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Introduction History Arbitrary Parameters Examples

Definitions

Hypergeometric differential equation:

x(θ + a1) · · · (θ + ap)F (x) = θ(θ + b1 − 1) · · · (θ + bq − 1)F (x)
(
θ = x

d

dx

)

Solutions: Hypergeometric function:

F (x) = pFq

[
a1, . . . , ap
b1, . . . , bq

; x

]
:=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· x
n

n!
,

where (a)n := a(a+ 1) · · · (a+ n − 1) denotes the rising factorial.
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Introduction History Arbitrary Parameters Examples

Examples

• Logarithm:

2F1

[
1, 1

2
; x

]
= − log(1− x)

x
= 1 +

1

2
x +

1

3
x2 +

1

4
x3 + . . . ∈ Q[[x ]]

• Catalan numbers:

Cn =

(
2n

n

)
1

n + 1
∈ Z,

∑
n≥0

Cnx
n = 2F1

[ 1
2 , 1

2
; 4x

]
• Chebychev numbers:

an =
(30n)!n!

(15n)!(10n)!(6n)!
∈ Z,

∑
n≥0

anx
n = 8F7

[ 1
30 ,

7
30 ,

11
30 ,

13
30 ,

17
30 ,

19
30 ,

23
30 ,

29
30

1
2 ,

1
3 ,

2
3 ,

1
5 ,

2
5 ,

3
5 ,

4
5

;
3030

6610101515
x

]
• Some other algebraic series, such as

3F2

[
1/2,
√
2 + 1,−

√
2 + 1√

2,−
√
2

; 4x

]
=

(7x − 1)(2x − 1)

(1− 4x)5/2
= 1 + x − 6x2 + · · · ∈ Z[[x ]]
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Introduction History Arbitrary Parameters Examples

Definitions

A power series f (x) ∈ Q[[x ]] is called algebraic (over Q(x)) if there is P(x , y) ∈ Q[x , y ],
P(x , y) ̸= 0, such that P(x , f (x)) = 0.

A power series f (x) ∈ Q[[x ]] is called globally bounded if there are α, β ∈ Z \ {0}, such that
βf (αx) ∈ Z[[x ]] and its convergence radius is nonzero and finite.
In particular, only finitely many prime numbers appear in the denominators of the coefficients.

Theorem (Eisenstein 1852, Heine 1854)

Any algebraic f (x) ∈ Q[[x ]] is a polynomial or globally bounded.
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Introduction History Arbitrary Parameters Examples

Definitions

A power series f (x) ∈ Q[[x ]] is called differentially finite or D-finite if it satisfies a non-trivial
linear ordinary differential equation with coefficients in Q[x ] (ODE).

Theorem (Folklore, Abel 1827)

Any algebraic f (x) ∈ Q[[x ]] is D-finite.

Any hypergeometric function F (x) ∈ Q[[x ]] is D-finite as it satisfies the hypergeometric
differential equation.

Classical Question (Fuchs, Liouville, ...)

Which D-finite functions are algebraic? Which differential equations have algebraic solutions?
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Question

Which hypergeometric functions are algebraic?

The hypergeometric function

2F1

[
1, 1

2
; x

]
= − log(1− x)

x
= 1 +

1

2
x +

1

3
x2 +

1

4
x3 + . . . ∈ Q[[x ]]

clearly is not algebraic. It is not even globally bounded.

The function

3F2

[
1/2,
√
2 + 1,−

√
2 + 1√

2,−
√
2

; 4x

]
=

(7x − 1)(2x − 1)

(1− 4x)5/2

clearly is algebraic.
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Introduction History Arbitrary Parameters Examples

Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all
F (x) = 2F1([a1, a2], [b1]; x), with rational parameters a1, a2, b1 ∈ Q by essentially providing a
finite list.

Landau 1904, 1911 and Errera 1913 exploited Eisenstein’s Theorem, leading to an arithmetic
criterion for algebraicity of Gaussian hypergeometric functions with rational parameters:

Theorem (Landau, Errera)

Let F (x) = 2F1([a1, a2], [b1]; x) with a1, a2, b1, a1 − b1, a2 − b1 ̸∈ Z. Then F (x) is globally
bounded iff it is algebraic and iff for all 1 ≤ λ ≤ N coprime to the common denominator N of
a1, a2, b1 we have

⟨λa1⟩ < ⟨λb1⟩ < ⟨λa2⟩ or ⟨λa2⟩ < ⟨λb1⟩ < ⟨λa1⟩,

where ⟨·⟩ denotes the fractional part.

