
Parallelization and Optimization in the CFD context
An overview of stencil codes

Philippe Parnaudeau†,
Senior Research Engineer - CNRS

† Institut Pprime, CNRS, UPR 3346
e-mail: philippe.parnaudeau@cnrs.pprime.fr - Web page: https://www.pprime.fr

P. Parnaudeau New trends in computing August 29, 2024 1 / 47

1 Context

2 A few basics

3 Metrics and boundaries definition

4 Method to know your application

5 Optimization: rules and examples

6 Tools and rules for: Analysis, Profiling, Debugging

7 Scientific and math librairies

8 Questions?

P. Parnaudeau New trends in computing August 29, 2024 2 / 47

Context

Numerical simulation

• Third pillar of science

• Some issues can only be addressed in this way: universe, climate, medicine ...

• Some other are complementarily (cheaper or faster) tackled: nuclear, aerodynamics ...

Figure: Cosmology [1]; Fusion plasmas [2]; Molecular dynamics simulations [3];
Computational Lung Model [4].

P. Parnaudeau New trends in computing August 29, 2024 3 / 47

https://arxiv.org/pdf/1403.1260
https://www.nature.com/articles/s42005-022-01004-z
https://www.nsf.gov/discoveries/disc_images.jsp?cntn_id=300481&org=NSF
https://www.asme.org/topics-resources/content/computational-lung-model-may-guide-how-ventilators-are-used

Context

Computer science:
From theory to first transistor

First concepts of a programmable computer by C. Babbage and A. Lovelace [5]1820

Boolean algebra by G. Boole [6]1850

A. Turing [7]: concept of his naming machine and notions of algorithms1936

C. Shannon [8]: father of science and information theory1940

AT&T Bell laboratory, Lucent, Nokia...: first transistor - a new area for supercomputing world1947

P. Parnaudeau New trends in computing August 29, 2024 4 / 47

Context

70 years of supercomputers: The last 35 years

Top supercomputer: Moore’s law

P. Parnaudeau New trends in computing August 29, 2024 5 / 47

A few basics

Computer Architectures

Parallel computer ⇔ Multiple-hybride CPU architecture computer
One task simultaneously on the whole (or a subset) part of a computer/cluster/supercomputer

Flynn’s taxonomy: evolution in 4 major groups

• Single Instruction Single Data: Sequential computer (Von Neumann)

• Single Instruction Multiple Data: Vectorial computer
Packet of datas (Vector) can be addressed in the same CPU cycle (ex: Cray I and II)

• Multiple Instruction Single Data: Pipeline computer
Successive operations overlap. Example IMB 360/91

• Multiple Instruction Multiple Data: Multi-CPU computer
1 instruction/processor and for different datas
Often, in recent period, same application is divided in threads which are executed on CPU cores

- MIMD shared memory: Symmetric Shared Memory (SMP) computer, SMP-Numa
computer

- MIMD distributed memory: Massively Parallel Processing (MPP) computer: modern
cluster

P. Parnaudeau New trends in computing August 29, 2024 6 / 47

A few basics

CPU Architectures
• Instruction Set Architecture (ISA)

Abstract model of how a software works on CPU
The Standards of architecture (ex: X86, RISC, ARM ...)

• Micro-architecture or computer organization or µarch
Implementation of ISA, but not always open (ex: AMD Zen3, Intel Xeon...)

