, ϕ2,1 = (λ− 1)3 − 4(1−λ)2

x2
+ 8µ2

x3
,

ϕ3,0 = −µ2

(
µ2
1 +

4µ2

x3
− 8µ1

x4

)
, ϕ3,1 = µ3

1 −
2µ2

2
x2

+ 4µ2µ1

x3
.
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We have ord(A1) = 4 and ord(A2) = 5 thus

ϕ = ϕi =
ϕ0,i

ϕ1,i
+ [BC(L)], i = 1, 2, 3.

ϕ(τ) := ϕi (ℵ(τ)) =
−τ3x3 + 2τ2x2 − 4τx + 4

(τ2x2 − 2τx + 2)x
.

Thus

L+ τ3 − 1 =

(
∂2 + ϕ(τ)∂ + ϕ(τ)2 + 2ϕ(τ)′ − 6

x2

)
· (∂ + ϕ(τ))

At every point P0 = ℵ(τ0) of the spectral curve Γ of L we recover
a right factor ∂ + ϕ(τ0), for τ0 ̸= 0.
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ADAI Goals

Algorithmic Differential Algebra and Integrability (ADAI)

Develop Picard-Vessiot (PV) theory for spectral problems.
Use effective differential algebra to develop symbolic algorithms:

• Parametric factorization of algebro-geometric ODOs.

• Existence and computation of spectral Picard-Vessiot fields.
Differential field extension of Σ(Γ), minimal containing all the
solutions. In (MRZ 2021) for Schrödinger operators

• Compute integrable hierarchies and almost commuting basis.

• Compute new algebro-geometric ODOs, order ≥ 3.



Commuting ODOs BC/elimination ideal Computing spectral curves Factorization

• (MRZ 2020) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro.
Factorization of KdV Schrödinger operators using differential
subresultants. Adv. Appl. Math., 120:102065, 2020.

• (MRZ 2021) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro.
Spectral Picard-Vessiot fields for algebro-geometric
Schrödinger operators . Annales de l’Institut Fourier, Vol. 71, No.
3, pp. 1287-1324, 2021.

• (PRZ 2019) E. Previato, S.L. Rueda, and M.A. Zurro. Commuting
Ordinary Differential Operators and the Dixmier Test. SIGMA
Symmetry Integrability Geom. Methods Appl., 15(101):23 pp.,
2019.

• (RZ 2021) S.L. Rueda and M.A. Zurro. Factoring Third Order
Ordinary Differential Operators over Spectral Curves. See
arXiv:2102.04733v1, 2021.
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