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Definitions

Hypergeometric differential equation:

x(0+a1) - (0+ap)F(x) =0(0+ by —1)--- (0 + bg— )F(x) (0 =x~)
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Definitions

Hypergeometric differential equation:

x(0+a1) - (0+ap)F(x) =0(0+ by —1)--- (0 + bg— )F(x) (0 =x~)

Solutions: Hypergeometric function:

F(X):pF[Zi:::" ] i_oj ).X_

)

where (a), == a(a+1)---(a+ n— 1) denotes the rising factorial.
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Examples

® | ogarithm:

1 1 1
:1+7X+*X2—|—ZX3+...EQ[[X]]

£ L1 | log(1 — x)
2h - X 2 3

2 X
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n>0
® Chebychev numbers:
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" (15n)i(10n)(6n)! T =TT 1121234 61001515

® Some other algebraic series, such as
1/2,V2+1,—V2+1 ] _ (Ix—1)(2x - 1)

3F; N tdx (1= 4x)572

=1+x—6x%>4--- € Z[x]
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Definitions

A power series f(x) € Q[x] is called algebraic (over Q(x)) if there is P(x, y) € Q[x, y],
P(x,y) # 0, such that P(x, f(x)) = 0.
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Definitions

A power series f(x) € Q[x] is called algebraic (over Q(x)) if there is P(x, y) € Q[x, y],
P(x,y) # 0, such that P(x, f(x)) = 0.

A power series f(x) € Q[x] is called globally bounded if there are a, 8 € Z \ {0}, such that
Bf(ax) € Z[x] and its convergence radius is nonzero and finite.

In particular, only finitely many prime numbers appear in the denominators of the coefficients.
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Definitions

A power series f(x) € Q[x] is called algebraic (over Q(x)) if there is P(x, y) € Q[x, y],
P(x,y) # 0, such that P(x, f(x)) = 0.

A power series f(x) € Q[x] is called globally bounded if there are a, 8 € Z \ {0}, such that
Bf(ax) € Z[x] and its convergence radius is nonzero and finite.
In particular, only finitely many prime numbers appear in the denominators of the coefficients.

Theorem (Eisenstein 1852, Heine 1854)
Any algebraic f(x) € Q[x] is a polynomial or globally bounded.
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Definitions

A power series f(x) € Q[x] is called differentially finite or D-finite if it satisfies a non-trivial
linear ordinary differential equation with coefficients in Q[x] (ODE).
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Definitions

A power series f(x) € Q[x] is called differentially finite or D-finite if it satisfies a non-trivial
linear ordinary differential equation with coefficients in Q[x] (ODE).

Theorem (Folklore, Abel 1827)
Any algebraic f(x) € Q[x] is D-finite.
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Definitions

A power series f(x) € Q[x] is called differentially finite or D-finite if it satisfies a non-trivial
linear ordinary differential equation with coefficients in Q[x] (ODE).

Theorem (Folklore, Abel 1827)
Any algebraic f(x) € Q[x] is D-finite.

Any hypergeometric function F(x) € Q[x] is D-finite as it satisfies the hypergeometric
differential equation.

Classical Question (Fuchs, Liouville, ...)

Which D-finite functions are algebraic? Which differential equations have algebraic solutions?
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Question

Which hypergeometric functions are algebraic?
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Question

Which hypergeometric functions are algebraic?

The hypergeometric function

1,1_X} _log(1—x)

1 1 1
X =1+ x+-x2+-x3+...€Q[x]

2F1[ x 27737 T4

clearly is not algebraic. It is not even globally bounded.
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Question

Which hypergeometric functions are algebraic?

The hypergeometric function

1,1 log(1 — 1 1, 1
2F1[ ) ;x} :—Og(xx):1+2x+3x2+4x3+...€(@|[x]]

clearly is not algebraic. It is not even globally bounded.

The function

V2,-v2 T T - ax)i

3F2[1/2,\@+1,—ﬂ+1_4 (7x —1)(2x — 1)

clearly is algebraic.
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Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all
F(x) = 2F1([a1, a2], [b1]; x), with rational parameters a1, a2, by € Q by essentially providing a
finite list.
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Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all
F(x) = 2F1([a1, a2], [b1]; x), with rational parameters a1, a2, by € Q by essentially providing a
finite list.

Landau 1904, 1911 and Errera 1913 exploited Eisenstein's Theorem, leading to an arithmetic
criterion for algebraicity of Gaussian hypergeometric functions with rational parameters:

Theorem (Landau, Errera)

Let F(x) = 2F1([a1, a2], [b1]; x) with a1, a2, b1,a1 — b1,ay — b1 € Z. Then F(x) is globally
bounded iff it is algebraic and iff for all 1 < A\ < N coprime to the common denominator N of
ai, ap, by we have

(Aa1) < (Ab1) < (Aap) or (Aaz) < (Ab1) < (Aai),

where (-) denotes the fractional part.
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Christol’s Interlacing Criterion

Define (-) : R — (0, 1] as the fractional part, where integers are assigned 1 instead of 0.
Define < on R? via a < b if (a) < (b) or (a) = (b) and a > b.

