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Context

Numerical simulation

e Third pillar of science
e Some issues can only be addressed in this way: universe, climate, medicine ...

e Some other are complementarily (cheaper or faster) tackled: nuclear, aerodynamics ...

Figure: Cosmology [1]; Fusion plasmas [2]; Molecular dynamics simulations [3];
Computational Lung Model [4].
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https://arxiv.org/pdf/1403.1260
https://www.nature.com/articles/s42005-022-01004-z
https://www.nsf.gov/discoveries/disc_images.jsp?cntn_id=300481&org=NSF
https://www.asme.org/topics-resources/content/computational-lung-model-may-guide-how-ventilators-are-used

Context

Computer science:

From theory to first transistor

1820 - First concepts of a programmable computer by C. Babbage and A. Lovelace [5]

1850 - Boolean algebra by G. Boole [6]

1936 - A. Turing [7]: concept of his naming machine and notions of algorithms

1940 - C. Shannon [8]: father of science and information theory

1947 - AT&T Bell laboratory, Lucent, Nokia...: first transistor - a new area for supercomputing world
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Context

70 years of supercomputers: The last 35 years

Theoretical peak (Flops]

Total number of Coi

res

Clock (Hertz)

Clusters period (X86) o Tianhe 2

® K Computer

® Cray Jaguar

T T
Aurora (50 Millions )
Frontier (600 Millions $) ®
#Fugaku (1 Billon §)
® Summi
eTiahuLight (273 Millions $)

® Blue Gene
3 Vector machines period © Farth Simulator Hybrid-clusters period (X86-GPU-ARM) 1
® ASCI White
L ® ASCI Red 4
@ Fujitsu Wind
o NECSK3
o Cray2 ®CayYMp
o
b4 -
5
L . . ]
. o .
L . 3 ]
L . ]
a
7GigaFLOPS . . . Tera~FLOI"S . eeﬂ-FLOPS . . EXa-FLPP
1985 1990 1995 2000 2005 2010 2015 2020 2025
Year

Top supercomputer: Moore’s law

5




A few basics

Computer Architectures

Parallel computer <> Multiple-hybride CPU architecture computer
One task simultaneously on the whole (or a subset) part of a computer/cluster/supercomputer

Flynn’s taxonomy: evolution in 4 major groups

o Single Instruction Single Data: Sequential computer (Von Neumann)

o Single Instruction Multiple Data: Vectorial computer
Packet of datas (Vector) can be addressed in the same CPU cycle (ex: Cray I and II)

e Multiple Instruction Single Data: Pipeline computer
Successive operations overlap. Example IMB 360/91

e Multiple Instruction Multiple Data: Multi-CPU computer
1 instruction/processor and for different datas
Often, in recent period, same application is divided in threads which are executed on CPU cores
- MIMD shared memory: Symmetric Shared Memory (SMP) computer, SMP-Numa
computer
- MIMD distributed memory: Massively Parallel Processing (MPP) computer: modern
cluster
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A few basics

CPU Architectures

o Instruction Set Architecture (ISA)
Abstract model of how a software works on CPU
The Standards of architecture (ex: X86, RISC, ARM ...)

e Micro-architecture or computer organization or parch
Implementation of ISA, but not always open (ex: AMD Zen3, Intel Xeon...)

Maximum Floating-point operations by second (Flop/s):
register,

PeakFiops = Nbepu X Nbcore X Clock x 2 FMA x —gi
e Theoretical Memory BandWidth (MBg;)
Maximum rate at access processor memory (Byte/s)

o Arithmetic Intensity (A.L.)
Floating-point operations / bytes in memory accessed (Flop/Byte)

o Performance per Watt (P/W)
Application or architecture performance per 1 watt of power (F/W)

FMA: Fused Multiply-Add circuit
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A few basics

Optimize application/code*

Determine sequential or serial performance:
Application performance (FLOP/S) / theoretical peak performance

— Reducing and/or optimizing sequential/serial part

Determine scalability:
Identification of parallelization efficiency

— Pratical speedup or parallelization gain: S, = T}/ TNb,,
— VS
CPU bound application or long time run application. Ideal case S, = Ny,
— VS
Memory bound application, ideal case S, = 1

— Reducing and/or optimizing communication part

*Assuming application is already parallelized!
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A few

What is CFD ?

