A differential equation for decoding derivative codes a.k.a Hermite interpolation with outliers Daniel Augot INRIA Joint work with Alain Couvreur, Emmanuel Hallouin, Thierry Hénocq and Marc Perret FELIM 2024

Intro codes

Intro codes

List decoding

"Derivatives codes"

"Linear-Algebraic" list decoding

Our contribution

Coding Theory, Redundancy and Decoding

A correcting code C encodes a message of length k into a codeword of length n > k

$$m\mapsto c\in C\subset \mathbb{F}_q^n$$

- Some noise modifies the codeword
- Decoding: given an "erroneous codeword", recover the message

- Message should be close (Hamming distance)
- d is the minimum distance
- ▶ less than (d-1)/2 errors \implies unique decoding

combinatorics A good code has many codewords and a large minimum distance algorithmics And an associated decoding algorithm

Difficult Tasks

- Difficult to build good codes
- Decoding is intractable

Reed-Solomon codes

Definition

Given $L = \{x_1, \ldots, x_n\} \subset \mathbb{F}_q$, and $k \leq n$ the Reed-Solomon codes RS[L, k] is the code

$$\{(f(x_1),\ldots,f(x_n))| \deg f(X) < k\} \subset \mathbb{F}_q^n$$

It has minimum distance d = n - k + 1 (Singleton bound: best distance achievable)

- k = 1 (constants) $\frac{n}{2}$ errors: majority vote
- ▶ k = 2 (lines) $\frac{n-1}{2}$ errors.
- $\frac{d-1}{2} = \frac{n-k}{2}$ errors can be corrected with a unique solution
- f(X) coincides in $t = \frac{n+k}{2}$ positions

Lagrange interpolation with outliers

Problem

Given
$$x_1, \ldots, x_n$$
, $y = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$, k and $t \le n$, find

$$\mathcal{L}_y^t = \{f(X) \in \mathbb{F}[X], \deg f(X) < k, |C(f(X), y)| \ge t\}$$

- \blacktriangleright t = n: unique solution
- ▶ $t \ge \frac{n+k}{2}$: unique solution
- ▶ t = k: $\binom{n}{k}$ solutions
- \blacktriangleright *t* < *k*: problem is ill-founded
- ► $k < t < \frac{n+k}{2}$: "list-decoding"

Unique decoding: Berlekamp-Welch

Code: \mathbb{F} , $k \leq n, x_1, \dots, x_n \in \mathbb{F}$, $x_i \neq x_j$ **Decoding Radius:** $t = \frac{n+k}{2}$ **"Received word":** $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

Bivariate Interpolation

Find $A(X, Y) = A_0(X) + A_1(X)Y$ such that

•
$$A(x_i, y_i) = 0, i = 1, ..., n$$

• deg
$$A_0(X) < t$$

$$\blacktriangleright \deg A_1(X) < t - (k-1)$$

Root-Finding

return $f(X) = A_1(X)/A_0(X)$ if

• f(X) is a polynomial of degree < k

•
$$C(f(X), y) \geq t$$

Intro codes

 $A(X, Y) = A_0(X) + A_1(X)Y$ is such that

- $A(x_i, y_i) = 0, i = 1, ..., n$
- deg $A_0(X) < t$
- deg $A_1(X) < t (k 1)$

Correctness

Let f(X) with $C(f(X), y) \ge t$ and deg f(X) < k

1. deg
$$A_0(X) + A_1(X)f(X) < t$$

2.
$$f(x_i) = y_i \implies A(x_i, f(x_i)) = 0$$

3.
$$C(f(X), y) \ge t \implies A(X, f(X))$$
 has at least t roots $\implies A(X, f(X)) = 0$

Non triviality

- 1. linear system with n equations
- 2. number of unknowns $t + t (k 1) = 2t + 1 k \ge 2\frac{n+k}{2} + 1 k = n + 1$
- 3. \implies there exists a non zero A(X, Y)

Intro codes

List decoding

"Derivatives codes"