Theorem (Christol, 1986)
Let

al,...,dp
F(x)=pFp_ i X,
0 = pFo 1[1)1,...,13,,_1 X]
with rational parameters, a;, by ¢ —N, denote by N the least common denominator of all
parameters, and set b, = 1. Then F(x) is globally bounded if and only if for all1 < X\ < N
with gcd(A, N) =1 we have for all 1 < k < p that

[{Aaj < Abi: 1< j < p}| — [{Abj < Abe: 1< j < p}| > 0.
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Christol’s Interlacing Criterion

For aj — by € Z the criterion can be interpreted graphically:

Draw the sets {exp(27i)a;)} in red and {exp(27miAbi)} in blue on the unit circle for all
1 < XA < N with ged(A\, N) = 1. Then F is globally bounded iff there are always at least as
many red as blue points going counter-clockwise starting after 1 (count with multiplicity).
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Christol’s Interlacing Criterion

For aj — by € Z the criterion can be interpreted graphically:

Draw the sets {exp(27i)a;)} in red and {exp(27miAbi)} in blue on the unit circle for all
1 < XA < N with ged(A\, N) = 1. Then F is globally bounded iff there are always at least as
many red as blue points going counter-clockwise starting after 1 (count with multiplicity).

3F2([1/9,4/9,5/9],[1/3, 1]; x) is globally bounded, as one can deduce from the pictures below.
They correspond to A =1,2,4,5,7, 8 respectively.

SIS0 0
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Beukers—Heckman Interlacing Criterion

Theorem (Christol 1986, Beukers—Heckman 1989, Katz 1990)

d1,...,4dp
() = oFp l{bl,...,bp_l’x]’

with rational parameters aj, b, ¢ —N such that a; — by, aj € Z, denote by N the least common
denominator of all parameters, and set b, = 1. Then F(x) is algebraic if and only if for all
1 < X< N with ged(A, N) =1 we have for all 1 < k < p that

[{(Xaj) < (Abi): 1 <j < p}f = [{{Abj) < (Aby): 1<) < p}[=0. (1€)

In other words, F(x) is algebraic, if and only if the sets {exp(27i)a;)} and {exp(2mi\by)}
interlace on the unit circle for all .
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Beukers—Heckman Interlacing Criterion

=3Fy([1/14,3/14,11/14],[1/7,3/7]; x) is algebraic:

000000
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Beukers—Heckman Interlacing Criterion

=3Fy([1/14,3/14,11/14],[1/7,3/7]; x) is algebraic:

000000

=3Fy([1/14,3/14,11/14],[1/7,5/7]; x) is not algebraic:

000000
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Example from Combinatorics: Gessel Excursions

Lattice walks in the quaterplane with step set {—, «+, 7, /}: Gessel walks
, Consider the generating function

G(X) = Zgnxn

n>0

of excursions of length n, i.e., walks with n
steps that start and end at (0, 0).

13/23
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Example from Combinatorics: Gessel Excursions

Lattice walks in the quaterplane with step set {—, «+, 7, /}: Gessel walks

, Consider the generating function

=2 &
n>0

of excursions of length n, i.e., walks with n
steps that start and end at (0, 0).

Theorem (conjectured by Gessel 2001, Kauers—Koutschan—Zeilberger 2009,

Bousquet-Mélou 2016, Bostan—Kurkova—Raschel 2017)

2(5/6 1/2 16n 2n_3F2|:

)n(5/3)n
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Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

algebraic?
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Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

algebraic?

Direct application of the interlacing criterion is not possible, as a3 =1 € Z.
Trick: use identities for hypergeometric functions:

G(x) = i <2F1 {_1/5’/3_1/6; 16x2] — 1) ,

which is algebraic by Schwarz' classification.
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Example from Combinatorics: Gessel Excursions

algebraic?

Direct application of the interlacing criterion is not possible, as a3 =1 € Z.
Trick: use identities for hypergeometric functions:

_ 1 _1/27 _1/6. 2
G(X)—2X2<2F1|: 2/3 ,16X:|—1>7
which is algebraic by Schwarz' classification.

Algebraicity of G(x) was overlooked until Bostan and Kauers proved the algebraicity of the

trivariate generating function Q(x, y, t) of Gessel walks ending at (i,;) € N2 in 2010.
14/23
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Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

algebraic?

Minimal polynomial of G(x):

27x14y8 + 108x12y7 + 189x10y0 + 189x8y° — 9x®(32x* + 28x% — 13)y*

—0x*(64x* + 56x% — 5)y® — 2x%(256x° — 312x* + 156x° — 5)y?

—(32x% — 1)(4x® — 6x + 1)(4x° + 6x + 1)y — 256x° — 576x* + 48x> — 1
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Irrational Parameters

The function
1/2,V2+1,—V2+1 (7x —1)(2x — 1)

V2, -2 X = T A 4

is algebraic, although it has irrational parameters. The interlacing criterion is not applicable.

