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Motivation

Complex dynamics of charged particles (ions and free electrons) in
electro-magnetic fields.

< Plasma confinement under large magnetic and/or electric field.
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Motivation

Complex dynamics of charged particles (ions and free electrons) in
electro-magnetic fields.

< Plasma confinement under large magnetic and/or electric field.

Multiscale dynamics in time.

Example:
fast Larmor gyration < parallel motion < drift across field lines.

Reduced model’s goal:

X-Strong Magrjetic field

fast ration




Motivation

Aim : propose a time stepping for solving accurately and rapidly in times
Tena ~ 1/¢ stiff equations.

Ingredients:

® Parareal algorithm: A time-stepping scheme for parallel in time
computations.

® Reduced models: Zero-order approximations of the multiscale equations.
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Question: what choice for the coarse solver § 7
Standard choices:
® (G = approximation scheme of F’ solver but with a larger time step

e (G = different approximation scheme than Fs, with lower accuracy
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The parareal strategy

Question: what choice for the coarse solver § 7

Standard choices:
® (G = approximation scheme of F’ solver but with a larger time step

e (G = different approximation scheme than Fs, with lower accuracy

— Use reduced (averaged) models to define the coarse solver.

Reason: Reduced models are not stiff ODEs ~ low computational cost.

Some similar approaches

Maday 2007, Haut, Wingate, ... 2014 — 2022, Ariel, Kim, Tsai 2016
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@ Vlasov equation



Realistic Penning trap: magnetic bottle
Knapp, Kendl, Koskela, Ostermann, 2015. Solve for 0 < ¢ < 1

dx. v

dt - €

dv. _ 1

L = ~(ve)" + Ve x B(x<) + E(x2),

where, forc >0, k>0

E(x):c(y_/:;) and B(x):k(x B
2/2
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Realistic Penning trap: magnetic bottle
Knapp, Kendl, Koskela, Ostermann, 2015. Solve for 0 < ¢ < 1

d

X . x.(s) = x,
dv., 1

c;; = ~(ve)T + ve x B(x.) + B(x.), ve(s) =,

where, forc >0, k>0

—x 2 — (y° +2%)/2
Ex)=c| y/2 and B(x) =k —xy
2/2 —xz

Device for storing charged particles.
® if 1/ > +/2c¢ then stable periodic trajectory.
® otherwise the particle escapes from the trap.

No analytic solution; oscillations at three time scales: 27e, 1 and 27 /e.




Averaged models

from two-scale asymptotic expansion theory.
Sanders, Verhulst, 1985, Frénod, 2006, N'Guetseng 1989, Allaire 1990
We develop the solution

t—s t—s t—s
_ 0 ~ oyl 2 42
Ig(t)—JC(t, 5 )—i—cJC (t, 5 )—i—cJC(t, 5 )+
when £ — 0 and where the functions X'%(t, ) are periodic in 6, Vi € N.

The limit Y° = (y°, u") is solution to the i.v.p.

E.(y°) 0
dyO u, duo T
il U vl IR Il (S
0 0 —B,(y%) uf

y'(s) =x, u’(s) = v,

More complex equations for Y! = (y*, u') coupled with (y°, u®)!



Properties of the reduced models

® both reduced models average the fastest rotation motion.

® the first-order model is more accurate than the zero-order one in the
approximation of the bounce motion.

® the electric drift E x e; is missed by the zero-order model, unlike
the first-order one.



Properties of the reduced models

® both reduced models average the fastest rotation motion.

® the first-order model is more accurate than the zero-order one in the
approximation of the bounce motion.

® the electric drift E x e; is missed by the zero-order model, unlike
the first-order one.

The system for Y = (y°,u% y!, ul) is source-free

dY
v F(Y) where F:R'? — R' satisfies V- F' = 0.

< conserves volumes in the enlarged phase space.