Various physical assumptions:

e Stationary or instationary

e Newtonian or non Newtonian fluid

e Compressible or incompressible flow

e Laminar/turbulent

o Single/multiphase flow

e With or without chemical species

o Fluid structure interaction

e Today’s seminar: focus Euler and Navier-Stokes equations on
a cartesian mesh (SCB [9])

F -
—5,‘-l \wj |
1 ! N
— Sy

Figure: Mixing layer, Miata (MX-5a), hyper-X vehicle at Mach 7 [10], blood flow, rocket engine [11]
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Metrics and boundaries definition

Optimization: CPU - Sequential and Vectorization

From less to more restrictive application performance

e CPU-bound: Application limited by central unit ”frequency”

e Cache-bound: Cache size and frequency limits application

e Memory-bound: Application limited by the speed of the system’s memory (RAM)
Optimization:

Adapt data structure, improve memory access patterns

e I/O-bound: Application limited by the BW with storage devive (not discussed here)

Conclusion: Profiling and analysing application vs architecture

P. Parnaudeau New trends in computing
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Metrics and bounda efinition

Arithmetic Intensity (A.I)

Programmer’s perspective

e Some have a catastrophic latency
o Stencils-PDE codes perform relatively poorly < CFD codes ~ 0.3F/B
o No free lunch: Optimization requires a heavy investment of both algorithms and programming

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
A A A
ls N

c Inten?Ity

Particle

Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
8 \ [N J
Y s v
o(1) ©(log(N) ) O(N)

Figure: From Department Of Energy (DOE)
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https://crd.lbl.gov/

Method to know your application

Roofline [12]

Definition
Assessing application’s performances by :

Arithmetic Intensity = F(locality, bandwidth, different parallelization paradigms).
A naive roofline model :
Pax = min (Peak; A. L x MB)
Taking into account memory hierarchy addressing this naive scheme

Roofline

e Providing application performance vs computer capabilities

¢ Essential for optimising the sequential (CPU) part
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Method to know your application

Roofline
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Figure: Roofline: naive view (left), more complex (right). From NERSC
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Method to know your application

Roofline [12]

Do-it-yourself roofline: A messy and time-consuming job (but often essential!)
Interesting for a short part of code

Some friendly tools

o Intel Advisor

e Empiral roofline tool

e Roofline Visualizer

o NVIDIA NVProf / NSight (GPU)
e Papi library (by-hand)

In-house CFD code performance on Intel Xeon 6248
e[ A~0.3F/B
e ~ 7% of the theoretical peak performance (not so bad)
e ~ 20% of the theoretical memory bandwidth (not so good)

Conclusion: Our CFD code is limited by the memory-bound
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Optimization: rules and examples

Parallelization - Shared memory

o Process: Executable part of a programme, divided into one or more threads
o Thread: Smallest part of a process managed independently by O.S

e Core: The smallest part of the processor in a modern CPU

OpenMP

o Industry standard API for shared memory parallel programming
e Based on pragma directives to be inserted in the code
e Implementation in all modern compilers and now on GPU (but not with same directive)

o Alternatives: OpenACC, OpenCL, Pthreads
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Optimization: rules and examples

Poisson equation

The Poisson equation is a key point for CFD applications for incompressible case

Solve: —Vu = f,in Q

With: f(z,y) =2(z(z —1) +y(y — 1))
Dirichlet boundary condition: u|gn = 0
Exact solution: u(z,y) = zy(z — 1)(y — 1)
Initial condition: White noise

e Finite Difference
e Jacobi

P. Parnaudeau New trends in computing August 29, 2024 16/47
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Optimization: rules and examples

OpenMP:

Tactic

Fine Grain (FG)

e OpenMP splits the loop into multiple threads

e (+++): Simple to use (pragma)

e (+++): Easy to maintain the code

e (—): Low performance (number of parallel region)
e (—): Difficult with complex (depency) loop

