G functions and hypergeometric series

Thomas Dreyfus ¹, Tanguy Rivoal ²

¹Université Bourgogne, France ²Université Grenoble, France

E-functions

A definition

Definition

- A power series $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n \in \overline{\mathbb{Q}}[[x]]$, is an E-function if
 - () F is solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(x)$.
- $(\emptyset) \ \exists \ C > 0 \ ext{such that} \ orall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), n \geq 0, \ |\sigma(a_n)| \leq C^{n+1}.$
- $\exists D > 0, d_n \in \mathbb{N}^{\mathbb{N}}$, with $1 \leq d_n \leq D^{n+1}$, such that $d_n a_m$ are algebraic integers for all $m \leq n$.

Example

 $\exp(x)$, $\cos(x)$...

Basic properties

Proposition

- E-functions form a ring.
- Derivative of an E-function is an E-function.

(weak version of) Siegel-Shidlovsky theorem

Theorem

Let F be a E-function and assume that F is transcendental over $\overline{\mathbb{Q}}(x)$. Then, for any $0 \neq \alpha \in \overline{\mathbb{Q}}$ that is not a singularity of the differential equation, $F(\alpha) \notin \overline{\mathbb{Q}}$.

Example

For all $0 \neq \alpha \in \overline{\mathbb{Q}}$, $\exp(\alpha) \notin \overline{\mathbb{Q}}$.

Hypergeometric series

Definition

$$_{p}F_{q}\begin{bmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{bmatrix}:=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{(1)_{n}(b_{1})_{n}\cdots(b_{q})_{n}}x^{n}$$

where $(a)_n := a(a+1)\cdots(a+n-1)$ for $n \ge 1$, $(a)_0 := 1$, and $a_i \in \mathbb{C}$, $b_i \in \mathbb{C} \setminus \mathbb{Z}_{\le 0}$.

Siegel's question

Is it possible to write any E-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of E-functions of the form

$$_{p}F_{q}[a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};\gamma x^{q-p+1}],$$

with

- $q \ge p \ge 0$,
- $a_j \in \mathbb{Q},\, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$
- $\gamma \in \overline{\mathbb{Q}}$?

Positive answer would contradicts a generalization to exponential periods of Grothendieck's Period Conjecture

Siegel's question

Is it possible to write any E-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of E-functions of the form

$$_{p}F_{q}[a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};\gamma x^{q-p+1}],$$

with

- $q \ge p \ge 0$,
- $a_j \in \mathbb{Q}, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$
- $\gamma \in \overline{\mathbb{Q}}$?

Negative answer by Fresan-Jossen.

G-functions

A definition

Definition

A power series $F(x) = \sum_{n=0}^{\infty} a_n x^n \in \overline{\mathbb{Q}}[[x]]$, is an G-function if

- (i) F is solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(x)$.
- (ii) $\exists \ C > 0$ such that $\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), n \geq 0, |\sigma(a_n)| \leq C^{n+1}$.
- (iii) $\exists D > 0, d_n \in \mathbb{N}^{\mathbb{N}}$, with $1 \leq d_n \leq D^{n+1}$, such that $d_n a_m$ are algebraic integers for all $m \leq n$.

Example

$$_{p}F_{p-1}\begin{bmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{p-1}\end{cases};x$$
.

Basic properties

Proposition

- G-functions form a ring
- Derivative of an G-function is an G-function.
- algebraic function analytic at 0 are G-functions.
- G-functions have a positive radius of convergence.

Fichler-Rivoal's question

Is it possible to write any G-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of functions of the form

$$\mu(x) \cdot {}_{p}F_{p-1}[a_1, \ldots, a_p; b_1, \ldots, b_{p-1}; \lambda(x)],$$

with

- $p \ge 1$,
- $a_j \in \mathbb{Q}, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$,
- $\lambda, \mu \in \overline{\mathbb{Q}}[[x]]$ algebraic over $\overline{\mathbb{Q}}(x)$, and $\lambda(0) = 0$?

Slight extension of Fischler-Rivoal's question

Is it possible to write any *G*-function as a polynomial with coefficients in $\overline{\mathbb{C}(x)}$ of solutions of functions of the form

$$_{p}F_{p-1}[a_{1},\ldots,a_{p};b_{1},\ldots,b_{p-1};\lambda(x)],$$

with

- $p \ge 1$,
- $a_j \in \mathbb{C}, b_j \in \overline{\mathbb{C} \setminus \mathbb{Z}_{\leq 0}}$
- $\lambda \in \overline{\mathbb{C}(x)}$?

Main result (toward a negative answer)

Theorem (D-Rivoal)

Let $M \in \mathbb{N}^*$. There exists a G-function which is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form

$$_{p}F_{p-1}[a_{1},\ldots,a_{p};b_{1},\ldots,b_{p-1};\lambda(x)],$$

with

- $p \geq 1$,
- $a_j \in \mathbb{C}$, $b_j \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$
- $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

Differential Galois theory

Picard-Vessiot extension

Let $\partial_X Y = AY$, with $A \in \operatorname{Mat}_n(\mathbb{C}(X))$.

Definition

A Picard-Vessiot extension is a field extension $K|\mathbb{C}(x)$ such that

- (i) $\exists U \in GL_n(K)$, s.t. $\partial_x U = AU$.
- (ii) $K = \mathbb{C}(x)(U)$.
- (iii) $K^{\partial_X} = \{\alpha \in K | \partial_X \alpha = 0\} = \mathbb{C}(X)^{\partial_X} = \mathbb{C}.$

Proposition

Existence and uniqueness of the Picard-Vessiot extension.

