Parallelization and Optimization in the CFD context

An overview of stencil codes

Philippe Parnaudeau,
Senior Research Engineer - CNRS

T Institut Pprime, CNRS, UPR 3346
e-mail: philippe.parnaudeau@cnrs.pprime.fr - Web page: https://www.pprime.fr

[’
Institut
Pprime

P. Parnaudeau New trends in computing August 29, 2024

@ Context

© A few basics

© Metrics and boundaries definition

@ Method to know your application

© Optimization: rules and examples

@ Tools and rules for: Analysis, Profiling, Debugging

@ Scientific and math librairies

© Questions?

P. Parnaudeau New trends in compu August 29, 2024 2/47

Context

Numerical simulation

e Third pillar of science
e Some issues can only be addressed in this way: universe, climate, medicine ...

e Some other are complementarily (cheaper or faster) tackled: nuclear, aerodynamics ...

Figure: Cosmology [1]; Fusion plasmas [2]; Molecular dynamics simulations [3];
Computational Lung Model [4].

P. Parnaudeau New trends in computing

https://arxiv.org/pdf/1403.1260
https://www.nature.com/articles/s42005-022-01004-z
https://www.nsf.gov/discoveries/disc_images.jsp?cntn_id=300481&org=NSF
https://www.asme.org/topics-resources/content/computational-lung-model-may-guide-how-ventilators-are-used

Context

Computer science:

From theory to first transistor

1820 - First concepts of a programmable computer by C. Babbage and A. Lovelace [5]

1850 - Boolean algebra by G. Boole [6]

1936 - A. Turing [7]: concept of his naming machine and notions of algorithms

1940 - C. Shannon [8]: father of science and information theory

1947 - AT&T Bell laboratory, Lucent, Nokia...: first transistor - a new area for supercomputing world

P. Parnaudeau New trends in computing August 29, 2024 4/47

1018

1016

1014

102

1010

Context

70 years of supercomputers: The last 35 years

Theoretical peak (Flops]

Total number of Coi

res

Clock (Hertz)

Clusters period (X86) o Tianhe 2

® K Computer

® Cray Jaguar

T T
Aurora (50 Millions)
Frontier (600 Millions $) ®
#Fugaku (1 Billon §)
® Summi
eTiahuLight (273 Millions $)

® Blue Gene
3 Vector machines period © Farth Simulator Hybrid-clusters period (X86-GPU-ARM) 1
® ASCI White
L ® ASCI Red 4
@ Fujitsu Wind
o NECSK3
o Cray2 ®CayYMp
o
b4 -
5
L . .]
. o .
L . 3]
L .]
a
7GigaFLOPS . . . Tera~FLOI"S . eeﬂ-FLOPS . . EXa-FLPP
1985 1990 1995 2000 2005 2010 2015 2020 2025
Year

Top supercomputer: Moore’s law

5

A few basics

Computer Architectures

Parallel computer <> Multiple-hybride CPU architecture computer
One task simultaneously on the whole (or a subset) part of a computer/cluster/supercomputer

Flynn’s taxonomy: evolution in 4 major groups

o Single Instruction Single Data: Sequential computer (Von Neumann)

o Single Instruction Multiple Data: Vectorial computer
Packet of datas (Vector) can be addressed in the same CPU cycle (ex: Cray I and II)

e Multiple Instruction Single Data: Pipeline computer
Successive operations overlap. Example IMB 360/91

e Multiple Instruction Multiple Data: Multi-CPU computer
1 instruction/processor and for different datas
Often, in recent period, same application is divided in threads which are executed on CPU cores
- MIMD shared memory: Symmetric Shared Memory (SMP) computer, SMP-Numa
computer
- MIMD distributed memory: Massively Parallel Processing (MPP) computer: modern
cluster

P. Parnaudeau New trends in computing August 29, 2024

A few basics

CPU Architectures

o Instruction Set Architecture (ISA)
Abstract model of how a software works on CPU
The Standards of architecture (ex: X86, RISC, ARM ...)

e Micro-architecture or computer organization or parch
Implementation of ISA, but not always open (ex: AMD Zen3, Intel Xeon...)