• Theoretical Peak Performance (PeakFlops)
Maximum Floating-point operations by second (Flop/s):

PeakFlops = Nbcpu x Nbcore x Clock x 2 FMA x registersize
64

• Theoretical Memory BandWidth (MBBs)
Maximum rate at access processor memory (Byte/s)

• Arithmetic Intensity (A.I.)
Floating-point operations / bytes in memory accessed (Flop/Byte)

• Performance per Watt (P/W)
Application or architecture performance per 1 watt of power (F/W)

FMA: Fused Multiply-Add circuit
P. Parnaudeau New trends in computing August 29, 2024 7 / 47

A few basics

Optimize application/code*

Determine sequential or serial performance:
Application performance (FLOP/S) / theoretical peak performance

↪→ Reducing and/or optimizing sequential/serial part

Determine scalability:
Identification of parallelization efficiency

↪→ Pratical speedup or parallelization gain: Sp = T1/TNbp

↪→ VS Amdahl’s law speedup/strong scaling
CPU bound application or long time run application. Ideal case Sp = Nbp

↪→ VS Gustafson’s law speedup/weak scaling
Memory bound application, ideal case Sp = 1

↪→ Reducing and/or optimizing communication part

*Assuming application is already parallelized!
P. Parnaudeau New trends in computing August 29, 2024 8 / 47

A few basics

What is CFD ?

Various physical assumptions:

• Stationary or instationary
• Newtonian or non Newtonian fluid
• Compressible or incompressible flow
• Laminar/turbulent
• Single/multiphase flow
• With or without chemical species
• Fluid structure interaction
• Today’s seminar: focus Euler and Navier-Stokes equations on

a cartesian mesh (SCB [9])

Figure: Mixing layer, Miata (MX-5a), hyper-X vehicle at Mach 7 [10], blood flow, rocket engine [11]

P. Parnaudeau New trends in computing August 29, 2024 9 / 47

Metrics and boundaries definition

Optimization: CPU - Sequential and Vectorization

From less to more restrictive application performance

• CPU-bound: Application limited by central unit ”frequency”
Optimization: CPU-SIMD

• Cache-bound: Cache size and frequency limits application
Optimization: Instructions

• Memory-bound: Application limited by the speed of the system’s memory (RAM)
Optimization:

Adapt data structure, improve memory access patterns
Optimization: Math libraries

• I/O-bound: Application limited by the BW with storage devive (not discussed here)
Optimization: I/O libraries

Conclusion: Profiling and analysing application vs architecture

P. Parnaudeau New trends in computing August 29, 2024 10 / 47

Metrics and boundaries definition

Arithmetic Intensity (A.I)

Programmer’s perspective

• Some basic operations have a catastrophic latency
• Stencils-PDE codes perform relatively poorly ⇔ CFD codes ∼ 0.3F/B
• No free lunch: Optimization requires a heavy investment of both algorithms and programming

Figure: From Department Of Energy (DOE)

P. Parnaudeau New trends in computing August 29, 2024 11 / 47

https://crd.lbl.gov/

Method to know your application

Roofline [12]

Definition
Assessing application’s performances by :

Arithmetic Intensity = F(locality, bandwidth, different parallelization paradigms).

A naive roofline model :

Pmax = min
(

Peak; A. I. x MB
)

Taking into account memory hierarchy addressing this naive scheme

Roofline
• Providing application performance vs computer capabilities

• Essential for optimising the sequential (CPU) part

P. Parnaudeau New trends in computing August 29, 2024 12 / 47

Method to know your application

Roofline [12]

Figure: Roofline: naive view (left), more complex (right). From NERSC

P. Parnaudeau New trends in computing August 29, 2024 13 / 47

https://crd.lbl.gov/

Method to know your application

Roofline [12]

Do-it-yourself roofline: A messy and time-consuming job (but often essential!)
Interesting for a short part of code

Some friendly tools
• Intel Advisor
• Empiral roofline tool

• Roofline Visualizer

• NVIDIA NVProf / NSight (GPU)

• Papi library (by-hand)

In-house CFD code performance on Intel Xeon 6248
• I.A ≃ 0.3 F/B

• ≃ 7% of the theoretical peak performance (not so bad)

• ≃ 20% of the theoretical memory bandwidth (not so good)

Conclusion: Our CFD code is limited by the memory-bound

P. Parnaudeau New trends in computing August 29, 2024 14 / 47

Optimization: rules and examples

Parallelization - Shared memory

Definitions
• Process: Executable part of a programme, divided into one or more threads