"Linear-Algebraic" list decoding

Our contribution

Sudan

Look for

$$A(X,Y) = A_0(X) + A_1(X)Y + \cdots + A_\ell(X)Y^\ell$$

with $\operatorname{wdeg}_{1,k-1} A(X,Y) < t$ such that

$$A(x_i, y_i) = 0, \quad i = 1, \ldots, n$$

- Finding A(X, Y) is solving a homogoneous linear system
- Solve for f(X) solution to A(X, f(X)) = 0

The existence of a non zero A(X, Y) is ensured by

number of unknowns > number of equations

$$\implies t \geq \sqrt{2n(k-1)}, \ |\mathcal{L}| \leq \sqrt{2/R}$$

Guruswami-Sudan

Look for

$$A(X,Y) = A_0(X) + A_1(X)Y + \cdots + A_\ell(X)Y^\ell$$

with $\operatorname{wdeg}_{1,k-1} A(X,Y) < t$ such that

$$A(x_i, y_i) = 0, \quad i = 1, \ldots, n$$

with multiplicity s

Solve for f(X) solution to A(X, f(X)) = 0

The existence of a non zero A(X, Y) is ensured by

number of unknowns > number of equations

$$\implies t \geq \sqrt{\mathit{n}(k-1)(1+rac{1}{s})} ext{ and } |\mathcal{L}| \leq \sqrt{\mathit{n}s(s+1)/k}$$

"Capacity" of list decoding for general codes

With the notation au = (n-t)/n, and ℓ the maximum list size

Existence result (ELias 1957)

There exists a family of (τ, ℓ) list-decodable codes over \mathbb{F}_q of rate

 $R \geq 1 - H_q(au) - 1/\ell$

with

$$H_q(\tau) = -\tau \log_q(\tau) - (1-\tau) \log_q(1-\tau) + \tau \log_q(q-1)$$

Using $\ell = O(\frac{1}{\varepsilon})$, and $q = \exp(O(1/\varepsilon))$ gives
 $R \ge 1 - \tau - \varepsilon$

Same result for linear codes (Mosheiff, Resch, Ron-Zewi, Silas, Wootters 2019)

Case of Reed-Solomon codes

- Decoding of Reed-Solomon is NP-hard (Guruswami-Vardy 2004)
- Existence of Reed-Solomon codes with better list decoding radius (Goldberg-Shangguan-Tamo 2021, Ferber-Kwan-Sauermann 2020, Wooters 2014)

Case of Reed-Solomon codes

- Decoding of Reed-Solomon is NP-hard (Guruswami-Vardy 2004)
- Existence of Reed-Solomon codes with better list decoding radius (Goldberg-Shangguan-Tamo 2021, Ferber-Kwan-Sauermann 2020, Wooters 2014)

"Derivatives codes"

Intro codes

List decoding

"Derivatives codes"

"Linear-Algebraic" list decoding

Our contribution

"Derivatives codes"

Derivative codes (Guruswami-Wang 2011)

For $m \le k \le nm$, the derivative code DRS^m[n, k] has "codewords" given by

$$\begin{pmatrix} f(x_1) & \dots & f(x_n) \\ f^{(1)}(x_1) & \dots & f^{(1)}(x_n) \\ \vdots & & \vdots \\ f^{(m-1)}(x_1) & \dots & f^{(m-1)}(x_n) \end{pmatrix}$$

where f(X) is a polynomial of degree less than k

Beware!

- "messages" have alphabet \mathbb{F}_q
- "codewords" have alphaet \mathbb{F}_a^m
- The rate is R = (k 1)/(nm)
- the code

$$C \subset \left(\mathbb{F}_q^m\right)^n$$

is \mathbb{F}_q -linear

Hermite interpolation with errors

Problem

Given x_1, \ldots, x_n , k and $t \leq n$,

$$y = \begin{pmatrix} x_1 & \dots & x_n \\ y_{01} & \dots & y_{0n} \\ y_{11} & \dots & y_{1n} \\ \vdots & & \vdots \\ y_{m-1,1} & \dots & y_{m-1,n} \end{pmatrix}$$

find

$$\mathcal{L}_y^t = \{f(X) \in \mathbb{F}[X], \deg f(X) < k, |C(f(X), y)| \ge t\}$$

where C(f(X), y) is the set of agreeing columns

"Linear-Algebraic" list decoding

Intro codes

List decoding

"Derivatives codes"

