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Philosophy

A Galois theory associates to a functional equation (polynomial, or
differential, or difference, or ... ) a Galois group that encodes
properties of the solutions.

Group Theory

⇓ Galois Theory

Form of Functional Dependencies

Algorithms to compute Galois groups lead directly to computation
of relations among the solutions of the corresponding equations.

These relations (or their absence) are interpreted as qualitative
information about solutions, even when they remain unknown.
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Galois Groups of Polynomial Equations

For a field K and a (separable) polynomial p(y) ∈ K [y ] of degree
N ≥ 1, we can create the splitting field

L := K [y1, . . . , yN ]
[∏

i ̸=j
1

yi−yj

]/
m,

for m some (any) maximal ideal of L := K [y1, . . . , yN ][
∏

i ̸=j
1

yi−yj
]

containing
〈
p(y1), . . . , p(yN)

〉
.

The Galois group Gal(L/K ) is the group of K -automorphisms of L
over K , realized more concretely as a subgroup of SN by its
faithful action on {ȳ1, . . . , ȳN} ⊂ L.

The Galois group encodes in its algebraic structure information
about solutions to p(y) = 0. E.g., Gal(L/K ) is solvable iff
solutions are expressed in terms of radicals, etc., etc.
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The Galois group encodes in its algebraic structure information
about solutions to p(y) = 0. E.g., Gal(L/K ) is solvable iff
solutions are expressed in terms of radicals, etc., etc.



Galois Groups of Polynomial Equations

For a field K and a (separable) polynomial p(y) ∈ K [y ] of degree
N ≥ 1, we can create the splitting field

L := K [y1, . . . , yN ]
[∏

i ̸=j
1

yi−yj

]/
m,

for m some (any) maximal ideal of L := K [y1, . . . , yN ][
∏

i ̸=j
1

yi−yj
]

containing
〈
p(y1), . . . , p(yN)

〉
.

The Galois group Gal(L/K ) is the group of K -automorphisms of L
over K , realized more concretely as a subgroup of SN by its
faithful action on {ȳ1, . . . , ȳN} ⊂ L.
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Polynomial Equations of Galois Groups

Given: field K and finite group G .

Inverse Galois Problem: does there exist a (separable) polynomial
p(y) ∈ K [y ] whose Galois group is isomorphic to G? (Just yes/no).

▶ Examples: K = C(z) → yes; K = Fp → yes iff G is cyclic; K = Q → ?,
known for some G , conjecturally true for all G .

Constructive Inverse Galois Problem: construct explicitly
p(y) ∈ K [y ] whose Galois group is isomorphic to G (if it exists).

Additional constraints/variants, given also a set S with a faithful
G -action: (1) does there exist p(y) ∈ K [y ] whose Galois group is
≃ G and S ≃ {ȳ1, . . . , ȳN} as G -sets?; and (2) can we compute
such a p(y) explicitly?
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≃ G and S ≃ {ȳ1, . . . , ȳN} as G -sets?; and (2) can we compute
such a p(y) explicitly?



Polynomial Equations of Galois Groups

Given: field K and finite group G .

Inverse Galois Problem: does there exist a (separable) polynomial
p(y) ∈ K [y ] whose Galois group is isomorphic to G? (Just yes/no).

▶ Examples: K = C(z) → yes; K = Fp → yes iff G is cyclic; K = Q → ?,
known for some G , conjecturally true for all G .

Constructive Inverse Galois Problem: construct explicitly
p(y) ∈ K [y ] whose Galois group is isomorphic to G (if it exists).

Additional constraints/variants, given also a set S with a faithful
G -action: (1) does there exist p(y) ∈ K [y ] whose Galois group is
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Differential Equations over Differential Fields

A ∆-field is a field K equipped with a set ∆ = {δ1, . . . , δn} of
pairwise commuting derivations: additive maps satisfying the
Leibniz rule δi (ab) = aδi (b) + δi (a)b and δi ◦ δj = δj ◦ δi .

The ∆-constants K∆ = {c ∈ K | δi (c) = 0 for every i = 1, . . . , n}.

Main Example: K = C(z1, . . . , zn) and δi =
∂
∂zi

. Here K∆ = C.

A linear differential system (of rank N) over K is a collection Aδi (y1)
...

δi (yN)

 =

a
(i)
11 · · · a

(i)
1N

...
...

a
(i)
N1 · · · a

(i)
NN


y1

...
yN

 ; for i = 1, . . . , n,

where the y1, . . . , yN are unknowns and Ai = (a
(i)
rs ) ∈ glN(K ).