• Thread: Smallest part of a process managed independently by O.S

• Core: The smallest part of the processor in a modern CPU

OpenMP

• Industry standard API for shared memory parallel programming

• Based on pragma directives to be inserted in the code

• Implementation in all modern compilers and now on GPU (but not with same directive)

• Alternatives: OpenACC, OpenCL, Pthreads

P. Parnaudeau New trends in computing August 29, 2024 15 / 47

Optimization: rules and examples

Poisson equation

The Poisson equation is a key point for CFD applications for incompressible case

Problem
Solve: −∇u = f , in Ω
With: f(x, y) = 2(x(x − 1) + y(y − 1))
Dirichlet boundary condition: u|∂Ω = 0
Exact solution: u(x, y) = xy(x − 1)(y − 1)
Initial condition: White noise

Resolution
• Finite Difference
• Jacobi

P. Parnaudeau New trends in computing August 29, 2024 16 / 47

Optimization: rules and examples

OpenMP:
Tactic

Fine Grain (FG)

• OpenMP splits the loop into multiple threads
• (+++): Simple to use (pragma)
• (+++): Easy to maintain the code
• (—): Low performance (number of parallel region)
• (—): Difficult with complex (depency) loop

1 DO j= 1,ny
2 DO i= 1,nx
3 u new(i,j)= c0 * (c1*(u(i+1,j)+u(i−1,j)) &
4 + c2*(u(i,j+1)+u(i,j−1)) − f(i,j))
5 ENDDO
6 ENDDO

Listing: Jacobi-SEQ

1 !$OMP PARALLEL DO PRIVATE(i,j) &
2 !$$OMP SHARED (ny,nx,u,u new,f,c0,c1,c2)
3 DO j= 1,ny
4 DO i= 1,nx
5 u new(i,j)= c0 * (c1*(u(i+1,j)+u(i−1,j)) &
6 + c2*(u(i,j+1)+u(i,j−1)) − f(i,j))
7 ENDDO
8 ENDDO
9 !$OMP END PARALLEL DO

Listing: Jacobi-OMPFG

1 DO j= 1,ny
2 DO i= 1,nx
3 u(i,j)= omega*(c0*(c1*(u(i+1,j)+u(i-1,j)) &
4 +c2*(u(i,j+1)+u(i,j-1)) &
5 −f(i,j)))+ (1.−omega)*u(i,j)
6 ENDDO
7 ENDDO
8 DO j= ny,1,−1
9 DO i= nx,1,−1

10 u(i,j)= omega*(c0*(c1*(u(i+1,j)+u(i−1,j)) &
11 +c2*(u(i,j+1)+u(i,j−1)) &
12 −f(i,j)))+ (1.−omega)*u(i,j)
13 ENDDO
14 ENDDO

Listing: SSOR-loop nest
P. Parnaudeau New trends in computing August 29, 2024 17 / 47

Optimization: rules and examples

OpenMP:
Tactic

Coarse Grain (CG)

• Domain decomposition
• (+++): Great performance
• (—): Communication management

1
2 !$OMP PARALLEL PRIVATE (rang,jdeb,jfin)
3 rang=OMP GET THREAD NUM()
4 nbproc=OMP GET NUM THREADS()
5 jdeb=1+(rang*ny)
6 jfin=(ny+rang*ny)
7 !$OMP END PARALLEL

Listing: Domain decomposition

1 DO j= jdeb,jfin
2 DO i= 1,nx
3 u new(i,j) =c0*(c1*(u(i+1,j)+u(i−1,j)) &
4 +c2*(u(i,j+1)+u(i,j−1)) &
5 −f(i,j))
6 ENDO
7 ENDO
8
9 DO j= jdeb,jfin