"Linear-Algebraic" list decoding

Our contribution

"Linear-Algebraic" list decoding

Linear-algebraic list decoding, first version

Given a received word y, find

$$A(X, Y_1, \ldots, Y_{m-1}) = B(X) + A_0(X)Y_0 + \cdots + A_{m-1}(X)Y_{m-1}$$

such that

1.
$$\deg B(X) < t$$

2. $\deg A_i(X) < t - (k - 1)$
3. for $i = 1, ..., n$
 $A(x_i, y_{0,i}, ..., y_{m-1,i}) =$

(Correctness) For any $f \in \mathcal{L}$

$$A(X, f(X), ..., f^{(m-1)}(X)) = 0$$

0

Analysis

(Decoding radius) The "more unknowns than equations" analysis gives

$$t > rac{n}{m+1} + rac{m}{m+1} \cdot (k-1)$$
 $rac{t}{n} > rac{1}{m+1} + rac{m(k-1)}{n(m+1)}$
 $\sim rac{1}{m+1} + mR$

With $\tau = 1 - t/n$:

$$\tau \sim 1 - \varepsilon - \varepsilon^{-1} R$$

 $\tau \sim 1 - \varepsilon - R$

We aim at

Linear-algebraic list decoding, improved version

Derivation

$$D(p(X)Y_i) = p'(X)Y_i + p(X)Y_{i+1},$$

Given a received word y, find for an auxiliary s

$$A(X, Y_1, \ldots, Y_s) = B(X) + A_0(X)Y_0 + \cdots + A_{s-1}(X)Y_{s-1}$$

such that

1. deg
$$B(X) < (m - s + 1)t$$

2. deg $A_i(X) < (m - s + 1)t - (k - 1)$
3. for $i = 1, ..., n$
 $(D^{(j)}A)(x_i, y_{0,i}, ..., y_{m-1,i}) = 0$
for $j = 0, ..., m - s$

Reaching capacity

(Decoding radius) The "more unknowns than equations" analysis gives

$$t > \frac{n}{s+1} + \frac{s}{s+1} \cdot \frac{k-1}{m-s+1}$$

Optimisation

s = Ω(ε⁻¹)
 m = Ω(ε⁻²)

$$\frac{t}{n} \ge R + \varepsilon$$

Finite dimensional space

We are left with solving a linear differential equation with polynomial coefficients

$$B(X) + A_0(X)f(X) + \dots + A_{s-1}(X)f^{(s-1)}(X) = 0$$
 (*)

- looking for polynomial solutions
- **•** of given bounded degree k-1
- \blacktriangleright which have *t* initial values in the received word *y*

Case of a finite field

Proposition

If $A_{s-1}(X) \neq 0$, all solution to (*) belong to an affine space of dimension $\leq s-1$

Exhaustive search when $\mathbb{F} = \mathbb{F}_q$ is finite \implies list-size at most $q^s = q^{1/\varepsilon}$

Problem (reformulated)

Given

$$y = \begin{pmatrix} x_1 & \dots & x_n \\ y_{01} & \dots & y_{0n} \\ y_{11} & \dots & y_{1n} \\ \vdots & & \vdots \\ y_{m-1,1} & \dots & y_{m-1,n} \end{pmatrix}$$

and

$$B(X) + A_0(X)f(X) + \cdots + A_{s-1}(X)f^{(s-1)}(X) = 0$$
 (*)

Find all solutions f(X) which coincide with y in a at least t positions

lssue

f(X) may be such that $A_{s-1}(x_i) = 0$ for $i \in C(f(X), y)$

Intro codes

List decoding

"Derivatives codes"

"Linear-Algebraic" list decoding

Our contribution

Case s = m

$$\deg A_{s-1}(X) < (m-s+1)t - (k-1) = t - (k-1) < t$$

Proposition

If $A_{s-1}(X) \neq 0$, for any $f(X) \in \mathcal{L}$, there exists $i \in [n]$ such that

 $i \in C(f(X), y)$ and $A_{s-1}(x_i) \neq 0$

Proof. Suppose there is an $f(X) \in \mathcal{L}$ such that this is not true.