Maximum Floating-point operations by second (Flop/s):
register,

PeakFiops = Nbepu X Nbcore X Clock x 2 FMA x —gi
e Theoretical Memory BandWidth (MBg;)
Maximum rate at access processor memory (Byte/s)

o Arithmetic Intensity (A.L.)
Floating-point operations / bytes in memory accessed (Flop/Byte)

o Performance per Watt (P/W)
Application or architecture performance per 1 watt of power (F/W)

FMA: Fused Multiply-Add circuit

P. Parnaudeau New trends in computing August 29, 2024

A few basics

Optimize application/code*

Determine sequential or serial performance:
Application performance (FLOP/S) / theoretical peak performance

— Reducing and/or optimizing sequential/serial part

Determine scalability:
Identification of parallelization efficiency

— Pratical speedup or parallelization gain: S, = T}/ TNb,,
— VS
CPU bound application or long time run application. Ideal case S, = Ny,
— VS
Memory bound application, ideal case S, = 1

— Reducing and/or optimizing communication part

*Assuming application is already parallelized!

P. Parnaudeau New trends in computing August 29, 2024

A few

What is CFD ?

Various physical assumptions:

e Stationary or instationary

e Newtonian or non Newtonian fluid

e Compressible or incompressible flow

e Laminar/turbulent

o Single/multiphase flow

e With or without chemical species

o Fluid structure interaction

e Today’s seminar: focus Euler and Navier-Stokes equations on
a cartesian mesh (SCB [9])

F -
—5,‘-l \wj |
1 ! N
— Sy

Figure: Mixing layer, Miata (MX-5a), hyper-X vehicle at Mach 7 [10], blood flow, rocket engine [11]

P. Parnaudeau New trends in computing ; 29,2024 9/47

Metrics and boundaries definition

Optimization: CPU - Sequential and Vectorization

From less to more restrictive application performance

e CPU-bound: Application limited by central unit ”frequency”

e Cache-bound: Cache size and frequency limits application

e Memory-bound: Application limited by the speed of the system’s memory (RAM)
Optimization:

Adapt data structure, improve memory access patterns

e I/O-bound: Application limited by the BW with storage devive (not discussed here)

Conclusion: Profiling and analysing application vs architecture

P. Parnaudeau New trends in computing

August 29, 2024

10/47

Metrics and bounda efinition

Arithmetic Intensity (A.I)

Programmer’s perspective

e Some have a catastrophic latency
o Stencils-PDE codes perform relatively poorly < CFD codes ~ 0.3F/B
o No free lunch: Optimization requires a heavy investment of both algorithms and programming

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
A A A
ls N

c Inten?Ity

Particle

Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
8 \ [N J
Y s v
o(1) ©(log(N)) O(N)

Figure: From Department Of Energy (DOE)

P. Parnaudeau 4 ds in comp 9, 2024 11/47

https://crd.lbl.gov/

Method to know your application

Roofline [12]

Definition
Assessing application’s performances by :

Arithmetic Intensity = F(locality, bandwidth, different parallelization paradigms).
A naive roofline model :
Pax = min (Peak; A. L x MB)
Taking into account memory hierarchy addressing this naive scheme

Roofline

e Providing application performance vs computer capabilities

¢ Essential for optimising the sequential (CPU) part

P. Parnaudeau New trends in computing August 29, 2024 12/47

Method to know your application

Roofline

Peak Flop/s

A
Peak FLOP/s) o
1 a
a /I K=l
a 1 TR
=] & I (]
S (DQ)\ I o
2 &S | g
g o J s
2 R g <
< / I
Bandwidth-bound ! Compute-bound
I
/ l N
>
Arithmetic Intensity (FLOP: LByte)