10 DO i= 1,nx
11 u(i,j)=u new(i,j)
12 ENDO
13 ENDO
14 !$omp barrier
15 !$omp flush

Listing: Jacobi-OMPCG

P. Parnaudeau New trends in computing August 29, 2024 18 / 47

Optimization: rules and examples

OpenMP:
Strong-Scaling Performance test

P. Parnaudeau New trends in computing August 29, 2024 19 / 47

Optimization: rules and examples

OpenMP:
Conclusion

• OpenMP (FG): The way to start (quickly) on simple cases: First results in few hours

• OpenMP (CG): For more complex cases and great performances

• OpenMP (TASK): Group of instructions (tasks) are defined and work in parallel. The
number of task is unknown in advance (not presented)

P. Parnaudeau New trends in computing August 29, 2024 20 / 47

Optimization: rules and examples

Parallelization - Distributed memory

Definition
• Decomposition domain is based on Scharwz (1870) work, for today only non-overlaping
approach

• Non-blocking point-to-point (P2P) communication (Stencil-code)

• Non-blocking collective communication (FFT-code)

Message Passing Interface (MPI)

• Thread-safe: Threads accessing memory concurrently

• Defines syntax and semantics of library routines

• 2 major open-source MPI implementations: OpenMPI and MPICH2 or MVAPICH2

P. Parnaudeau New trends in computing August 29, 2024 21 / 47

Optimization: rules and examples

MPI:
Tactic

Non-blocking P2P communication

• SCB uses a 5-point-stencil per direction
• Add ”ghost points” at each subdomain
• Exchange data between neighbors

• (+++): Low cost communication
• (+++): Great performance
• (—): Not easy adapted for implicit problem

(a) Domain communication

Inner cell

Ghost cell

P. Parnaudeau New trends in computing August 29, 2024 22 / 47

Optimization: rules and examples

MPI:
Tactic

SCB [9]: Finite Volume code
Hyperbolic system:

∂W
∂t

+ ∇ · A + S∇ · u = 0

W = (ρ, ρu, E, α)⊺: State vector
A = (ρu, ρu ⊗ u + P1, αu)⊺: Flux vector
S = (0, 0, 0, −(K + α))⊺: Source term
On a cartesian grid, with explicit time integration
Numerical flux are compute at cell-vertex with various schemes

HLLC with or without Muscl-Hancock
WENO with or without Muscl-Hancock
JST

P. Parnaudeau New trends in computing August 29, 2024 23 / 47

Optimization: rules and examples

MPI:
Tactic

Non-blocking P2P communication

1 DO ndt=1,ndtmax
2 !$OMP PARALLEL IF(ijmax.gt.256) default(none)
3 !$OMP DO SCHEDULE (runtime) PRIVATE (i,j,k) COLLAPSE(2)
4 DO k=kmin,kmax
5 DO j=jmin,jmax
6 DO i=imin,imax
7 RI1=w1(i,j,k)−w1(i−1,j,k)
8 sl=dmax(0.0,dmin(Ri1,1.0))+dmin(0,dmax(1,Ri1))
9 W1(i,j,k)= W1(i−1,j,k)+1/4*sl*(W1(i−1,j,k)−W1(i−2,j,k))+1/4*sl*(W1(i,j,k)−W1(i−1,j,k))

10 ENDDO
11 ENDDO
12 ENDDO
13 !$OMP END DO
14 CALL BOUNDARY (W1)
15 !$OMP END PARALLEL
16 CALL MPI SENDRECV(W1, imax*kmax, MPI DOUBLE PRECISION,neib mpi(N),tag, &
17 W1, imax*kmax, MPI DOUBLE PRECISION,neib mpi(S),tag, &
18 comm, status, err mpi)
19 ENDDO

Listing: Hybride MPI-OpenMP implementation

- Line 2: Unique parallel zone declare: Better
performance!