8 / 23



Introduction History Arbitrary Parameters Examples

Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all
F (x) = 2F1([a1, a2], [b1]; x), with rational parameters a1, a2, b1 ∈ Q by essentially providing a
finite list.

Landau 1904, 1911 and Errera 1913 exploited Eisenstein’s Theorem, leading to an arithmetic
criterion for algebraicity of Gaussian hypergeometric functions with rational parameters:

Theorem (Landau, Errera)

Let F (x) = 2F1([a1, a2], [b1]; x) with a1, a2, b1, a1 − b1, a2 − b1 ̸∈ Z. Then F (x) is globally
bounded iff it is algebraic and iff for all 1 ≤ λ ≤ N coprime to the common denominator N of
a1, a2, b1 we have

⟨λa1⟩ < ⟨λb1⟩ < ⟨λa2⟩ or ⟨λa2⟩ < ⟨λb1⟩ < ⟨λa1⟩,

where ⟨·⟩ denotes the fractional part.

8 / 23



Introduction History Arbitrary Parameters Examples

Christol’s Interlacing Criterion

Define ⟨·⟩ : R→ (0, 1] as the fractional part, where integers are assigned 1 instead of 0.
Define ⪯ on R2 via a ⪯ b if ⟨a⟩ < ⟨b⟩ or ⟨a⟩ = ⟨b⟩ and a ≥ b.

Theorem (Christol, 1986)

Let

F (x) = pFp−1

[
a1, . . . , ap

b1, . . . , bp−1
; x

]
,

with rational parameters, aj , bk ̸∈ −N, denote by N the least common denominator of all
parameters, and set bp = 1. Then F (x) is globally bounded if and only if for all 1 ≤ λ ≤ N
with gcd(λ,N) = 1 we have for all 1 ≤ k ≤ p that

|{λaj ⪯ λbk : 1 ≤ j ≤ p}| − |{λbj ⪯ λbk : 1 ≤ j ≤ p}| ≥ 0.

9 / 23
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Christol’s Interlacing Criterion

For aj − bk ̸∈ Z the criterion can be interpreted graphically:

Draw the sets {exp(2πiλaj)} in red and {exp(2πiλbk)} in blue on the unit circle for all
1 ≤ λ ≤ N with gcd(λ,N) = 1. Then F is globally bounded iff there are always at least as
many red as blue points going counter-clockwise starting after 1 (count with multiplicity).

Example

3F2([1/9, 4/9, 5/9], [1/3, 1]; x) is globally bounded, as one can deduce from the pictures below.
They correspond to λ = 1, 2, 4, 5, 7, 8 respectively.
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Beukers–Heckman Interlacing Criterion

Theorem (Christol 1986, Beukers–Heckman 1989, Katz 1990)

Let

F (x) = pFp−1

[
a1, . . . , ap

b1, . . . , bp−1
; x

]
,

with rational parameters aj , bk ̸∈ −N such that aj − bk , aj ̸∈ Z, denote by N the least common
denominator of all parameters, and set bp = 1. Then F (x) is algebraic if and only if for all
1 ≤ λ ≤ N with gcd(λ,N) = 1 we have for all 1 ≤ k ≤ p that

|{⟨λaj⟩ ≤ ⟨λbk⟩ : 1 ≤ j ≤ p}| − |{⟨λbj⟩ ≤ ⟨λbk⟩ : 1 ≤ j ≤ p}| = 0. (IC)

In other words, F (x) is algebraic, if and only if the sets {exp(2πiλaj)} and {exp(2πiλbk)}
interlace on the unit circle for all λ.
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Beukers–Heckman Interlacing Criterion

Example

F (x) = 3F2([1/14, 3/14, 11/14], [1/7, 3/7]; x) is algebraic:

Example

F (x) = 3F2([1/14, 3/14, 11/14], [1/7, 5/7]; x) is not algebraic:
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Example from Combinatorics: Gessel Excursions

Lattice walks in the quaterplane with step set {→,←,↗,↙}: Gessel walks

Consider the generating function

G (x) =
∑
n≥0

gnx
n

of excursions of length n, i.e., walks with n
steps that start and end at (0, 0).