 $i \in C(f(X), y) \implies (X - x_i)|A_{s-1}(X)$

$$\prod_{i\in C(f(X),y)} (X-x_i) \mid A_{s-1}(X)$$

But $|C(f(X), y)| \ge t$

List size

Over any field, when s = m

- ▶ Any $f(X) \in \mathcal{L}$ has a correct index *i* such that $A_{s-1}(x_i) \neq 0$
- Any f(X) can be found from its Taylor series at this position
 ⇒ |L| ≤ n

More generally for $s \neq m$

When $A_{s-1}(X)$ has less than t zeros in $\{x_1, \ldots, x_n\}$

▶ any
$$f(X) \in \mathcal{L}$$
 has a correct index *i* such that $A_{s-1}(x_i) \neq 0$
⇒ $|\mathcal{L}| \leq n$

Case s = 2, *m* general First order linear equation

$$B(X) + A_0(X)f(X) + A_1(X)f'(X) = 0$$

w.l.o.g $gcd(A_1(X), A_0(X)) = 1$

Let

$$Z(X) = \prod_{i \in I} (X - x_i)$$

- ▶ If deg Z(X) < tAny $f(X) \in \mathcal{L}$ is determined by Taylor expansion at some point $x_i \implies |\mathcal{L}| \le n$
- If deg $Z(X) \ge k$, then

$$B(X) + A_0(X)f(X) = \mod Z(X)$$

which uniquely determines $f(X) \implies |\mathcal{L}| \le 1$

► $t \leq \deg Z(X) < k$?

First order approximation of f(X)

For x_i such that $Z(x_i) = 0$

$$egin{aligned} B(x_i) + A_0(x_i) f(x_i) &= 0 \ B(x_i) + A_0(x_i) y_{0i} &= 0 \end{aligned}$$

thus

$$A_0(x_i)(y_{0i}-f(x_i))=0$$

and $f(x_i) = y_{0i}$ since $A_0(X)$ is coprime to Z(X).

 \implies f(X) is known modulo Z(X)

Write

$$f(X) = f_0(X) + f_1(X)Z(X)$$

with $f_1(X)$ to be determined

If $Z(x_i) \neq 0$ from $f(X) = f_0(X) + f_1(X)Z(X)$

$$f_1(x_i) = rac{f(x_i) - f_0(x_i)}{Z(x_i)},$$

If
$$Z(x_i) = 0$$

from $f'(X) = f'_0(X) + f'_1(X)Z(X) + f_1(X)Z'(X)$
 $f_1(x_i) = \frac{f'(x_i) - f'_0(x_i)}{Z'(x_i)}$

We do not know $f(x_i)$ neither $f'(x_i)$, only y_{i0} and y_{i1}

If $Z(x_i) \neq 0$ from $f(X) = f_0(X) + f_1(X)Z(X)$

$$f_1(x_i) = rac{f(x_i) - f_0(x_i)}{Z(x_i)},$$

If
$$Z(x_i) = 0$$

from $f'(X) = f'_0(X) + f'_1(X)Z(X) + f_1(X)Z'(X)$
 $f_1(x_i) = \frac{f'(x_i) - f'_0(x_i)}{Z'(x_i)}$

We do not know $f(x_i)$ neither $f'(x_i)$, only y_{i0} and y_{i1}

Set the first row of $y^{(1)}$ as

$$y_{0i}^{(1)} = \frac{y_{0i} - f_0(x_i)}{Z(x_i)}$$
$$y_{0i}^{(1)} = \frac{y_{1i} - f_0'(x_i)}{Z'(x_i)}$$