The system A is integrable if δi (Aj)− δj(Ai ) = AiAj − AjAi .
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Galois Groups of Differential Equations
Consider K a ∆-field of characteristic zero, with ∆ = {δ1, . . . , δn}
commuting derivations, and A : δi (Y ) = AiY , i = 1, . . . , n, an
integrable linear differential system with Ai ∈ glN(K ), as before.

A ∆-field extension L of K is a Picard-Vessiot field over K for A if:

▶ L∆ = K∆;
▶ there exists U ∈ GLN(L) with δi (U) = AiU for i = 1, . . . , n;
▶ L is generated by the entries of U as a field extension of K .

If K∆ =: C is algebraically closed, there exists essentially unique
Picard-Vessiot (= differential splitting) field for any such system A.

The differential Galois group of the system A is

Gal∆(L/K ) := {γ ∈ AutK (L) | γ ◦ δi = δi ◦ γ for i = 1, . . . , n}.

It gets identified with a linear algebraic subgroup of GLN(C ), via

γ 7→ U−1 · γ(U) =: Mγ ∈ GLN(C ).

▶ Depending up to conjugation on fundamental matrix U ∈ GLN(L).
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Finite Galois Groups as Differential Galois Groups

If L is a separable extension of K , each derivation δ on K extends
uniquely to a derivation on L.

▶ Indeed, for α ∈ L with minimal polynomial p(y) ∈ K [y ], we have
δ(α) = −pδ(α)/p′(α), where pδ(y) is obtained by applying δ to the
coefficients of p(y) and p′(y) = d

dy
p(y).

Thus if L is a separable algebraic extension of a ∆-field K then L is
automatically a ∆-field extension of K : the zero derivation
δiδj − δjδi on K extends uniquely to the zero derivation on L!

Theorem (Kolchin)

If K is a ∆-field with K∆ algebraically closed of characteristic
zero, L is a finite Picard-Vessiot extension of K if and only if L is a
finite Galois extension of K. In this case, Gal(L/K ) = Gal∆(L/K ).
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Differential Equations of Finite Galois Groups

Given: ∆-field K with K∆ =: C algebraically closed of char. zero
and a finite group G .

Inverse Differential Galois Problem (for finite groups): does there
exist an integrable system A whose differential Galois group is
isomorphic to G? (Just yes/no).

▶ By Kolchin’s Theorem, the differential and non-differential versions of the
inverse Galois problem are equivalent for |G | < ∞ and C = C̄ .

Constructive Inverse Differential Galois Problem (for finite groups):
construct explicitly a differential system A whose differential Galois
group is isomorphic to G (if it exists).

Additional constraints/variants, given also a faithful representation
ρ : G ↪→ GLN(C ): (1) does there exist a differential system A
whose Galois group is conjugate to ρ(G )?; and (2) can we
compute such a system A explicitly?



Differential Equations of Finite Galois Groups

Given: ∆-field K with K∆ =: C algebraically closed of char. zero
and a finite group G .

Inverse Differential Galois Problem (for finite groups): does there
exist an integrable system A whose differential Galois group is
isomorphic to G? (Just yes/no).

▶ By Kolchin’s Theorem, the differential and non-differential versions of the
inverse Galois problem are equivalent for |G | < ∞ and C = C̄ .

Constructive Inverse Differential Galois Problem (for finite groups):
construct explicitly a differential system A whose differential Galois
group is isomorphic to G (if it exists).

Additional constraints/variants, given also a faithful representation
ρ : G ↪→ GLN(C ): (1) does there exist a differential system A
whose Galois group is conjugate to ρ(G )?; and (2) can we
compute such a system A explicitly?



Differential Equations of Finite Galois Groups

Given: ∆-field K with K∆ =: C algebraically closed of char. zero
and a finite group G .

Inverse Differential Galois Problem (for finite groups): does there
exist an integrable system A whose differential Galois group is
isomorphic to G? (Just yes/no).

▶ By Kolchin’s Theorem, the differential and non-differential versions of the
inverse Galois problem are equivalent for |G | < ∞ and C = C̄ .

Constructive Inverse Differential Galois Problem (for finite groups):
construct explicitly a differential system A whose differential Galois
group is isomorphic to G (if it exists).

Additional constraints/variants, given also a faithful representation
ρ : G ↪→ GLN(C ): (1) does there exist a differential system A
whose Galois group is conjugate to ρ(G )?; and (2) can we
compute such a system A explicitly?



Complex Reflection Groups: Definition

We say g ∈ GLn(C) is a reflection if dim(ker(1− g)) = n− 1, i.e.,
g fixes a complex hyperplane pointwise, and g has finite order.