Arithmetic Intensity

Figure: Roofline: naive view (left), more complex (right). From NERSC

P. Parnaudeau

https://crd.lbl.gov/

Method to know your application

Roofline [12]

Do-it-yourself roofline: A messy and time-consuming job (but often essential!)
Interesting for a short part of code

Some friendly tools

o Intel Advisor

e Empiral roofline tool

e Roofline Visualizer

o NVIDIA NVProf / NSight (GPU)
e Papi library (by-hand)

In-house CFD code performance on Intel Xeon 6248
e[A~0.3F/B
e ~ 7% of the theoretical peak performance (not so bad)
e ~ 20% of the theoretical memory bandwidth (not so good)

Conclusion: Our CFD code is limited by the memory-bound

P. Parnaudeau New trends in computing August 29, 2024 14 /47

Optimization: rules and examples

Parallelization - Shared memory

o Process: Executable part of a programme, divided into one or more threads
o Thread: Smallest part of a process managed independently by O.S

e Core: The smallest part of the processor in a modern CPU

OpenMP

o Industry standard API for shared memory parallel programming
e Based on pragma directives to be inserted in the code
e Implementation in all modern compilers and now on GPU (but not with same directive)

o Alternatives: OpenACC, OpenCL, Pthreads

P. Parnaudeau New trends in computing August 29, 2024 15747

Optimization: rules and examples

Poisson equation

The Poisson equation is a key point for CFD applications for incompressible case

Solve: —Vu = f,in Q

With: f(z,y) =2(z(z —1) +y(y — 1))
Dirichlet boundary condition: u|gn = 0
Exact solution: u(z,y) = zy(z — 1)(y — 1)
Initial condition: White noise

e Finite Difference
e Jacobi

P. Parnaudeau New trends in computing August 29, 2024 16/47

U B W —

Optimization: rules and examples

OpenMP:

Tactic

Fine Grain (FG)

e OpenMP splits the loop into multiple threads

e (+++): Simple to use (pragma)

e (+++): Easy to maintain the code

e (—): Low performance (number of parallel region)
e (—): Difficult with complex (depency) loop

DO j= 1,ny
DO i= I,nx
unew(i,j)= c0 # (cl(uli+1,j)+uli-1,)) &
+ 2(u(ij+ D+uij-1)) - (i)
ENDDO
ENDDO

Listing: Jacobi-SEQ

CEUNU AW —

ISOMP PARALLEL DO PRIVATE(L,j) &
1$SOMP SHARED (ny,nx,u,u_new.f,c0.cl,c2)
DO j= I,y
DO i= I,nx

unew(ij)= c0 # (cl(u(i+1,)+uli-1,))) &

+ 2(ulijDHudij-1)) - f(Q.j)
ENDDO
ENDDO
ISOMP END PARALLEL DO

Listing: Jacobi-OMPFG

DO j= Lny
DO i= 1,nx
u(i.j)= omega(cOx(c L +(u(i+1 j)+u(i-1,j) &
+e2s(u(ij+1)+ulij-1) &
—f(i,j)))+ (1.—omega)=u(i.j)
ENDDO
ENDDO
DO j=ny.1.~1
DO i=nx,1,-1
u(i.j)= omegax(cO+(cL(u(i+1.j)+u(i-1,)) &
+c2x(u(i,j+1)+udij-1)) &
—£(i,j)))+ (1.—omega)=u(ij)
ENDDO
ENDDO

Listing:'SSOR-loop nest

Optimization: rules and exan

OpenMP:

Tactic

e Grain (CG)

e Domain decomposition
o (+++): Great performance
e (—): Communication management

!$OMP PARALLEL PRIVATE (rang.jdeb,jfin)
rang=OMP_GET_THREAD_NUM()
nbproc=OMP_GET_.NUM_THREADS()
jdeb=1+(rangxny)
jfin=(ny+rangsny)