Volume-preserving scheme : splitting method ( which is 4th order,
time-symmetric).
Feng, Shang, 1995, Hairer, Lubich, Wanner, 2006



Parareal numerical results

the strong magnetic field is 1/e = 100 and the reduced model timestep is
At = 0.5 =~ 8 gyroperiods.
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Speedup of Parareal

Computing (F(Tn+1,T,L,Ujf))nzo_,__,’N_l in parallel over N processors.

N =162. € € {0.01;0.001}.

Nb. of points in P = 27e 10 20 40
Error(fine solver) at T =80 || 4.2543-10~2 | 2.816-10~* | 1.77-107°
Nb. of Parareal iterations 7 8 8
Speedup 4.8 6.7 10.0
Nb. of pointsin P = 27e 10 20 40
Error(fine solver) at T =80 || 4.5956-10~% | 2.989-10=° | 1.89-10°°
Nb. of Parareal iterations 2 3 4
Speedup 47.7 43.4 36.0
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Vlasov-Poisson equation — beam in a
focusing channel

For ¢ — 0 solve numerically

t
Ofe+ Earfe + (E - i + rH(g)) duf* =0,
1
—0,(r E°) = [ fe(t,r,v)
r
fe(t=0,r0) = fo(r, v)'
® f° = f°(t,r,v) particles distrib. function

Time t € [0, T, Position 7 > 0,
Velocity v € R

® r /e strong external electric field

® E°(t,r) self-consistent electric field

® H is a periodic external function. ’ ;

Paraxial approximation: Filbet-Sonnendriicker (2006), Frénod-Salvarani-Sonnendriicker (2009),
Mouton (2009), Crouseilles-Lemou-Méhats-Zhao (2013, 2017)



Examples

Let the initial distribution
2

v
exp ( - E)X[rmin,rmax] (1),

weD =

where v = 0.072, Tmax = 1.83 and rmin = —Tmax and X(r .. rmas] (1) = 1 if
re [Tmirurmax] and X[Tminvrmax](r) = 0 otherwise.
H(7) = cos®(1) ~ focusing effect; H(7) = cos(27) ~» defocusing effect.

H=0 H = cos®(")

nitialparticles -




Two-scale limit model

Frénod, Salvarani, Sonnendriicker (M3AS, 2009).
When ¢ — 0, (f., E-) two-scale converges to (F, &) over [0,T].

F(t,7,r,v) = G(t, cos(T)r — sin(7)v, sin(7)r + cos(7)v),
and (G, 8) is the solution of the following model

oG 1 2m oG
b + prl sin(7) [é (t,7,cos(t)q + sin(r)u) + @( cos(T)q + sin(‘r)u)] dr P
i % /02” cos(T) [{;(t7 7, cos(T)q + sin(7T)u) + @( cos(T)q + sin(T)u)] dr z—i =0,

G(0,q,u) = fo(q,u),
1 9(ré)
r or

=7, Y(tT,r) = /RG(t, cos(T)r — sin(7)v, sin(r)r + cos()v)dv.

t
® When ¢ — 0, f. is approximated by f(¢,7,v) ~ F(t, -, v).
€

® The transport equation of G is free of high oscillations.



Numerical approximation

e particle in cell algorithm for both models (e-dependent and the limit).
Raviart (1985), Birdsall-Langdon (1985), Hockney-Eastwood (1988), ...



Numerical approximation

e particle in cell algorithm for both models (e-dependent and the limit).
Raviart (1985), Birdsall-Langdon (1985), Hockney-Eastwood (1988), ...

Dirac sum approximation for fj

NP
v) = Zwk o(r —rg)d(v —vp)
k=1
implies a Dirac sum for the solution f¢:
v(t,r,v) Zwk (r — Ri(t)) (v — Vi(1))

where N, is the number of macroparticles and (Rj(t), Vi (t)) is the
macroparticle £ moving along a characteristic curve of Vlasov eq.