3f
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Irrational Parameters

The function

[1/2,\fz+1,—ﬂ+ 1 } (7x —1)(2x — 1)
3F2 =

V2, -2 A (1 4x)5/2

is algebraic, although it has irrational parameters. The interlacing criterion is not applicable.

Recall: The interlacing criterion of Beukers and Heckman treats the case of a;, by € Q \ —N
with aj — by, aj ¢ 7.

An easy to use criterion to account for irrational parameters and integer differences.
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Change of Setting

Define

Note:
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Definitions

F )]:[dl,...,ds' ] g(dl)n‘--(ds)n '

F(x) is contracted if ¢; — dx € N. F(x) is reduced if ¢; — di & Z.

The contraction F¢(x) of F(x) is obtained from F(x) by removing pairs of parameters
(¢j, di) with minimal difference ¢; — dx € N. It is contracted by definition.

If F(x) is given as ,Fq, convert to F first.
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[ee]ele] Tele]

Definitions

o 7| e | (Cl)n"'(cr)nxn
F( )]:[dl,...,ds' } g(dl),,..-(ds),, '

F(x) is contracted if ¢; — dx € N. F(x) is reduced if ¢; — di & Z.

The contraction F¢(x) of F(x) is obtained from F(x) by removing pairs of parameters
(¢j, di) with minimal difference ¢; — dx € N. It is contracted by definition.

If F(x) is given as ,Fq, convert to F first.
11 €
3 77274
4F3|:3 2 . :|

1124 7e 11
331 :f[3311;x] :f[3 1“]‘
2929 29y 2

This contraction is not reduced, as 1/2 — 3/2 € Z.
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The Criterion

Theorem (F.—Yurkevich 2023)

For any hypergeometric function F(x) = pFq([a1, ..., ap],[b1, ..., bgl; x) € Q[x] the following
decision tree answers the question whether it is algebraic over Q(x).

F is transcendental

aj € —-N
for some j7

Is F algebraic?

Parameters
of F€in Q7

F is algebraic
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|deas of the Proof

(0 + a1)F(x) is a hypergeometric function with the same parameters as F(x), except for a1,

which is increased by 1. With this one can show that F(x) is algebraic if and only if F¢(x) is
algebraic.
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(0 + a1)F(x) is a hypergeometric function with the same parameters as F(x), except for a1,
which is increased by 1. With this one can show that F(x) is algebraic if and only if F¢(x) is
algebraic.

If F(x) is contracted, its minimal differential equation is the hypergeometric one. If F(x) has
irrational parameters, the equation has an irrational local exponent and F(x) cannot be
algebraic.
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|deas of the Proof

(0 + a1)F(x) is a hypergeometric function with the same parameters as F(x), except for a1,
which is increased by 1. With this one can show that F(x) is algebraic if and only if F¢(x) is
algebraic.

If F(x) is contracted, its minimal differential equation is the hypergeometric one. If F(x) has
irrational parameters, the equation has an irrational local exponent and F(x) cannot be
algebraic.

If F(x) is not reduced, define G(x) by removing all pairs of parameters with integer

differences. Then the interlacing criterion for global boundedness for F(x) and for algebraicity
for G(x) cannot be fulfilled at the same time, contradicting the algebraicity of F(x).
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Example 1

G B 1+iVRL- VAL

51+lf 1—[\/>
4114 -
7%’1[’ ~iv3,3 %77”\[ —iv/3,3

20/23



Examples
@000

Example 1

B L+iV3,1-iV3 X]_ F[lﬁl,fﬂ,uﬂfl—/{l ]
%%;I\[, —iV/3,3 ' s 1,2,iv3,-iV3,3 e

3 1 1 3 14
fC(X)Z]:[l 134 14;X]=4F3[14’14’1§7 ;x}
» 7o
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Example 1

1 3 11
B L+iV3,1-iV3 X]:éFS[M,M,M,H:fl—/\fl ]
%%,1\7, —iV3,3 7:3,1V3,-iV3,3

Contraction has rational parameters and is reduced:

1 3 11 1 3 114
fC(X):f|:111§ 314;X:| :4F3|:14 14§1§ ;X:|.
77 7

We have already seen that f¢(x) is algebraic by the interlacing criterion, thus so is f(x).
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Example 2

=3 (M arers

Generating function:

Contraction:
F(x) = aF3 [
Interlacing criterion: f(x) algebraic.
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Example 2

=3 (M arers

Generating function:

Contraction:
f(x) = 4F3 [

Interlacing criterion: f(x) algebraic.

Examples
[e] le]e}

3/4n\ n+2
Vp = = —.
"2\ n)(n+1)2
Generating function:

g(x) = 6F5[4

Contraction:

Not reduced: g(x) not algebraic.
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Example 3 — Gessel Revisited

Recall the generating function of Gessel excursions

519 51
G(X)=3Fz[6225 ;16x2} :f[; §;x].
’ 3 3

G(x) is contracted, reduced, has only rational parameters and satisfies the interlacing criterion:

U
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The End

Thank you for your attention!

F is transcendental

no
. aj € —N Parameters
? g . . ?
Is F algebraic Oar o [ of F€ in Q7 IC for F€7
yes
F is algebraic
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