!$OMP END PARALLEL

N U R W~

Listing: Domain decomposition

P. Parnaudeau

DO j= jdeb,jfin
DO i= 1,nx
unew(i,j) =c0x(cl+(u(i+1 j)+uli-1,j) &
+e2(ulij+1)+ulij-1)) &
—f(i.j))
ENDO
ENDO

DO j= jdebjfin

DO nx
u(i.j)=u_new(i.j)

ENDO

ENDO

!$omp barrier

1$omp flush

Listing: Jacobi-OMPCG

Elapsed time

Optimization: rules and examples

OpenMP:

Strong-Scaling Performance test

1000 ;
Fine Grain —s—
Ideal Scalability —¢—
Coarse Grain
MPI
100 |- \X\

#Threads

New trends in computing

2024

19/47

Optimization: rules and examples

OpenMP:

Conclusion

e OpenMP (FG): The way to start (quickly) on simple cases: First results in few hours
e OpenMP (CG): For more complex cases and great performances

o OpenMP (TASK): Group of instructions (tasks) are defined and work in parallel. The
number of task is unknown in advance (not presented)

P. Parnaudeau New trends in computing August 29, 2024

Optimization: rules and examples

Parallelization - Distributed memory

o Decomposition domain is based on Scharwz (1870) work, for today only non-overlaping
approach

e Non-blocking point-to-point (P2P) communication (Stencil-code)

e Non-blocking collective communication (FFT-code)

Message Passing Interface (MPI)

o Thread-safe: Threads accessing memory concurrently
e Defines syntax and semantics of library routines

e 2 major open-source MPI implementations: OpenMPI and MPICH2 or MVAPICH2

P. Parnaudeau New trends in computing August 29, 2024 pAEYS

Optimization: rules and examples

MPI:
Tactic
Non-blocking P2P communication
o SCB uses a 5-point-stencil per direction e (+++): Low cost communication
e Add ”ghost points” at each subdomain o (+++): Great performance
e Exchange data between neighbors e (—): Not easy adapted for implicit problem
] Emercen
[Ghosteet

P. Parnaudeau 4 d puting y; 29,2024 22/47

Optimization: rules and examples

MPI:

Tactic

SCB [9]: Finite Volume code

Hyperbolic system:

867\1‘7+V~A+SV~u=O

W = (p, pu, E, @)T: State vector

A = (pu, pu ® u+ P1,u)T: Flux vector

S =(0,0,0,—(K + «))T: Source term

On a cartesian grid, with explicit time integration

Numerical flux are compute at cell-vertex with various schemes
HLLC with or without Muscl-Hancock
WENO with or without Muscl-Hancock

JST

P. Parnaudeau New trends in computing August 29, 2024 23/47

Optimization: rules and exan

MPI:
Tactic

Non communication

DO ndt=1,ndtmax
1$OMP PARALLEL IF(ijmax.gt.256) default(none)
!$OMP DO SCHEDULE (runtime) PRIVATE (i,j,k) COLLAPSE(2)
DO k=kmin,kmax
DO j=jmin,jmax
DO i=imin,imax
RI1=wl1(i,j.k)-wl(i-1,j.k)
sl=dmax(0.0,dmin(Ril,1.0))+dmin(0,dmax(1,Ril))
W1(i,j. k)= W1(i—1.j,k)+1/4#s1x(W1(i-1,j.k)=W1(i-2,j.k)+1/4s1:(W1(i.j.k)-W1(i-1,j.k))
ENDDO
ENDDO
ENDDO
!$OMP END DO
CALL BOUNDARY (W1)
!$OMP END PARALLEL
CALL MPIL_.SENDRECV (W I, imax*kmax, MPL_DOUBLE_PRECISION,ncib_mpi(N) tag, &
W1, imax*kmax, MPI.DOUBLE-PRECISION,neib.mpi(S),tag, &
comm, status, err.mpi)

ENDDO

Listing: Hybride MPI-OpenMP implementation

P. Parnaudeau

- Line 2: Unique parallel zone declare: Better
performance!