Differential Galois group

Let $\partial_X Y = AY$, with $A \in \operatorname{Mat}_n(\mathbb{C}(X))$ be a differential system.

Definition

The differential Galois group is

$$Gal(K|\mathbb{C}(x)) = \{ \sigma \in Aut(K|\mathbb{C}(x)) | \sigma \circ \partial_x = \partial_x \circ \sigma \}.$$

Algebraic group structure

Theorem

$$\operatorname{Gal}(K|\mathbb{C}(x)) \to \operatorname{GL}_n(\mathbb{C})$$

 $\sigma \mapsto U^{-1}\sigma(U).$

The latter representation identifies $\operatorname{Gal}(K|\mathbb{C}(x))$ with a linear algebraic subgroup $G \subset \operatorname{GL}_n(\mathbb{C})$.

Galois correspondence

Let
$$G = \operatorname{Gal}(K|\mathbb{C}(x)) \subset \operatorname{GL}_n(\mathbb{C})$$
.

Theorem

Let \mathcal{G} be the set of algebraic subgroups of G and let \mathcal{F} be the set of differential subfields of K containing $\mathbb{C}(x)$. Then, the following holds.

- 1) The map $H \mapsto K^H$ defines a bijection between \mathcal{G} and \mathcal{F} . Its inverse is given by $F \mapsto \operatorname{Gal}(K|F)$.
- **2** Let $H \in \mathcal{G}$. Then, H is a normal subgroup of G if and only if $F := K^H$ is stable under the action of G.

From several Picard-Vessiot extensions to only one

Proposition

Let f, f_1, \ldots, f_k be solutions of a linear differential equations with coefficients in $\mathbb{C}(x)$ whose differential Galois group we denote by G_f, G_{f_i} and with Picard-Vessiot extension K_f, K_{f_i} containing f, f_i . Assume that $f \in \mathbb{C}(x)(f_1, \ldots, f_k) \setminus \mathbb{C}(x)$. If G_f is non commutative and has no normal algebraic subgroups other than itself and the trivial group, then $\exists i$ such that $K_f \subset K_{f_i}$.

Similar ideas in Fresan-Jossen proof

Consequence in the problem

Theorem (D-Rivoal)

Let $M \in \mathbb{N}^*$. There exists a G-function which is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form ${}_pF_{p-1}[a_1,\ldots,a_p;b_1,\ldots,b_{p-1};\lambda(x)]$, with $p \geq 1$, $a_j \in \mathbb{C}$, $b_j \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$, and $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

- Assume that f belongs to that field and G_f is non commutative and has no normal algebraic subgroups other than itself and the trivial group.
- Then $K_f \subset K_{f_i}$ for $f_i = {}_pF_{p-1}[a_1, \ldots, a_p; b_1, \ldots, b_{p-1}; \lambda(x)].$
- Then the singularities of f are inside the singularities of f_i .

Sketch of proof

What we are looking for?

Let us find a G-function f such that

- G_f is non commutative and has no normal algebraic subgroups other than itself and the trivial group.
- f has sufficiently many singularities.

Definition of the *G*-function (1/3)

We start with the generating series of the sequence of Apéry's numbers:

$$\alpha(x) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose n}^2 \right) x^n \in \mathbb{Z}[[x]].$$

It is a solution of the differential equation

$$x^{2}(1 - 34x + x^{2})y'''(x) + x(3 - 153x + 6x^{2})y''(x) + (1 - 112x + 7x^{2})y'(x) + (x - 5)y(x) = 0.$$
 (1)

The Galois group is not connected, we need to modify α .

Definition of the *G*-function (2/3)

Proposition

The G-function $\xi(x) := x(x^2 - 34x + 1)^{1/2}\alpha(x)$ has a Galois group that is $\mathrm{PSL}_2(\mathbb{C})$. Moreover, the points $(\sqrt{2} - 1)^4$ and $(\sqrt{2} + 1)^4$ are non-polar singularities of ξ .

Definition of the *G*-function (3/3)

Proposition

Let $\varphi \in \mathbb{C}(x) \setminus \mathbb{C}$. The G-function $\xi \circ \varphi(x)$ has a Galois group that is $\mathrm{PSL}_2(\mathbb{C})$.

Let $M \in \mathbb{N}^*$. Choose a convenient φ to have $\xi \circ \varphi(x)$ with at least 3M + 1 singularities.

Theorem (D-Rivoal)

The G-function $\xi \circ \varphi(x)$ is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form

$$_{\rho}F_{\rho-1}[a_1,\ldots,a_{\rho};b_1,\ldots,b_{\rho-1};\lambda(x)],$$

with $p \ge 1$, $a_j \in \mathbb{C}$, $b_j \in \mathbb{C} \setminus \mathbb{Z}_{\le 0}$, and $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

Sketch of proof

- Let $M \in \mathbb{N}^*$. Choose a convenient φ to have $\xi \circ \varphi(x)$ with at least 3M + 1 singularities.
- To the contrary assume that $\xi \circ \varphi(x)$ is rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form ${}_{p}F_{p-1}[a_{1},\ldots,a_{p};b_{1},\ldots,b_{p-1};\lambda(x)],$ with $p\geq 1,\ a_{j}\in\mathbb{C},\ b_{j}\in\mathbb{C}\setminus\mathbb{Z}_{\leq 0},$ and $\lambda\in\mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.
- The differential Galois group is $PSL_2(\mathbb{C})$.
- Then, $\xi \circ \varphi \in K_{f_i}$ for $f_i = {}_pF_{p-1}[a_1,\ldots,a_p;b_1,\ldots,b_{p-1};\lambda(x)].$
- Then, $\xi \circ \varphi$ has at most 3*M* singularities. A contradiction.