DO j= 1,ny
DO i= I,nx
unew(i,j)= c0 # ( cl(uli+1,j)+uli-1,)) &
+ 2(u(ij+ D+uij-1)) - (i)
ENDDO
ENDDO

Listing: Jacobi-SEQ

CEUNU AW —

ISOMP PARALLEL DO PRIVATE(L,j) &
1$SOMP SHARED (ny,nx,u,u_new.f,c0.cl,c2)
DO j= I,y
DO i= I,nx

unew(ij)= c0 # ( cl(u(i+1,)+uli-1,))) &

+ 2(ulijDHudij-1)) - f(Q.j)
ENDDO
ENDDO
ISOMP END PARALLEL DO

Listing: Jacobi-OMPFG

DO j= Lny
DO i= 1,nx
u(i.j)= omega(cOx(c L +(u(i+1 j)+u(i-1,j) &
+e2s(u(ij+1)+ulij-1) &
—f(i,j)))+ (1.—omega)=u(i.j)
ENDDO
ENDDO
DO j=ny.1.~1
DO i=nx,1,-1
u(i.j)= omegax(cO+(cL(u(i+1.j)+u(i-1,)) &
+c2x(u(i,j+1)+udij-1)) &
—£(i,j)))+ (1.—omega)=u(ij)
ENDDO
ENDDO

Listing:'SSOR-loop nest




Optimization: rules and exan

OpenMP:

Tactic

e Grain (CG)

e Domain decomposition
o (+++): Great performance
e (—): Communication management

!$OMP PARALLEL PRIVATE (rang.jdeb,jfin)
rang=OMP_GET_THREAD_NUM()
nbproc=OMP_GET_.NUM_THREADS()
jdeb=1+(rangxny)
jfin=(ny+rangsny)

!$OMP END PARALLEL

N U R W~

Listing: Domain decomposition

P. Parnaudeau

DO j= jdeb,jfin
DO i= 1,nx
unew(i,j) =c0x(cl+(u(i+1 j)+uli-1,j) &
+e2(ulij+1)+ulij-1)) &
—f(i.j))
ENDO
ENDO

DO j= jdebjfin

DO nx
u(i.j)=u_new(i.j)

ENDO

ENDO

!$omp barrier

1$omp flush

Listing: Jacobi-OMPCG




Elapsed time

Optimization: rules and examples

OpenMP:

Strong-Scaling Performance test

1000 ;
Fine Grain —s—
Ideal Scalability —¢—
Coarse Grain
MPI
100 |- \X\

#Threads
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Optimization: rules and examples

OpenMP:

Conclusion

e OpenMP (FG): The way to start (quickly) on simple cases: First results in few hours
e OpenMP (CG): For more complex cases and great performances

o OpenMP (TASK): Group of instructions (tasks) are defined and work in parallel. The
number of task is unknown in advance (not presented)
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Optimization: rules and examples

Parallelization - Distributed memory

o Decomposition domain is based on Scharwz (1870) work, for today only non-overlaping
approach

e Non-blocking point-to-point (P2P) communication (Stencil-code)

e Non-blocking collective communication (FFT-code)

Message Passing Interface (MPI)

o Thread-safe: Threads accessing memory concurrently
e Defines syntax and semantics of library routines

e 2 major open-source MPI implementations: OpenMPI and MPICH2 or MVAPICH2
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Optimization: rules and examples

MPI:
Tactic
Non-blocking P2P communication
o SCB uses a 5-point-stencil per direction e (+++): Low cost communication
e Add ”ghost points” at each subdomain o (+++): Great performance
e Exchange data between neighbors e (—): Not easy adapted for implicit problem
] Emercen
[ Ghosteet
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Optimization: rules and examples

MPI:

Tactic

SCB [9]: Finite Volume code

Hyperbolic system:

867\1‘7+V~A+SV~u=O

W = (p, pu, E, @)T: State vector

A = (pu, pu ® u+ P1,u)T: Flux vector

S =(0,0,0,—(K + «))T: Source term

On a cartesian grid, with explicit time integration

Numerical flux are compute at cell-vertex with various schemes
HLLC with or without Muscl-Hancock
WENO with or without Muscl-Hancock