- Line 4-5-6: Good vectorization and cache
optimization

- Line 16: P2P - W1 exchange between
element N and S

- Line 16: Size of message element

Optimization: rules and e

MPI-P2P:

Strong-Scaling performance test

10000 T T T T T T T
Ideal ——
cells —e—
lls —o—
1000 - Sl
2
5
©
®
o
»n
100 Sl
10
100 200 400 800 1600 3200 6400 12800

MPI-processus

Strong-Scaling: Scalability

Speedup (normalized)

128 y T T T T T
Ideal
1B cells - %- -
64 | 4B cells — o
32 - Pe
X
2o
e
16 s
g
8 - '/,"
i
al &
2|
1
120 240 480 960 1920 3840 7680

Number of CPU cores

Strong-Scaling: Speedup

Optimization: rules and examples

MPI:

Tactic
Non ing collective communication
o Computation 1D math. operator along a direction o (+++): Implicit problem (FFT’s schemes)
e Transposition via collective communication o (—): Cost communication

Xto ¥ transposition

ZtoX transposition

Figure: Pencil MPI communication schemes

Optimization: rules and examples

MPI:
Tactic

GPS [13]: FFT code
Considering the dimensionless Gross-Pitaevskii Equation (GPE) with a rotation term, in the
case of a stationary state:

uox) = (= 5+ V) + Blo(O — 01)o(x) withllgll§ = 1

where 1 is called the chemical potential of the condensate and
¢: Stationary wave function
V': Magnetic trap, is quadratic, quartic etc.

(: Interaction between particles inside the condensate

August 29, 2024 27147

P. Parnaudeau New trends in computing

Optimization: rules and examples

MPI Non-blocking collective:

Strong-Scaling performance test

1000 s 100
Strong scal ; 5123 —+—
Strong scal : 10243
Strong scal | 2048° ==
0}
z £
k| 3
] 2
1k
1k
01 L L 01 < L L
1000 10000 100000 100 1000 10000 100000
#cores

#oores

Strong-Scaling: Scalability Strong-Scaling: Speedup

August 29, 2024 28 /47

New trends in computing

P. Parnaudeau

Optimization: rules and

Conclusion

e P2P communication: Start with send/recv and step/step non-blocking

o P2P communication: Easy to start, but challenging to optimize

o Collective communication: Only used when needed (reduced operation)

e Collective communication: Today, asynchronous implementations are really efficient

o Basic recommendation: Limit communication and especially collective

P. Parnaudeau New trends in computing

29/47

Optimization: rules and examples

Conclusion: optimization and parallelization

e New generation supercomputers are hybrid (CPU+GPU)

e X86-64 architecture is no longer the archi-dominant (ex: ARM on Apple)
o Need to merge 2 or 3 parallelism paradigms

e Need to think about maintainability and sustainability

o Flops/Watt is a real challenge for developpers!

P. Parnaudeau New trends in computing

August 29, 2024

30/47

Tools and rules for: Analysis, Profiling, Debu

LSCPU:

CPU information

Line 1-2-13: Architecture information

Line 4-5-6-7-8: Number of socket, cores and threads per node

Line 9-24-25: Memory policy: Non Uniform Memory Architecture
AVXS512: Vectoriel support (SIMD optimisation)

P. Parnaudeau New trends in computing 2024 31/47

Tools and rules for: Ana ofiling, Debugging

HTOP or GLANCES:
System monitoring core usage, memory usage, process information

htop glances

P. Parnaudeau New trends in computing August 29, 2024 32/47

Tools and rules for: Analysis, Profiling, Debugging

GNU Debuger (GDB)

o Compile the program with options: -g

o Serial/Sequential/OpenMP: gdb Binary_name

o Distributed: MPIRUN_Command_name xterm -e gdb Binary_name (Nb proc. < 10)
e Some GUI for GDB