1) = V(D) R(O) =70

V(L) = %R(t) + E(t, R()) + R(t)HG), V(0) = vo
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Particle in Cell method

The main time loop :

® deposit particles on the grid =
the grid density p (RHS of
Poisson eq.)

solve Poisson equation on the
grid = the grid electric field F

interpolate £ in each particle

push particles with this field

N

ODEs to solve



Mean relative error

Validity of the reduced model

Runge-Kutta 4 scheme for original and reduced models. Fine 6t = 2mwe/100.
10000 particles and 128 cells.
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Convergence of Parareal

Use the two-scale limit model to define G.
K given by the error of the fine solver w.r.t. the very fine solution.
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Parareal iterations

14

Mean relative error

0.001
0

At=0.8, N=80

£=0.01
€=0.005
€=0.001 —=—

4 6 8 10 12
Parareal iterations

H = cos®(")



Outline

@ Performance analysis
Pipelined version
Speedups



Theoretic Speedup

Computing (F(Tn+1, Ty, UK))n=o,... n—1 in parallel over N processors.

The total time of the parareal run is

Tﬁne
N

Tpar = Linit + K( + Tcoarsc>7

where K is the parareal iterations number.

Thus  S(N) = !

1KTC K
(*)Tjﬁﬁ

where Tﬁne = NTfy coarse — NT



Pipelined Parareal

- allows to reduce the time of coarse calculations from NT, to T..
Minion (2010), Aubanel (2011), Ruprecht (2017)
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Pipelined Parareal

- allows to reduce the time of coarse calculations from NT, to T..
Minion (2010), Aubanel (2011), Ruprecht (2017)
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-standard implementation using MPI.

Runtime

Slice 0

Slice 0

Slice 1

Slice 1

Slice 2

Slice 2

Slice 3

Slice 3

Pipelined Parareal

Algorithm 1: Parareal using MPI

input: Initial value g; number of iterations K

11 g < ¢q

12 p = MPI_COMM_RANK()
13 g «— Gai(q, 15,0)

14 Ge — Galgs Tpirs 1)
15 fork=1,K do

1.6
17
18
19
110
L1
112
113
L4
115
L16
117
118

G — Forlg. tpe1, 1)
0q —q—qc
if Process not first then
‘ MPI_RECV(q.source = p—1)
end
else
| 9=a
end
Ge = Galq. tper, 1)
q—q.+6q
if Process not last then
| MPI_SEND(g.target = p+1)
end

119 end




Speedup of pipelined Parareal

Speedup of the pipelined implementation

simulations on Leto.
case H =0 and € = 0.005 (i.e. an accurate coarse solver)

N (# proc)
80 64 32 16 €=0.005, Final time=64 (2037 fast rotations)
T T T
15 - Experience —e— T T T T T AtI:4 J
Theoretic —— 1 At=2 E
At=0.8 —=—
9r L, 01F
8f §
I
0.01 ¢
2 |-
1 L L L L L
0.001 . . . . . . .
0.8 1 2 4 0 2 4 6 8 10 12 14 16

coarse time step At # parareal iterations
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Speedup of the pipelined implementation

simulations on Leto.
case H =0 and € = 0.005 (i.e. an accurate coarse solver)

N (# proc)
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Speedup of pipelined Parareal

Speedup of pipelined Parareal

64
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Speedup of Parareal

Speedup of Parareal
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Summary and Outlook

Conclusion:

Parareal algorithm provides accurate results at any T,q and for any ¢,
with a low computational cost. o o
The pipelined version speeds up the simulations.

Shared memory parallelism to be added.

Cons:
® need for finding the reduced model (not always an easy task).
e derive estimate for the error of the reduced model.

® parareal does not allow to speed up for £ ~ 0.1.



Summary and Outlook

Conclusion:

Parareal algorithm provides accurate results at any T,q and for any ¢,
with a low computational cost. o o
The pipelined version speeds up the simulations.

Shared memory parallelism to be added.
Cons:
® need for finding the reduced model (not always an easy task).

e derive estimate for the error of the reduced model.

® parareal does not allow to speed up for £ ~ 0.1.

Thank you!



	Introduction
	Vlasov equation
	Vlasov-Poisson system
	The problems of interest and reduced models
	Numerical Parareal results

	Performance analysis
	Pipelined version
	Speedups