Theorem (conjectured by Gessel 2001, Kauers–Koutschan–Zeilberger 2009,
Bousquet-Mélou 2016, Bostan–Kurkova–Raschel 2017)

G (x) =
∑
n≥0

(5/6)n(1/2)n
(2)n(5/3)n

16nx2n = 3F2

[ 5
6 ,

1
2 , 1

2, 53
; 16x2

]
.
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Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

G (x) = 3F2

[ 5
6 ,

1
2 , 1

2, 53
; 16x2

]
algebraic?

Minimal polynomial of G (x):

27x14y8 + 108x12y7 + 189x10y6 + 189x8y5 − 9x6(32x4 + 28x2 − 13)y4

−9x4(64x4 + 56x2 − 5)y3 − 2x2(256x6 − 312x4 + 156x2 − 5)y2

−(32x2 − 1)(4x2 − 6x + 1)(4x2 + 6x + 1)y − 256x6 − 576x4 + 48x2 − 1
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Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

G (x) = 3F2

[ 5
6 ,

1
2 , 1

2, 53
; 16x2

]
algebraic?

Direct application of the interlacing criterion is not possible, as a3 = 1 ∈ Z.
Trick: use identities for hypergeometric functions:

G (x) =
1

2x2

(
2F1

[
−1/2,−1/6

2/3
; 16x2

]
− 1

)
,

which is algebraic by Schwarz’ classification.

Algebraicity of G (x) was overlooked until Bostan and Kauers proved the algebraicity of the
trivariate generating function Q(x , y , t) of Gessel walks ending at (i , j) ∈ N2 in 2010.
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Irrational Parameters

The function

3F2

[
1/2,
√
2 + 1,−

√
2 + 1√

2,−
√
2

; 4x

]
=

(7x − 1)(2x − 1)

(1− 4x)5/2

is algebraic, although it has irrational parameters. The interlacing criterion is not applicable.

Recall: The interlacing criterion of Beukers and Heckman treats the case of aj , bk ∈ Q \ −N
with aj − bk , aj ̸∈ Z.

Aim

An easy to use criterion to account for irrational parameters and integer differences.
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Change of Setting

Define

F
[
c1, . . . , cr
d1, . . . , ds

; x

]
:=

∑
n≥0

(c1)n · · · (cr )n
(d1)n · · · (ds)n

xn.

Note:

pFq

[
a1, . . . , ap
b1, . . . , bq

; x

]
= F

[
a1, . . . , ap

b1, . . . , bq, 1
; x

]
F
[
c1, . . . , cr
d1, . . . , ds

; x

]
= r+1Fs

[
c1, . . . , cr , 1

d1, . . . , ds
; x

]
.
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Definitions

F (x) = F
[
c1, . . . , cr
d1, . . . , ds

; x

]
:=

∑
n≥0

(c1)n · · · (cr )n
(d1)n · · · (ds)n

xn.

F (x) is contracted if cj − dk ̸∈ N. F (x) is reduced if cj − dk ̸∈ Z.

The contraction F c(x) of F (x) is obtained from F (x) by removing pairs of parameters
(cj , dk) with minimal difference cj − dk ∈ N. It is contracted by definition.

If F (x) is given as pFq, convert to F first.

Example

4F3

[ 1
3 ,

1
2 , 2, 4

3
2 , 3, 1

; x

]c
= F

[ 1
3 ,

1
2 , 2, 4

3
2 , 3, 1, 1

; x

]c
= F

[ 1
3 ,

1
2

3
2 , 1

; x

]
.

This contraction is not reduced, as 1/2− 3/2 ∈ Z.
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Definitions

F (x) = F
[
c1, . . . , cr
d1, . . . , ds

; x

]
:=

∑
n≥0

(c1)n · · · (cr )n
(d1)n · · · (ds)n

xn.

F (x) is contracted if cj − dk ̸∈ N. F (x) is reduced if cj − dk ̸∈ Z.
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The Criterion

Theorem (F.–Yurkevich 2023)

For any hypergeometric function F (x) = pFq([a1, . . . , ap], [b1, . . . , bq]; x) ∈ Q[[x ]] the following
decision tree answers the question whether it is algebraic over Q(x).

Is F algebraic?
aj ∈ −N

for some j?
p = q + 1?

Parameters
of F c in Q?

F c reduced? IC for F c?

F is transcendental

F is algebraic

no yes yes yes

no

yes
yes

no no no
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Ideas of the Proof

(θ + a1)F (x) is a hypergeometric function with the same parameters as F (x), except for a1,
which is increased by 1. With this one can show that F (x) is algebraic if and only if F c(x) is
algebraic.