JST
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Optimization: rules and exan

MPI:
Tactic

Non communication

DO ndt=1,ndtmax
1$OMP PARALLEL IF(ijmax.gt.256) default(none)
!$OMP DO SCHEDULE (runtime) PRIVATE (i,j,k) COLLAPSE(2)
DO k=kmin,kmax
DO j=jmin,jmax
DO i=imin,imax
RI1=wl1(i,j.k)-wl(i-1,j.k)
sl=dmax(0.0,dmin(Ril,1.0))+dmin(0,dmax(1,Ril))
W1(i,j. k)= W1(i—1.j,k)+1/4#s1x(W1(i-1,j.k)=W1(i-2,j.k)+1/4s1:(W1(i.j.k)-W1(i-1,j.k))
ENDDO
ENDDO
ENDDO
!$OMP END DO
CALL BOUNDARY (W1)
!$OMP END PARALLEL
CALL MPIL_.SENDRECV (W I, imax*kmax, MPL_DOUBLE_PRECISION,ncib_mpi(N) tag, &
W1, imax*kmax, MPI.DOUBLE-PRECISION,neib.mpi(S),tag, &
comm, status, err.mpi)

ENDDO

Listing: Hybride MPI-OpenMP implementation

P. Parnaudeau

- Line 2: Unique parallel zone declare: Better
performance!

- Line 4-5-6: Good vectorization and cache
optimization

- Line 16: P2P - W1 exchange between
element N and S

- Line 16: Size of message element




Optimization: rules and e

MPI-P2P:

Strong-Scaling performance test
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Optimization: rules and examples

MPI:

Tactic
Non ing collective communication
o Computation 1D math. operator along a direction o (+++): Implicit problem (FFT’s schemes)
e Transposition via collective communication o (—): Cost communication

Xto ¥ transposition

ZtoX transposition

Figure: Pencil MPI communication schemes




Optimization: rules and examples

MPI:
Tactic

GPS [13]: FFT code
Considering the dimensionless Gross-Pitaevskii Equation (GPE) with a rotation term, in the
case of a stationary state:

uox) = (= 5+ V) + Blo(O — 01 )o(x) withllgll§ = 1

where 1 is called the chemical potential of the condensate and
¢: Stationary wave function
V': Magnetic trap, is quadratic, quartic etc.

(: Interaction between particles inside the condensate

August 29, 2024 27147
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Optimization: rules and examples

MPI Non-blocking collective:

Strong-Scaling performance test
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Strong-Scaling: Scalability Strong-Scaling: Speedup

August 29, 2024 28 /47
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Optimization: rules and

Conclusion

e P2P communication: Start with send/recv and step/step non-blocking

o P2P communication: Easy to start, but challenging to optimize

o Collective communication: Only used when needed (reduced operation)

e Collective communication: Today, asynchronous implementations are really efficient

o Basic recommendation: Limit communication and especially collective

P. Parnaudeau New trends in computing
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Optimization: rules and examples

Conclusion: optimization and parallelization

e New generation supercomputers are hybrid (CPU+GPU)

e X86-64 architecture is no longer the archi-dominant (ex: ARM on Apple)
o Need to merge 2 or 3 parallelism paradigms

e Need to think about maintainability and sustainability

o Flops/Watt is a real challenge for developpers!

P. Parnaudeau New trends in computing
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Tools and rules for: Analysis, Profiling, Debu

LSCPU:

CPU information

Line 1-2-13: Architecture information

Line 4-5-6-7-8: Number of socket, cores and threads per node

Line 9-24-25: Memory policy: Non Uniform Memory Architecture
AVXS512: Vectoriel support (SIMD optimisation)
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Tools and rules for: Ana ofiling, Debugging

HTOP or GLANCES:
System monitoring core usage, memory usage, process information

htop glances
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Tools and rules for: Analysis, Profiling, Debugging

GNU Debuger (GDB)

o Compile the program with options: -g

o Serial/Sequential/OpenMP: gdb Binary_name

o Distributed: MPIRUN_Command_name xterm -e gdb Binary_name (Nb proc. < 10)
e Some GUI for GDB