If $Z(x_i) \neq 0$ from $f(X) = f_0(X) + f_1(X)Z(X)$ $f_1(x_i) = rac{f(x_i) - f_0(x_i)}{Z(x_i)},$ If $Z(x_i) = 0$ from $f'(X) = f'_0(X) + f'_1(X)Z(X) + f_1(X)Z'(X)$ $f_1(x_i) \models \frac{f'(x_i) - f'_0(x_i)}{Z'(x_i)}$ We do not know $f(x_i)$ neither $f'(x_i)$, only y_{i0} and y_{i1} Set the first row of $v^{(1)}$ as $y_{0i}^{(1)} = rac{\dot{y}_{0i} - f_0(x_i)}{Z(x_i)}$ $y_{0i}^{(1)} = \frac{y_{1i} - f_0'(x_i)}{Z'(x_i)}$

If $Z(x_i) \neq 0$ from $f(X) = f_0(X) + f_1(X)Z(X)$ $f_1(x_i) = rac{f(x_i) - f_0(x_i)}{Z(x_i)},$ If $Z(x_i) = 0$ from $f'(X) = f'_0(X) + f'_1(X)Z(X) + f_1(X)Z'(X)$ $f_1(x_i) \models \frac{f'(x_i) - f'_0(x_i)}{\swarrow'(x_i)}$ We do not know $f(x_i)$ neither $f'(x_i)$, only y_{i0} and y_{i1} $y_{0i}^{(1)} = \frac{y_{0i} - f_0(x_i)}{Z(x_i)}$ $y_{0i}^{(1)} = \frac{y_{1i}^{(1)} - f_0'(x_i)}{Z'(x_i)}$ Set the first row of $v^{(1)}$ as

Other rows of $y^{(1)}$: iterative procedure Suppose $f^{(u)}(x_i)$ known for u < jLeibniz' rule on $f(X) = f_0(X) + f_1(X)Z(X)$

$$f^{(j)}(x_i) = f_0^{(j)}(x_i) + f_1^{(j)}(x_i)Z(x_i) + \sum_{u=0}^{j-1} {j \choose u} f_1^{(u)}(x_i)Z^{(j-u)}(x_i)$$

For $i \notin I$, replacing with received symbols

$$\frac{y_{ji}^{(1)} = y_{ji} - f_0^{(j)}(x_i) - \sum_{u=0}^{j-1} {j \choose v} y_{u,i}^{(1)} Z^{(j-u)}(x_i)}{Z(x_i)}$$

Other rows of $y^{(1)}$: iterative procedure Suppose $f^{(u)}(x_i)$ known for u < jLeibniz' rule on $f(X) = f_0(X) + f_1(X)Z(X)$

$$f^{(j)}(x_i) = f_0^{(j)}(x_i) + f_1^{(j)}(x_i)Z(x_i) + \sum_{u=0}^{j-1} {j \choose u} f_1^{(u)}(x_i)Z^{(j-u)}(x_i)$$

For $i \notin I$, replacing with received symbols

$$\frac{y_{ji}^{(1)} = y_{ji} - f_0^{(j)}(x_i) - \sum_{u=0}^{j-1} {j \choose v} y_{u,i}^{(1)} Z^{(j-u)}(x_i)}{Z(x_i)}$$

Other rows of $y^{(1)}$: iterative procedure

Suppose $f^{(u)}(x_i)$ known for u < jLeibniz' rule on $f(X) = f_0(X) + f_1(X)Z(X)$

$$f^{(j)}(x_i) = f_0^{(j)}(x_i) + f_1^{(j)}(x_i)Z(x_i) + \sum_{u=0}^{j-1} {j \choose u} f_1^{(u)}(x_i)Z^{(j-u)}(x_i)$$

For $i \notin I$, replacing with received symbols

$$\frac{y_{ji}^{(1)} = y_{ji} - f_0^{(j)}(x_i) - \sum_{u=0}^{j-1} {j \choose v} y_{u,i}^{(1)} Z^{(j-u)}(x_i)}{Z(x_i)}$$