- Line 4-5-6: Good vectorization and cache
optimization

- Line 16: P2P - W1 exchange between
element N and S

- Line 16: Size of message element

P. Parnaudeau New trends in computing August 29, 2024 24 / 47

Optimization: rules and examples

MPI-P2P:
Strong-Scaling performance test

 10

 100

 1000

 10000

 100 200 400 800 1600 3200 6400 12800

S
c
a
la

b
il
it

y

MPI-processus

Ideal
1B cells
4B cells

Strong-Scaling: Scalability

 1

 2

 4

 8

 16

 32

 64

 128

 120 240 480 960 1920 3840 7680 15360

S
p

e
e
d

u
p

 (
n

o
rm

a
li
z
e
d

)

Number of CPU cores

Ideal
1B cells
4B cells

Strong-Scaling: Speedup

P. Parnaudeau New trends in computing August 29, 2024 25 / 47

Optimization: rules and examples

MPI:
Tactic

Non-blocking collective communication
• Computation 1D math. operator along a direction
• Transposition via collective communication

• (+++): Implicit problem (FFT’s schemes)
• (—): Cost communication

Figure: Pencil MPI communication schemes

P. Parnaudeau New trends in computing August 29, 2024 26 / 47

Optimization: rules and examples

MPI:
Tactic

GPS [13]: FFT code
Considering the dimensionless Gross-Pitaevskii Equation (GPE) with a rotation term, in the
case of a stationary state:

µϕ(x) =
(

− 1
2∆ + V(x) + β|ϕ(x)|2 − ΩLz

)
ϕ(x) with||ϕ||20 = 1

where µ is called the chemical potential of the condensate and
ϕ: Stationary wave function
V : Magnetic trap, is quadratic, quartic etc.
β: Interaction between particles inside the condensate
ΩLz: Angular momentum

P. Parnaudeau New trends in computing August 29, 2024 27 / 47

Optimization: rules and examples

MPI Non-blocking collective:
Strong-Scaling performance test

 0.1

 1

 10

 100

 1000

 1000 10000 100000

sc
al

ab
ili

ty

#cores

Strong scal : 5123

Strong scal : 10243

Strong scal : 20483

Strong-Scaling: Scalability

 0.1

 1

 10

 100

 100 1000 10000 100000

sp
ee

du
p

#cores

5123

10243

20483

Strong-Scaling: Speedup

P. Parnaudeau New trends in computing August 29, 2024 28 / 47

Optimization: rules and examples

MPI:
Conclusion

• P2P communication: Start with send/recv and step/step non-blocking

• P2P communication: Easy to start, but challenging to optimize

• Collective communication: Only used when needed (reduced operation)

• Collective communication: Today, asynchronous implementations are really efficient

• Basic recommendation: Limit communication and especially collective

P. Parnaudeau New trends in computing August 29, 2024 29 / 47

Optimization: rules and examples

Conclusion: optimization and parallelization

• New generation supercomputers are hybrid (CPU+GPU)

• X86-64 architecture is no longer the archi-dominant (ex: ARM on Apple)

• Need to merge 2 or 3 parallelism paradigms

• Need to think about maintainability and sustainability

• Flops/Watt is a real challenge for developpers!

P. Parnaudeau New trends in computing August 29, 2024 30 / 47

Tools and rules for: Analysis, Profiling, Debugging

LSCPU:
CPU information

lscpu

- Line 1-2-13: Architecture information
- Line 4-5-6-7-8: Number of socket, cores and threads per node
- Line 9-24-25: Memory policy: Non Uniform Memory Architecture
- AVX512: Vectoriel support (SIMD optimisation)

P. Parnaudeau New trends in computing August 29, 2024 31 / 47

Tools and rules for: Analysis, Profiling, Debugging

HTOP or GLANCES:
System monitoring core usage, memory usage, process information

htop glances

P. Parnaudeau New trends in computing August 29, 2024 32 / 47

Tools and rules for: Analysis, Profiling, Debugging

GNU Debuger (GDB)

• Compile the program with options: -g

• Serial/Sequential/OpenMP: gdb Binary name

• Distributed: MPIRUN Command name xterm -e gdb Binary name (Nb proc. < 10)