Equivalently, g ∈ GLn(C) is a reflection if it is conjugate to
ζ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,

for some root of unity 1 ̸= ζ ∈ C.

A (complex) reflection group is a finite subgroup G ⊂ GLn(C)
that is generated by reflections.



Complex Reflection Groups: Definition

We say g ∈ GLn(C) is a reflection if dim(ker(1− g)) = n− 1, i.e.,
g fixes a complex hyperplane pointwise, and g has finite order.

Equivalently, g ∈ GLn(C) is a reflection if it is conjugate to
ζ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,

for some root of unity 1 ̸= ζ ∈ C.

A (complex) reflection group is a finite subgroup G ⊂ GLn(C)
that is generated by reflections.



Complex Reflection Groups: Background

Complex reflection groups were introduced by Shephard, and
completely classified by Shephard and Todd, in the 1950’s.

The irreducible ones are either cyclic Cm, or symmetric Sn+1, or
imprimitive G (ab, b, n), or one of 34 primitive groups G4, . . . ,G37.

Replacing C with R above, one obtains real reflection groups,
which are “the same as” finite Coxeter groups

⟨r1, . . . , rn | (ri rj)mij = 1⟩

where mii = 1 and mij ≥ 2 for i ̸= j .

Weyl groups of complex semisimple Lie algebras are real reflection
groups (and “most” real reflection groups are Weyl groups).

Applications: representation theory of reductive algebraic groups,
Hecke algebras, knot theory and algebraic topology, moduli spaces,
invariant theory, differential equations, mathematical physics, . . .
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Invariant Theory of Complex Reflection Groups
Let G ⊂ GLn(C) be a (finite) subgroup. A polynomial

p(x) ∈ C[x1, . . . , xn] =: S

is G-invariant if p(x · g) = p(x) for every g ∈ G . The subset

SG :=
{
p ∈ S

∣∣ p is G -invariant
}

is a C-subalgebra of S , called the algebra of G-invariants.

Theorem (Shephard-Todd, Chevalley, Serre)

A finite subgroup G ⊂ GLn(C) is a complex reflection group if and
only if SG is generated by n homogeneous algebraically
independent polynomials ϕ1(x), . . . , ϕn(x), or equivalently,

C[z1, . . . , zn] → SG : zi 7→ ϕi (x)

is an isomorphism of SG with a ring of polynomials in n variables.
Moreover, in this case the coinvariant algebra S/⟨ϕ1(x), . . . , ϕn(x)⟩
is G-isomorphic to the regular representation C[G ].
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Complex Reflection Groups as Topological Galois Groups

Let Ref(G ) = set of reflections in a reflection group G ⊂ GLn(C).

For g ∈ Ref(G ), its reflecting hyperplane is Hg := ker(1− g).

The hyperplane arrangement of G is HG :=
⋃

g∈Ref(G)Hg .

Let X := Cn as complex manifold with G -action, and ω : X ↠ Z
the quotient map to the space of orbits Z := X/G . Letting

X ◦ := X −HG and Z ◦ := Z − ω(HG ),

the restriction ω◦ : X ◦ ↠ Z ◦ is a finite covering space map, whose

Deck(ω◦) :=
{
homeomorphisms γ : X ◦ → X ◦ ∣∣ ω◦ ◦ γ = ω◦} ≃ G .

▶ Note: Z ≃ Cn also. For any b ∈ X ◦, we have a short exact sequence

1 −→ π1(X
◦, b) −→ π1(Z

◦, ω(b)) −→ G −→ 1.

The fundamental groups π1(X
◦, b) and π1(Z

◦, ω(b)) are called the
pure braid group of type G and the braid group of type G , respectively.
For the symmetric group G = Sn+1, these are Artin’s Pn+1 and Bn+1.
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the quotient map to the space of orbits Z := X/G . Letting

X ◦ := X −HG and Z ◦ := Z − ω(HG ),

the restriction ω◦ : X ◦ ↠ Z ◦ is a finite covering space map, whose

Deck(ω◦) :=
{
homeomorphisms γ : X ◦ → X ◦ ∣∣ ω◦ ◦ γ = ω◦} ≃ G .

▶ Note: Z ≃ Cn also. For any b ∈ X ◦, we have a short exact sequence

1 −→ π1(X
◦, b) −→ π1(Z

◦, ω(b)) −→ G −→ 1.

The fundamental groups π1(X
◦, b) and π1(Z

◦, ω(b)) are called the
pure braid group of type G and the braid group of type G , respectively.
For the symmetric group G = Sn+1, these are Artin’s Pn+1 and Bn+1.
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Complex Reflection Groups as Finite Galois Groups

Let G ⊂ GLn(C) be a complex reflection group. Let

S = C[x1, . . . , xn] and SG = C[z1, . . . , zn]

as before1, with G acting on S by g · p(x) := p(x · g−1).