For $i \in I$, the derivative at order j + 1

$$f^{(j+1)}(x_i) = f_0^{(j+1)}(x_i) + f_1^{(j+1)}(x_i)Z(x_i) + f_1^{(j)}(x_i)Z'(x_i) + \dots$$
$$y_{ji}^{(1)} = \frac{y_{j+1,i} - f_0^{(j+1)}(x_i) - \dots}{Z'(x_i)}$$

Other rows of $y^{(1)}$: iterative procedure

Suppose $f^{(u)}(x_i)$ known for u < jLeibniz' rule on $f(X) = f_0(X) + f_1(X)Z(X)$

$$f^{(j)}(x_i) = f_0^{(j)}(x_i) + f_1^{(j)}(x_i)Z(x_i) + \sum_{u=0}^{j-1} \binom{j}{u} f_1^{(u)}(x_i)Z^{(j-u)}(x_i)$$

For $i \notin I$, replacing with received symbols

$$\frac{y_{ji}^{(1)} = y_{ji} - f_0^{(j)}(x_i) - \sum_{u=0}^{j-1} {j \choose v} y_{u,i}^{(1)} Z^{(j-u)}(x_i)}{Z(x_i)}$$

For $i \in I$, the derivative at order j+1

$$f^{(j+1)}(x_i) = f_0^{(j+1)}(x_i) + f_1^{(j+1)}(x_i)Z(x_i) + f_1^{(j)}(x_i)Z'(x_i) + \dots$$
$$y_{ji}^{(1)} = \frac{y_{j+1,i} - f_0^{(j+1)}(x_i) - \dots}{Z'(x_i)}$$

Other rows of $y^{(1)}$: iterative procedure

Suppose $f^{(u)}(x_i)$ known for u < jLeibniz' rule on $f(X) = f_0(X) + f_1(X)Z(X)$

$$f^{(j)}(x_i) = f_0^{(j)}(x_i) + f_1^{(j)}(x_i)Z(x_i) + \sum_{u=0}^{j-1} \binom{j}{u} f_1^{(u)}(x_i)Z^{(j-u)}(x_i)$$

For $i \notin I$, replacing with received symbols

$$\frac{y_{ji}^{(1)} = y_{ji} - f_0^{(j)}(x_i) - \sum_{u=0}^{j-1} {j \choose v} y_{u,i}^{(1)} Z^{(j-u)}(x_i)}{Z(x_i)}$$

For $i \in I$, the derivative at order j+1

$$f^{(j+1)}(x_i) = f_0^{(j+1)}(x_i) + f_1^{(j+1)}(x_i)Z(x_i) + f_1^{(j)}(x_i)Z'(x_i) + \dots$$
$$y_{ji}^{(1)} = \frac{y_{j+1,i} - f_0^{(j+1)}(x_i) - \dots}{Z'(x_i)}$$

ightarrow Iterative computation of the rows of $y^{(1)}$

New instance of the problem

A new received word $y^{(1)}$ and a new code $\mathsf{DRS}^{(m-1)}[n,k-t]$

A correct position of f(X) w.r.t y is correct for $f_1(X)$ w.r.t $y^{(1)}$

The new t_1 for m-1 and deg $f_1(X) < k-1-t$ is

$$t_1 = \frac{n}{3} + \frac{2}{3} \cdot \frac{k - 1 - t}{m - 1 - s + 1} = \frac{n}{3} + \frac{2}{3} \frac{k - 1 - t}{m - 2}$$

Then a miracle!

$$t_1 - t = \frac{2}{3} \cdot \frac{k - 1 - t(m - 1)}{(m - 2)(m - 1)} \le \mathbf{0}$$

 \rightarrow recursive algorithm with decreasing m \rightarrow until m = 2 (= s = 2)

Conclusion

- \blacktriangleright Hermite interpolation at order *m* with errors reduces to solving a differential equation
- ▶ The differential equation has order *s*, with auxiliary *s*
- Initial condition are "given"
- Linear list size for s = 2 and s = m
- No clue about the truth for other value of s