Useful commands

Command Argument Explain

b file:line Breakpoint in file at line

n binary Execute binary

p variable Display variable value

n Execute next instruction

@© Continue the program instruction
quit Quit gdb

P. Parnaudeau New trends in computing August 29, 2024 33/47

https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Tools and rules for: Analysis, Profiling, Debugging

GNU Profiler (GPROF)

Gprof: Flat view

P. Parnaudeau

- Compile/link the program with options: -g -pg

- Execute the program in standard way

- Execution generates profiling files in execution
directory

- To obtain profiling report generation: gprof
Binary_name gmon.out.MPI_Rank
gprof.out. MPI_Rank

Gprof: Grap view

New trends in computing August 29,2024 34/47

Tools and rules for: Analysis, Profiling, Debugging

Other tools

o Intel offers a wide and attractive range of tools

- Intel Advisor: Help for design code for efficient vectorization, threading, and
offloading to accelerators

- Intel Inspector: Locate and debug threading, memory, and persistent memory errors

- Intel Trace Analyzer and Collector (ITAC): Help for efficient MPI application

- Intel VTune™ Profiler: Analysing and optimizing performance of code for several
architecture

e Cray offers a wide and attractive range of tools

- Cray Performance and Analysis Tools: Help to design code for efficient
vectorization, threading, and offloading to accelerators

P. Parnaudeau New trends in computing August 29, 2024 35/47

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://cpe.ext.hpe.com/docs/performance-tools/index.html

Scientific and math librairies

Scientific and math libraries

e The Netlib math library
e BLLAS-1-2-3: (vector and matrix operations) - Fortran
¢ CBLAS -C
e LAPACK: Solve linear equation systems
e ScaLAPACK: Distributed version of Lapack
o Intel Library: MKL
e Netlib, FFTW ...
o AMD Optimized CPU Libraries: AOCL
e Netlib, FFTW ...
e NVidia GPU Libraries: CUDA-X
o Netlib, FFTW ...
e [/O Libraries
e HDF5, Netcdf, Adios2

P. Parnaudeau New trends in computing August 29, 2024

https://www.netlib.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.amd.com/fr/developer/aocl.html
https://developer.nvidia.com/gpu-accelerated-libraries

Appendix

Appendix: Arithmetics

Cost of instruction latencies

MD Optimization

Operation PU cycle
ADD, OR, SUB, MUL, FMA 2
L1-Read 4

If, wrong branch [10;20]
L2-Read 10

DIV, SQRT [20:40]
Function callecd (Language and method dependent) | > [30;60]
L3-Read [60;70]
EXP, LOG, SIN, COS.. >100
RAM-NUMA-Read [100;500]
Allocation/deallocation [200;500]
Kernel call > 1000

Excellent
Excellent
Good
Good
Poor
Poor
Very poor
Very poor
No gain!
No gain!

from A. Fog, Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD, and

P. Parnaudeau

Table: Cost of instruction latencies:

VIA CPUs

New trends in computing

August 29, 2024

37/47

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Appendix Appendix: Memory hierarchy

Memory hierarchy

1 cycle
Registers On CPU .
rimary
~ Storage
Caches 10 cycles
Faster Access,
Higher Cost .
Main Memory 100 cycles _
Slower Access,
Lower Cost . ~1 M cycles
Flash Disk
S d
~10 M cycles stecf?an eary
Traditional Disk 2
Remote Secondary Storage (e.g., Internet)

The Memory Hierarchy

Storage Capacity

Figure: From Durganshu Mishra’s blog

P. Parnaudeau

https://medium.com/nerd-for-tech/a-comprehensive-guide-to-the-roofline-model-fddaa506ce2b