The action of G on polynomials in S extends to rational functions

L := C(x1, . . . , xn); and K := LG = C(z1, . . . , zn).

By Artin’s Theorem, L is finite Galois over K with Gal(L/K ) ≃ G .
Chevalley proves S/⟨z⟩ ≃ C[G ] from this fundamental observation.

▶ To address the constructive version of the inverse Galois problem, It
suffices to compute explicitly the minimal polynomial of each xi over K .
In theory, this is not a problem. In practice, it can be a real problem.

1The identification SG = C[z] depends on choice of fundamental invariants!
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Concrete Example: a Dihedral Group

D8 := ⟨r1, r2 | r21 = r22 = (r1r2)
4 = 1⟩

acts by reflections on C2 by

r1 7→
(
1 0
0 −1

)
and r2 7→

(
0 1
1 0

)
;

and on polynomials p(x) ∈ S = C[x1, x2] by

r1 · p(x1, x2) = p(x1,−x2) and r2 · p(x1, x2) = p(x2, x1).

The algebra of D8-invariants is S
D8 = C[z1, z2], where

z1 := x21 + x22 and z2 := x21x
2
2 .

Here L = C(x1, x2) is the splitting field over K = C(z1, z2) of

p(y) = y4 − z1y
2 + z2 = (y − x1)(y − x2)(y + x1)(y + x2);

so each xi = ±
√

z1±
√

z21−4z2
2 . This example is tiny and lucky.
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Concrete Example: an Icosahedral Group

G19 :=

〈(
1 0
0 −1

)
,
ζ3
2

(
−1− ζ4 1− ζ4
−1− ζ4 −1 + ζ4

)
,
ζ25
2

(
τ + ζ4 −τ + 1
τ − 1 −τ − ζ4

)〉
,

where ζr := exp(2π
√
−1/r) and τ := 1+

√
5

2 .

The algebra of G19-invariants is S
G19 = C[z1, z2], where

z1 :=

(
x20
1 − 38

√
5

3
x18
1 x2

2 − 19x16
1 x4

2 − 152
√
5x14

1 x6
2 − 494x12

1 x8
2 + 988

√
5

3
x10
1 x10

2

−494x8
1 x

12
2 − 152

√
5x6

1 x
14
2 − 19x4

1 x
16
2 − 38

√
5

3
x2
1 x

18
2 + x20

2

)3

;

z2 :=

(
x291 x2 − 116

9
√

5
x271 x32 + 1769

25
x251 x52 + 464√

5
x231 x72 + 2001

5
x211 x92 − 2668

3
√

5
x191 x112 + 12673

5
x171 x132

− 12673
5

x131 x172 + 2668
3
√

5
x111 x192 − 2001

5
x91 x

21
2 − 464√

5
x71 x

23
2 − 1769

25
x51 x

25
2 + 116

9
√

5
x31 x

27
2 − x1x

29
2

)2

.

Now |G19| = 3600. It is not impossible to compute p(y) ∈ K [y ]
such that L is its splitting field in this case. It is immediate that
such a p(y) must have degree at least 10 (perhaps at least 30).

Moreover, it is impossible to solve for x in terms of z using radicals
because G19 is not solvable. This example is small-ish and unlucky.
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Complex Reflection Groups as Differential Galois Groups

The standard derivations ∂
∂zi

on K = C(z1, . . . , zn) extend uniquely
to pairwise commuting derivations δi on L = C(x1, . . . , xn), and by
Kolchin’s Theorem,

L is a Picard-Vessiot extension of K .

So there must exist (and we would like to compute explicitly):

▶ A1, . . . ,An ∈ glN(K ) satisfying the integrability conditions

δi (Aj)− δj(Ai ) = AiAj − AjAi for 1 ≤ i , j ≤ N; and

▶ a fundamental matrix U ∈ GLN(L) such that L = K (U) and

δi (U) = AiU for 1 ≤ i ≤ n.
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Realizing Reflection Groups as PV Groups: Obstacles

By general theory, L is a PV extension of K with Gal∆(L/K ) ≃ G .

Goal: Construct an explicit integrable system of linear differential
equations δiY = AiY over K whose PV field is L.

Obstacle 1: How to compute explicitly the action of δi ∈ ∆ on L?

▶ Normally, to find δ(α) for α ∈ L we first find a separable polynomial
0 ̸= p(y) ∈ K [y ] such that p(α) = 0 and set δ(α) = −pδ(α)/p′(α).