• Some GUI for GDB

Useful commands

Command Argument Explain
b file:line Breakpoint in file at line
n binary Execute binary
p variable Display variable value
n Execute next instruction
c Continue the program instruction

quit Quit gdb

P. Parnaudeau New trends in computing August 29, 2024 33 / 47

https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Tools and rules for: Analysis, Profiling, Debugging

GNU Profiler (GPROF)

Gprof: Flat view Gprof: Grap view

- Compile/link the program with options: -g -pg
- Execute the program in standard way
- Execution generates profiling files in execution

directory
- To obtain profiling report generation: gprof

Binary name gmon.out.MPI Rank
gprof.out.MPI Rank

P. Parnaudeau New trends in computing August 29, 2024 34 / 47

Tools and rules for: Analysis, Profiling, Debugging

Other tools

• Intel offers a wide and attractive range of tools

- Intel Advisor: Help for design code for efficient vectorization, threading, and
offloading to accelerators

- Intel Inspector: Locate and debug threading, memory, and persistent memory errors
- Intel Trace Analyzer and Collector (ITAC): Help for efficient MPI application
- Intel VTune™ Profiler: Analysing and optimizing performance of code for several

architecture

• Cray offers a wide and attractive range of tools

- Cray Performance and Analysis Tools: Help to design code for efficient
vectorization, threading, and offloading to accelerators

P. Parnaudeau New trends in computing August 29, 2024 35 / 47

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://cpe.ext.hpe.com/docs/performance-tools/index.html

Scientific and math librairies

Scientific and math libraries

• The Netlib math library
• BLAS-1-2-3: (vector and matrix operations) - Fortran
• CBLAS - C
• LAPACK: Solve linear equation systems
• ScaLAPACK: Distributed version of Lapack

• Intel Library: MKL
• Netlib, FFTW ...

• AMD Optimized CPU Libraries: AOCL
• Netlib, FFTW ...

• NVidia GPU Libraries: CUDA-X
• Netlib, FFTW ...

• I/O Libraries
• HDF5, Netcdf, Adios2

Return to mainpages

P. Parnaudeau New trends in computing August 29, 2024 36 / 47

https://www.netlib.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.amd.com/fr/developer/aocl.html
https://developer.nvidia.com/gpu-accelerated-libraries

Appendix Appendix: Arithmetics

Cost of instruction latencies
Operation cost / CPU cycle SIMD Optimization
ADD, OR, SUB, MUL, FMA 2 Excellent
L1-Read 4 Excellent
If, wrong branch [10;20] Good
L2-Read 10 Good
DIV, SQRT [20;40] Poor
Function callecd (Language and method dependent) > [30;60] Poor
L3-Read [60;70] Very poor
EXP, LOG, SIN, COS.. >100 Very poor
RAM-NUMA-Read [100;500] No gain!
Allocation/deallocation [200;500] No gain!
Kernel call > 1000

Table: Cost of instruction latencies:
from A. Fog, Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD, and

VIA CPUs

Return to mainpages
P. Parnaudeau New trends in computing August 29, 2024 37 / 47

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Appendix Appendix: Memory hierarchy

Memory hierarchy

Figure: From Durganshu Mishra’s blog

Return to mainpages
P. Parnaudeau New trends in computing August 29, 2024 38 / 47

https://medium.com/nerd-for-tech/a-comprehensive-guide-to-the-roofline-model-fddaa506ce2b

Appendix Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (1/2)

• All modern CPUs (since the mid of 90s) have vector instructions
ex: Streaming SIMD Extension (SSE) ∈ Advanced Vector eXtensions AVX ∈ AVX512

• Without SIMD: Instruction/instruction vs with: Grouped instructions (vector) in same CPU cycle

• Use compilers options or using dedicated libraries or using pragma approach (not presented)
• Recommendation: IDRIS SIMD course