Appendix Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (1/2)

e All modern CPUs (since the mid of 90s) have vector instructions
ex: Streaming SIMD Extension (SSE) € Advanced Vector eXtensions AVX € AVX512

o Without SIMD: Instruction/instruction vs with: Grouped instructions (vector) in same CPU cycle

e Use compilers options or using dedicated libraries or using pragma approach (not presented)
o Recommendation: IDRIS SIMD course

DO k=kmin kmax

1

2 DO j=jmin,jmax N .

3 DO i=imin,imax Llne 4

4 1 (i v - Line 5: Cannot be vectorized: Transcendental function
5 W2(i,j.k)= sqrt(W1(i,j.k)=W1(i.j.,) . . .

6 W2(i7,6) = 0.5+ (W2(i-1j K1+ W20, k) - Line 6: Cannot be vectorized: Anti dependence
7 if (W2(i,j.k) > Lim) print +,”Value_W2:”, w2(i,j.k) . . oy

8 Wa=user_func(W2(ij.k) - Line 7: Cannot be vectorized: Conditional test
9 ENDDO . . .

10 | ENDDO - Line 8: Cannot be vectorized: Function called
11 ENDDO

Listing: Fortran examples

P. Parnaudeau New trends in computing ; 29,2024 39/47

http://www.idris.fr/media/formations/simd/idrissimd.pdf

Appendix Appendix: Optimization CPU low level

Single Instruction Multiple Data and vectorization pipelining (2/2)

Simple rules:

e Always: Specified the size of the loop

e Avoided: 1/0 or called function or conditional test in a computational loop
e Avoided: Loop dependence

e Avoided: Pointers

e Avoided: Too small inner-loop

e Recommendation: Check compiler optimization report and documentation

Gfortran compiler optimizations option:

e -(03 : Maximum optim. (take care) enabled by default

o -march=native (AVX1,AVX2, AVX512...): Leave compiler selection to CPU optimization
o -fopt-info-vec-all: Vectorization informations

e All compilers (Intel, Cray ...) have an equivalent options: Read the compiler documentation

Libraries:

HPC libraries (BLAS-1,2,3) dedicated to performing basic vector and matrix operations

P. Parnaudeau New trends in computing August 29, 2024 40/ 47

Appendix Appendix: Optimization CPU low level

Instruction optimization:

Memory caching (1/2)

e What is the difference between cache and RAM memory ?
e Cache Management Policy: Spatial locality of data
e Cache Management Policy: Temporal locality of data

e Avoid cache conflicts

DO k=kmin,kmax

- Array sizes o to cache size: Cache conflicts appears

1

2

3 - Spatial locality: Do not change loop order
s 1. K)=0.5 (W1 k)W 1(i,K)) - Temporal locality: W3 is re-used

6 3(1,).K)=0.5%(W2(i,j.k)+W2(i+1,j.k))

7 Wi4(i,j. k)= W4(i,j.k)/WO(i.j.k)

8 ENDDO

9 ENDDO

10 ENDDO

Listing: Fortran source

New trends in computing

Appendix Appendix: Optimization CPU low level

Instruction optimization:

Memory caching (2/2)

Simple rules

e Contiguous memory: Ordering in loop index (langage dependent) - spatial locality
¢ Reducing latency (data locality): Improving cache misses reoder iteration loop

e Tolerate latency (prefetching): Optimizing data locally (closed to CPU)

e Point of view: Perhaps more complex optimization and architecture dependent

Gfortran Compiler: optimization options

e Compiler optimizations: Prefetching, loop unrolling, cache-aware
e —fopt-info-note: Optimization report
e Read the compiler documentation and use the pragma directive optimization carefully

Libraries:

Libraries (Blas, Lapack) dedicated to performing cache optimization

P. Parnaudeau New trends in computing August 29, 2024 427147

Appendix Appendix: Optimization CPU low level

CPU Architecture:

Theoretical Peak Performance

e 1 Austral Node (Criann supercomputer)
- Architecture: X86_64
- 2 sockets with AMD EPYC 9654, 2.4 Ghz (Milan)
- 96 cores per socket and no hyperthreading
- L1 cache 32kB, L3 cache 32MB
- AVX512 units, FMA
o Single node performance
Peakgiops =2 x 96 x 2.4 x 2 x 16 = 14.74 TFlop/s

Iscpu on Austral supercomputer node

P. Parnaudeau New trends in computing August 29, 2024

https://services.criann.fr/services/hpc/cluster-austral/architecture

Appendix Appendix: Optimization CPU low level

Amdahl’s law - Strong Scaling

Predicts a theoretical speed-up obtained by parallelizing an application for a cst size problem.

S, =—020=L
DPth Ppara
I
1 1
lim S, = =
Dih
Ny, —oco *° l=Prre Py

Figure: Amdalh’s law, Ppara € [30;99]%

P. Parnaudeau New trends in computing August 29, 2024

Appendix Appendix: Optimization CPU low level

Gustafson-Barsis’s law - Weak Scaling

Predicts a theoretical speed-up obtained by parallelizing an application where the size of each
subdomain is fix.

Spth =1- Ppara + (Ppara)Nbp =1+ (Nbp 1)Ppara
=
- =
000 _ //’//
////// P —

Figure: Gustafson’s law

P. Parnaudeau New trends in computing August 29, 2024 45147

[51

(6]

Appendix Appendix: Optimization CPU low level

References 1

F. Leclercq, A. Pisani, and B.D. Wandelt. “Cosmology: from theory to data, from data to
theory”. In: https://arxiv.org/pdf/1403.1260 (2013).

G. Dif-Pradalier et al. “Transport barrier onset and edge turbulence shortfall in fusion
plasmas”. In: Communications Physics 229-5 (2022).

Argonne National Laboratory. Al accelerating drug discovery to fight COVID-19. 2020.

John Kosowatz. Computational Lung Model May Guide How Ventilators are Used. 2020.

A.A. Lovelace. “Notes by A.A.L. [August Ada Lovelace]”. In: Taylor’s Scientific Memoirs p
666-731 (1843).

G. Boole. “An Investigation of the Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities™. In: Macmillan vol. 45 (1854).

A. Turing. “On Computable Numbers, with an Application to the Entscheidungsproblem”.
In: Proceedings of the London Mathematical Society 45 (1936).

P. Parnaudeau New trends in computing August 29, 2024

Appendix Appendix: Optimization CPU low level

References 11

[10]

[11]

[12]

[13]

C. Shannon. “A Symbolic Analysis of Relay and Switching Circuits”. PhD thesis.
Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1940.

R. Dubois, E. Goncalves, and P. Parnaudeau. “High performance computing of stiff bubble
collapse on CPU-GPU heterogeneous platform”. In: Comput. Math. Appl. 99 (2021),
pp. 246-256.

NASA Identifier: NIX-ED97-43968-1. Hyper-X at mach 7. 2009.

A. Urbano et al. “Exploration of combustion instability triggering using Large Eddy
Simulation of a multiple injector liquid rocket engine”. In: Combustion and Flame 169
(2016).

S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual performance
model for multicore architectures”. In: Communications of the ACM (2009).

P. Parnaudeau, J.M. SacEpee, and A. Suzuki.
An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logi
ISC-15, Frankfurt, Poster session. 2015.

P. Parnaudeau New trends in computing August 29, 2024 47147

	Context
	A few basics
	Metrics and boundaries definition
	Method to know your application
	Optimization: rules and examples
	Tools and rules for: Analysis, Profiling, Debugging
	Scientific and math librairies
	Questions?
	Appendix
	Appendix: Arithmetics
	Appendix: Memory hierarchy
	Appendix: Optimization CPU low level

	References

