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Motivation

Complex dynamics of charged particles (ions and free electrons) in
electro-magnetic �elds.

↪→ Plasma con�nement under large magnetic and/or electric �eld.

Multiscale dynamics in time.

Example:

fast Larmor gyration ≪ parallel motion ≪ drift across �eld lines.

Reduced model's goal:

(((((((((hhhhhhhhhfast Larmor gyration
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Motivation

Aim : propose a time stepping for solving accurately and rapidly in times
Tend ∼ 1/ε sti� equations.

Ingredients:

• Parareal algorithm: A time-stepping scheme for parallel in time
computations.

• Reduced models: Zero-order approximations of the multiscale equations.



The parareal strategy

Question: what choice for the coarse solver G ?

Standard choices:

• G = approximation scheme of F solver but with a larger time step

• G = di�erent approximation scheme than F 's, with lower accuracy

↪→ Use reduced (averaged) models to de�ne the coarse solver.

Reason: Reduced models are not sti� ODEs ⇝ low computational cost.

Some similar approaches

Maday 2007, Haut, Wingate, ... 2014 � 2022, Ariel, Kim, Tsai 2016
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Realistic Penning trap: magnetic bottle
Knapp, Kendl, Koskela, Ostermann, 2015. Solve for 0 < ε ≪ 1

dxε

dt
= vε, xε(s) = x,

dvε

dt
=

1

ε
(vε)

⊥ + vε ×B(xε) +E(xε), vε(s) = v,

where, for c > 0, k > 0

E(x) = c

 −x
y/2
z/2

 and B(x) = k

 x2 − (y2 + z2)/2
−xy
−xz



Device for storing charged particles.

• if 1/ε >
√
2c then stable periodic trajectory.

• otherwise the particle escapes from the trap.

No analytic solution; oscillations at three time scales: 2πε, 1 and 2π/ε.
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Averaged models

from two-scale asymptotic expansion theory.
Sanders, Verhulst, 1985, Frénod, 2006, N'Guetseng 1989, Allaire 1990

We develop the solution

Xε(t) = X0
(
t,
t− s

ε

)
+ εX1

(
t,
t− s

ε

)
+ ε2 X2

(
t,
t− s

ε

)
+ . . .

when ε → 0 and where the functions Xi(t, θ) are periodic in θ, ∀ i ∈ N.

The limit Y0 = (y0,u0) is solution to the i.v.p.
dy0

dt
=

 u0
x

0
0

 ,
du0

dt
=

 Ex(y
0)

0
0

+

 0
Bx(y

0)u0
z

−Bx(y
0)u0

y


y0(s) = x, u0(s) = v,

More complex equations for Y1 = (y1,u1) coupled with (y0,u0)!



Properties of the reduced models

• both reduced models average the fastest rotation motion.

• the �rst-order model is more accurate than the zero-order one in the
approximation of the bounce motion.

• the electric drift E× e1 is missed by the zero-order model, unlike
the �rst-order one.

The system for Y = (y0,u0,y1,u1) is source-free

dY

dt
= F (Y ) where F : R12 → R12 satis�es ∇ · F = 0.

↪→ conserves volumes in the enlarged phase space.

Volume-preserving scheme : splitting method ( which is 4th order,
time-symmetric).

Feng, Shang, 1995, Hairer, Lubich, Wanner, 2006
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Parareal numerical results

the strong magnetic �eld is 1/ε = 100 and the reduced model timestep is

∆t = 0.5 ≈ 8 gyroperiods.
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Speedup of Parareal

Computing (F (Tn+1, Tn, U
k
n))n=0,...,N−1 in parallel over N processors.

N = 162. ε ∈ {0.01; 0.001}.