Useful commands

Command Argument Explain

b file:line Breakpoint in file at line

n binary Execute binary

p variable Display variable value

n Execute next instruction

@© Continue the program instruction
quit Quit gdb
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https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Tools and rules for: Analysis, Profiling, Debugging

GNU Profiler (GPROF)

Gprof: Flat view

P. Parnaudeau

- Compile/link the program with options: -g -pg

- Execute the program in standard way

- Execution generates profiling files in execution
directory

- To obtain profiling report generation: gprof
Binary_name gmon.out.MPI_Rank
gprof.out. MPI_Rank

Gprof: Grap view

New trends in computing August 29,2024 34/47



Tools and rules for: Analysis, Profiling, Debugging

Other tools

o Intel offers a wide and attractive range of tools

- Intel Advisor: Help for design code for efficient vectorization, threading, and
offloading to accelerators

- Intel Inspector: Locate and debug threading, memory, and persistent memory errors

- Intel Trace Analyzer and Collector (ITAC): Help for efficient MPI application

- Intel VTune™ Profiler: Analysing and optimizing performance of code for several
architecture

e Cray offers a wide and attractive range of tools

- Cray Performance and Analysis Tools: Help to design code for efficient
vectorization, threading, and offloading to accelerators
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https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://cpe.ext.hpe.com/docs/performance-tools/index.html

Scientific and math librairies

Scientific and math libraries

e The Netlib math library
e BLLAS-1-2-3: (vector and matrix operations) - Fortran
¢ CBLAS -C
e LAPACK: Solve linear equation systems
e ScaLAPACK: Distributed version of Lapack
o Intel Library: MKL
e Netlib, FFTW ...
o AMD Optimized CPU Libraries: AOCL
e Netlib, FFTW ...
e NVidia GPU Libraries: CUDA-X
o Netlib, FFTW ...
e [/O Libraries
e HDF5, Netcdf, Adios2
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https://www.netlib.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.amd.com/fr/developer/aocl.html
https://developer.nvidia.com/gpu-accelerated-libraries

Appendix

Appendix: Arithmetics

Cost of instruction latencies

MD Optimization

Operation PU cycle
ADD, OR, SUB, MUL, FMA 2
L1-Read 4

If, wrong branch [10;20]
L2-Read 10

DIV, SQRT [20:40]
Function callecd (Language and method dependent) | > [30;60]
L3-Read [60;70]
EXP, LOG, SIN, COS.. >100
RAM-NUMA-Read [100;500]
Allocation/deallocation [200;500]
Kernel call > 1000

Excellent
Excellent
Good
Good
Poor
Poor
Very poor
Very poor
No gain!
No gain!

from A. Fog, Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD, and

P. Parnaudeau

Table: Cost of instruction latencies:

VIA CPUs
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https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Appendix  Appendix: Memory hierarchy

Memory hierarchy

1 cycle
Registers On CPU .
rimary
~ Storage
Caches 10 cycles
Faster Access,
Higher Cost .
Main Memory 100 cycles _
Slower Access,
Lower Cost . ~1 M cycles
Flash Disk
S d
~10 M cycles stecf?an eary
Traditional Disk 2
Remote Secondary Storage (e.g., Internet)

The Memory Hierarchy

Storage Capacity

Figure: From Durganshu Mishra’s blog
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https://medium.com/nerd-for-tech/a-comprehensive-guide-to-the-roofline-model-fddaa506ce2b

Appendix  Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (1/2)

e All modern CPUs (since the mid of 90s) have vector instructions
ex: Streaming SIMD Extension (SSE) € Advanced Vector eXtensions AVX € AVX512

o Without SIMD: Instruction/instruction vs with: Grouped instructions (vector) in same CPU cycle

e Use compilers options or using dedicated libraries or using pragma approach (not presented)
o Recommendation: IDRIS SIMD course

DO k=kmin kmax

1

2 DO j=jmin,jmax N .

3 DO i=imin,imax Llne 4

4 1 (i v - Line 5: Cannot be vectorized: Transcendental function
5 W2(i,j.k)= sqrt(W1(i,j.k)=W1(i.j.,) . . .