Obstacle 2: How do we guarantee integrability?

▶ A familiar Wronskian trick produces a scalar differential equation for each δi
whose solution space is spanned by x1, . . . , xn. But the associated companion
matrix equations do not form an integrable system.

Obstacle 3: How large does the system have to be?

▶ We know L is a |G |-dimensional ∆-K -module, but |G | is LARGE.

▶ The zi are often unwieldy polynomials — it is reasonable to expect the matrix
entries of the Ai to be unreasonable in general.
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Realizing Reflection Groups as PV Groups: Examples

For tiny and lucky D8 we computed the integrable system

δ1(Y ) = 1
z21−4z2

(
z1
2 −1

−z2
z1
2

)
Y ; δ2(Y ) = 1

z21−4z2

(
−1 z1

2z2
z1
2

z21−6z2
2z2

)
Y .

This is not bad, but not better than p(y) = y4 − z1y
2 + z2 = 0.

▶ For cyclic and imprimitive groups one can write down the p(y) ∈ K [y ]
immediately – our differential equations are never simpler in these cases.

For small-ish and unlucky G19 we computed the integrable system

δ1(Y ) = 1
z1+60

√
5z2

(
59
60 + 40

√
5z2

z1
−19

√
5

−29z2
60z1

−29
60

)
Y ;

δ2(Y ) = 1
z1+60

√
5z2

(
−19

√
5 −19

√
5z1

z2

−29
60

z1+118
√
5z2

2z2

)
Y .

This is not bad, and much better than p(y) = ??? ∈ K [y ].
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Realizing Reflection Groups as PV Groups: Recipes (1 of 2)
First we compute ηij ∈ L such that δj(xi ) = ηij , so that

δj =
n∑

i=1

ηij
∂

∂xi

acting on L = C(x1, . . . , xn). For the Jacobian matrix

J :=


∂z1
∂x1

· · · ∂z1
∂xn

...
...

∂zn
∂x1

· · · ∂zn
∂xn

 =⇒ J−1 =

η11 · · · η1n
...

...
ηn1 · · · ηnn

 .

▶ Analytic interpretation:
the coordinates xi on X ◦ are (algebraic, multivalued, holomorphic)
functions χi (z1, . . . , zn) of the coordinates zj on Z◦.
In fact ω◦(x) = z = (ϕ1(x), . . . , ϕn(x)) (where ϕi are the fundamental
invariants), and (locally) (ω◦)−1(z) = (χ1(z), . . . , χn(z)).
Now J = Jac(ω◦) so J−1 = Jac((ω◦)−1), i.e., ηij =

∂χi
∂zj

.
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Realizing Reflection Groups as PV Groups: Recipes (2 of 2)

Now that we computed the action of δi on L from the entries of
the inverse of the Jacobian matrix J for the polynomial map
x 7→ z, we can next compute:

Ai := δi (J)J
−1 for 1 ≤ i ≤ n.

Theorem (A.-Bainbridge-Obert-Ullah)

1. Ai ∈ gln(K ) for each 1 ≤ i ≤ n;

2. δi (Aj)− δj(Ai ) = AiAj − AjAi for 1 ≤ i , j ≤ n; and

3. L is a PV-extension of K for the system A : δi (Y ) = AiY .

Proof sketch.

1. G acts on L by ∆-automorphisms. For Mg the matrix of
g ∈ G , the action g(J) = J ·Mg . So g(Ai ) = Ai for all g ∈ G .

2. A familiar computation using the fact that δi commute on L.

3. Since g 7→ J−1g(J) = Mg is injective, G acts faithfully on
L′ := K (J) ⊆ L, so L′ = L by the Galois correspondence.
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Concluding Remarks

▶ Our recipe works for any choice of fundamental invariants.
Choosing the “wrong” invariants produces disastrous results.
Even with the “right” invariants, the Ai are initially written in
terms of x, and the rewriting in terms of z can be very
expensive if not handled with care.

▶ Ours is not the first recipe for realizing reflection groups as
differential Galois groups. In Beukers-Heckman2 there are
tables specifying parameters for which the hypergeometric
(ordinary!) differential equation Dα,β(y) = 0 has any given
reflection group as differential Galois group, where

Dα,β := (θ + β1 − 1) · · · (θ + βn − 1)− z(θ + α1) · · · (θ + αn)

and θ = z d
dz . We do not yet know in what way(s) our and

their realizations are related.
2Monodromy for the hypergeometric function nFn−1. Invent. math. 95,

325–354, (1989). Thanks to Michael Singer and to Jacques-Arthur Weil for
independently pointing out this reference.
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