1 DO k=kmin,kmax
2 DO j=jmin,jmax
3 DO i=imin,imax
4 W1(i,j,k)= 0.5*(W1(i+1,j,k)+W1(i,j,k))
5 W2(i,j,k)= sqrt(W1(i,j,k)*W1(i,j,))
6 W2(i,j,k) = 0.5*(W2(i-1,j,k)+W2(i,j,k))
7 if (W2(i,j,k) > Lim) print *,”Value W2:”, w2(i,j,k)
8 W3=user func(W2(i,j,k))
9 ENDDO

10 ENDDO
11 ENDDO

Listing: Fortran examples

- Line 4: Can be vectorized but in another loop
- Line 5: Cannot be vectorized: Transcendental function
- Line 6: Cannot be vectorized: Anti dependence
- Line 7: Cannot be vectorized: Conditional test
- Line 8: Cannot be vectorized: Function called

P. Parnaudeau New trends in computing August 29, 2024 39 / 47

http://www.idris.fr/media/formations/simd/idrissimd.pdf

Appendix Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (2/2)

Simple rules:

• Always: Specified the size of the loop
• Avoided: I/O or called function or conditional test in a computational loop
• Avoided: Loop dependence
• Avoided: Pointers
• Avoided: Too small inner-loop
• Recommendation: Check compiler optimization report and documentation

Gfortran compiler optimizations option:

• -O3 : Maximum optim. (take care) enabled by default
• -march=native (AVX1,AVX2, AVX512...): Leave compiler selection to CPU optimization
• -fopt-info-vec-all: Vectorization informations
• All compilers (Intel, Cray ...) have an equivalent options: Read the compiler documentation

Libraries:

HPC libraries (BLAS-1,2,3) dedicated to performing basic vector and matrix operations

Return to mainpages
P. Parnaudeau New trends in computing August 29, 2024 40 / 47

Appendix Appendix: Optimization CPU low level

Instruction optimization:
Memory caching (1/2)

• What is the difference between cache and RAM memory ? Memory hierarchy latency

• Cache Management Policy: Spatial locality of data

• Cache Management Policy: Temporal locality of data

• Avoid cache conflicts

1 DO k=kmin,kmax
2 DO j=jmin,jmax
3 DO i=imin,imax
4 W1(i,j,k)=W0(i,j,k)*W3(i,j,k))
5 W2(i,j,k)=0.5*(W1(i,j,k)*W1(i,j,k))
6 W3(i,j,k)=0.5*(W2(i,j,k)+W2(i+1,j,k))
7 W4(i,j,k)= W4(i,j,k)/W0(i,j,k)
8 ENDDO
9 ENDDO

10 ENDDO

Listing: Fortran source

- Array sizes ∝ to cache size: Cache conflicts appears
- Spatial locality: Do not change loop order
- Temporal locality: W3 is re-used

P. Parnaudeau New trends in computing August 29, 2024 41 / 47

Appendix Appendix: Optimization CPU low level

Instruction optimization:
Memory caching (2/2)

Simple rules

• Contiguous memory: Ordering in loop index (langage dependent) - spatial locality
• Reducing latency (data locality): Improving cache misses reoder iteration loop
• Tolerate latency (prefetching): Optimizing data locally (closed to CPU)
• Point of view: Perhaps more complex optimization and architecture dependent

Gfortran Compiler: optimization options

• Compiler optimizations: Prefetching, loop unrolling, cache-aware
• –fopt-info-note: Optimization report
• Read the compiler documentation and use the pragma directive optimization carefully

Libraries:
Libraries (Blas, Lapack) dedicated to performing cache optimization

Return to mainpages
P. Parnaudeau New trends in computing August 29, 2024 42 / 47