6 W2(i7,6) = 0.5+ (W2(i-1j K1+ W20, k) - Line 6: Cannot be vectorized: Anti dependence
7 if (W2(i,j.k) > Lim) print +,”Value_W2:”, w2(i,j.k) . . oy

8 Wa=user_func(W2(ij.k) - Line 7: Cannot be vectorized: Conditional test
9 ENDDO . . .

10 | ENDDO - Line 8: Cannot be vectorized: Function called
11 ENDDO

Listing: Fortran examples
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http://www.idris.fr/media/formations/simd/idrissimd.pdf

Appendix Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (2/2)

Simple rules:

e Always: Specified the size of the loop

e Avoided: 1/0 or called function or conditional test in a computational loop
e Avoided: Loop dependence

e Avoided: Pointers

e Avoided: Too small inner-loop

e Recommendation: Check compiler optimization report and documentation

Gfortran compiler optimizations option:

e -(03 : Maximum optim. (take care) enabled by default

o -march=native (AVX1,AVX2, AVX512...): Leave compiler selection to CPU optimization
o -fopt-info-vec-all: Vectorization informations

e All compilers (Intel, Cray ...) have an equivalent options: Read the compiler documentation

Libraries:

HPC libraries (BLAS-1,2,3) dedicated to performing basic vector and matrix operations

P. Parnaudeau New trends in computing August 29, 2024 40/ 47



Appendix Appendix: Optimization CPU low level

Instruction optimization:

Memory caching (1/2)

e What is the difference between cache and RAM memory ?
e Cache Management Policy: Spatial locality of data
e Cache Management Policy: Temporal locality of data

e Avoid cache conflicts

DO k=kmin,kmax

- Array sizes o to cache size: Cache conflicts appears

1

2

3 - Spatial locality: Do not change loop order
s 1. K)=0.5 (W1 k)W 1(i,K)) - Temporal locality: W3 is re-used

6 3(1,).K)=0.5%(W2(i,j.k)+W2(i+1,j.k))

7 Wi4(i,j. k)= W4(i,j.k)/WO(i.j.k)

8 ENDDO

9 ENDDO

10 ENDDO

Listing: Fortran source

New trends in computing



Appendix Appendix: Optimization CPU low level

Instruction optimization:

Memory caching (2/2)

Simple rules

e Contiguous memory: Ordering in loop index (langage dependent) - spatial locality
¢ Reducing latency (data locality): Improving cache misses reoder iteration loop

e Tolerate latency (prefetching): Optimizing data locally (closed to CPU)

e Point of view: Perhaps more complex optimization and architecture dependent

Gfortran Compiler: optimization options

e Compiler optimizations: Prefetching, loop unrolling, cache-aware
e —fopt-info-note: Optimization report
e Read the compiler documentation and use the pragma directive optimization carefully

Libraries:

Libraries (Blas, Lapack) dedicated to performing cache optimization

P. Parnaudeau New trends in computing August 29, 2024 427147



Appendix  Appendix: Optimization CPU low level

CPU Architecture:

Theoretical Peak Performance

e 1 Austral Node (Criann supercomputer)
- Architecture: X86_64
- 2 sockets with AMD EPYC 9654, 2.4 Ghz (Milan)
- 96 cores per socket and no hyperthreading
- L1 cache 32kB, L3 cache 32MB
- AVX512 units, FMA
o Single node performance
Peakgiops =2 x 96 x 2.4 x 2 x 16 = 14.74 TFlop/s

Iscpu on Austral supercomputer node
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Amdahl’s law - Strong Scaling

Predicts a theoretical speed-up obtained by parallelizing an application for a cst size problem.

S, =—020=L
DPth Ppara
I
1 1
lim S, = =
Dih
Ny, —oco *° l=Prre Py

Figure: Amdalh’s law, Ppara € [30;99]%
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Gustafson-Barsis’s law - Weak Scaling

Predicts a theoretical speed-up obtained by parallelizing an application where the size of each
subdomain is fix.

Spth =1- Ppara + (Ppara)Nbp =1+ (Nbp 1)Ppara
=
- =
000 _ //’//
////// P —

Figure: Gustafson’s law
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