If F (x) is contracted, its minimal differential equation is the hypergeometric one. If F (x) has
irrational parameters, the equation has an irrational local exponent and F (x) cannot be
algebraic.

If F (x) is not reduced, define G (x) by removing all pairs of parameters with integer
differences. Then the interlacing criterion for global boundedness for F (x) and for algebraicity
for G (x) cannot be fulfilled at the same time, contradicting the algebraicity of F (x).

19 / 23



Introduction History Arbitrary Parameters Examples

Ideas of the Proof

(θ + a1)F (x) is a hypergeometric function with the same parameters as F (x), except for a1,
which is increased by 1. With this one can show that F (x) is algebraic if and only if F c(x) is
algebraic.

If F (x) is contracted, its minimal differential equation is the hypergeometric one. If F (x) has
irrational parameters, the equation has an irrational local exponent and F (x) cannot be
algebraic.

If F (x) is not reduced, define G (x) by removing all pairs of parameters with integer
differences. Then the interlacing criterion for global boundedness for F (x) and for algebraicity
for G (x) cannot be fulfilled at the same time, contradicting the algebraicity of F (x).

19 / 23



Introduction History Arbitrary Parameters Examples

Ideas of the Proof

(θ + a1)F (x) is a hypergeometric function with the same parameters as F (x), except for a1,
which is increased by 1. With this one can show that F (x) is algebraic if and only if F c(x) is
algebraic.

If F (x) is contracted, its minimal differential equation is the hypergeometric one. If F (x) has
irrational parameters, the equation has an irrational local exponent and F (x) cannot be
algebraic.

If F (x) is not reduced, define G (x) by removing all pairs of parameters with integer
differences. Then the interlacing criterion for global boundedness for F (x) and for algebraicity
for G (x) cannot be fulfilled at the same time, contradicting the algebraicity of F (x).

19 / 23



Introduction History Arbitrary Parameters Examples

Example 1

f (x) = F
[ 1

14 ,
3
14 ,

11
14 , 1 + i

√
3, 1− i

√
3

1
7 ,

3
7 , i
√
3,−i

√
3, 3

; x

]
= 6F5

[ 1
14 ,

3
14 ,

11
14 , 1 + i

√
3, 1− i

√
3, 1

1
7 ,

3
7 , i
√
3,−i

√
3, 3

; x

]
.

Contraction has rational parameters and is reduced:

f c(x) = F
[ 1

14 ,
3
14 ,

11
14

1
7 ,

3
7 , 3

; x

]
= 4F3

[ 1
14 ,

3
14 ,

11
14 , 1

1
7 ,

3
7 , 3

; x

]
.

We have already seen that f c(x) is algebraic by the interlacing criterion, thus so is f (x).
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Example 2

un =
3

2

(
4n

n

)
n + 2

(n + 1)(n + 3)
.

Generating function:

f (x) = 6F5

[ 1
4 ,

1
2 ,

3
4 , 3, 3, 1

1
3 ,

2
3 , 4, 2, 2

;
256

27
x

]
Contraction:

f c(x) = 4F3

[ 1
4 ,

1
2 ,

3
4 , 1

1
3 ,

2
3 , 4

;
256

27
x

]
Interlacing criterion: f (x) algebraic.

vn =
3

2

(
4n

n

)
n + 2

(n + 1)2
.

Generating function:

g(x) = 6F5

[ 1
4 ,

1
2 ,

3
4 , 3, 1, 1

1
3 ,

2
3 , 2, 2, 2

;
256

27
x

]
Contraction:

g c(x) = 5F4

[ 1
4 ,

1
2 ,

3
4 , 1, 1

1
3 ,

2
3 , 2, 2

;
256

27
x

]
Not reduced: g(x) not algebraic.
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Example 3 – Gessel Revisited

Recall the generating function of Gessel excursions

G (x) = 3F2

[ 5
6 ,

1
2 , 1

2, 53
; 16x2

]
= F

[ 5
6 ,

1
2

2, 53
; x

]
.

G (x) is contracted, reduced, has only rational parameters and satisfies the interlacing criterion:
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The End

Thank you for your attention!

Is F algebraic?
aj ∈ −N

for some j?
p = q + 1?

Parameters
of F c in Q?

F c reduced? IC for F c?

F is transcendental

F is algebraic

no yes yes yes

no

yes
yes

no no no
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