Appendix Appendix: Optimization CPU low level

CPU Architecture:
Theoretical Peak Performance

lscpu on Austral supercomputer node

• 1 Austral Node (Criann supercomputer)
- Architecture: X86 64
- 2 sockets with AMD EPYC 9654, 2.4 Ghz (Milan)
- 96 cores per socket and no hyperthreading
- L1 cache 32kB, L3 cache 32MB
- AVX512 units, FMA

• Single node performance
PeakFlops = 2 x 96 x 2.4 x 2 x 16 = 14.74 TFlop/s

Return to mainpages

P. Parnaudeau New trends in computing August 29, 2024 43 / 47

https://services.criann.fr/services/hpc/cluster-austral/architecture

Appendix Appendix: Optimization CPU low level

Amdahl’s law - Strong Scaling

Predicts a theoretical speed-up obtained by parallelizing an application for a cst size problem.

Spth
= 1

1−Ppara+ Ppara
Nbp

,

lim
Nbp →∞

Spth
= 1

1 − Ppara
= 1

Pseq

Figure: Amdalh’s law, Ppara ∈ [30; 99]%Return to mainpages
P. Parnaudeau New trends in computing August 29, 2024 44 / 47

Appendix Appendix: Optimization CPU low level

Gustafson-Barsis’s law - Weak Scaling

Predicts a theoretical speed-up obtained by parallelizing an application where the size of each
subdomain is fix.

Spth
= 1 − Ppara + (Ppara)Nbp = 1 + (Nbp − 1)Ppara

Figure: Gustafson’s lawReturn to mainpages

P. Parnaudeau New trends in computing August 29, 2024 45 / 47

Appendix Appendix: Optimization CPU low level

References I

[1] F. Leclercq, A. Pisani, and B.D. Wandelt. “Cosmology: from theory to data, from data to
theory”. In: https://arxiv.org/pdf/1403.1260 (2013).

[2] G. Dif-Pradalier et al. “Transport barrier onset and edge turbulence shortfall in fusion
plasmas”. In: Communications Physics 229-5 (2022).

[3] Argonne National Laboratory. AI accelerating drug discovery to fight COVID-19. 2020.

[4] John Kosowatz. Computational Lung Model May Guide How Ventilators are Used. 2020.

[5] A.A. Lovelace. “Notes by A.A.L. [August Ada Lovelace]”. In: Taylor’s Scientific Memoirs p
666-731 (1843).

[6] G. Boole. “An Investigation of the Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities”. In: Macmillan vol. 45 (1854).

[7] A. Turing. “On Computable Numbers, with an Application to the Entscheidungsproblem”.
In: Proceedings of the London Mathematical Society 45 (1936).

P. Parnaudeau New trends in computing August 29, 2024 46 / 47

Appendix Appendix: Optimization CPU low level

References II

[8] C. Shannon. “A Symbolic Analysis of Relay and Switching Circuits”. PhD thesis.
Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1940.

[9] R. Dubois, E. Goncalves, and P. Parnaudeau. “High performance computing of stiff bubble
collapse on CPU-GPU heterogeneous platform”. In: Comput. Math. Appl. 99 (2021),
pp. 246–256.

[10] NASA Identifier: NIX-ED97-43968-1. Hyper-X at mach 7. 2009.

[11] A. Urbano et al. “Exploration of combustion instability triggering using Large Eddy
Simulation of a multiple injector liquid rocket engine”. In: Combustion and Flame 169
(2016).

[12] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual performance
model for multicore architectures”. In: Communications of the ACM (2009).

[13] P. Parnaudeau, J.M. SacEpee, and A. Suzuki.
An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities.
ISC-15, Frankfurt, Poster session. 2015.

P. Parnaudeau New trends in computing August 29, 2024 47 / 47

	Context
	A few basics
	Metrics and boundaries definition
	Method to know your application
	Optimization: rules and examples
	Tools and rules for: Analysis, Profiling, Debugging
	Scientific and math librairies
	Questions?
	Appendix
	Appendix: Arithmetics
	Appendix: Memory hierarchy
	Appendix: Optimization CPU low level

	References