Nb. of points in P = 2πε 10 20 40
Error(�ne solver) at T = 80 4.2543 · 10−3 2.816 · 10−4 1.77 · 10−5

Nb. of Parareal iterations 7 8 8
Speedup 4.8 6.7 10.0

Nb. of points in P = 2πε 10 20 40
Error(�ne solver) at T = 80 4.5956 · 10−4 2.989 · 10−5 1.89 · 10−6

Nb. of Parareal iterations 2 3 4
Speedup 47.7 43.4 36.0
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Vlasov-Poisson equation � beam in a

focusing channel

For ε → 0 solve numerically
∂tf

ε +
v

ε
∂rf

ε +
(
Eε −

r

ε
+ rH

( t

ε

))
∂vf

ε = 0,

1

r
∂r(r E

ε) =
∫
fε(t, r, v) dv.

fε(t = 0, r, v) = f0(r, v).

• fε = fε(t, r, v) particles distrib. function

• Time t ∈ [0, T ], Position r > 0,

Velocity v ∈ R

• r 7→ r/ε strong external electric �eld

• Eε(t, r) self-consistent electric �eld

• H is a periodic external function.

Paraxial approximation: Filbet-Sonnendrücker (2006), Frénod-Salvarani-Sonnendrücker (2009),

Mouton (2009), Crouseilles-Lemou-Méhats-Zhao (2013, 2017)



Examples

Let the initial distribution

f0(r, v) =
1√

2π vth
exp

(
−

v2

2v2th

)
χ[rmin,rmax](r),

where vth = 0.072, rmax = 1.83 and rmin = −rmax and χ[rmin,rmax](r) = 1 if

r ∈ [rmin, rmax] and χ[rmin,rmax](r) = 0 otherwise.

H(τ) = cos2(τ) ⇝ focusing e�ect; H(τ) = cos(2τ) ⇝ defocusing e�ect.

H ≡ 0 H = cos2(·)



Two-scale limit model

Frénod, Salvarani, Sonnendrücker (M3AS, 2009).

When ε → 0, (fε, Eε) two-scale converges to (F,E) over [0, T ].

F (t, τ, r, v) = G
(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
,

and (G,E) is the solution of the following model



∂G

∂t
+

1

2π

∫ 2π

0

− sin(τ)
[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+ H(τ)

(
cos(τ)q + sin(τ)u

)]
dτ

∂G

∂q

+
1

2π

∫ 2π

0

cos(τ)
[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+ H(τ)

(
cos(τ)q + sin(τ)u

)]
dτ

∂G

∂u
= 0,

G(0, q, u) = f0(q, u),

1

r

∂(rE)

∂r
= Υ, Υ(t, τ, r) =

∫
R
G
(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
dv.

• When ε → 0, fε is approximated by fε(t, r, v) ≈ F
(
t,
t

ε
, r, v

)
.

• The transport equation of G is free of high oscillations.



Numerical approximation

• particle in cell algorithm for both models (ε-dependent and the limit).
Raviart (1985), Birdsall-Langdon (1985), Hockney-Eastwood (1988), ...

Dirac sum approximation for f0

f
Np

0 (r, v) =

Np∑
k=1

ωk δ(r − r0) δ(v − v0)

implies a Dirac sum for the solution fε:

fNp
ε (t, r, v) =

Np∑
k=1

ωk δ(r −Rk(t)) δ(v − Vk(t))

where Np is the number of macroparticles and
(
Rk(t), Vk(t)

)
is the

macroparticle k moving along a characteristic curve of Vlasov eq.

R′(t) =
1

ε
V (t), R(0) = r0

V ′(t) = −
1

ε
R(t) + E(t, R(t)) +R(t)H

( t

ε

)
, V (0) = v0
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Particle in Cell method

The main time loop :

• deposit particles on the grid ⇒
the grid density ρ (RHS of

Poisson eq.)

• solve Poisson equation on the
grid ⇒ the grid electric �eld E

• interpolate E in each particle

• push particles with this �eld
↖

ODEs to solve



Validity of the reduced model

Runge-Kutta 4 scheme for original and reduced models. Fine δt = 2πε/100.

10000 particles and 128 cells.

Error(tn) =
1

Np

Np∑
j=1

∥(Rn
j , V

n
j )− (R̃n

j , Ṽ
n
j )∥2

∥(R̃n
j , Ṽ

n
j )∥2

.
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Convergence of Parareal

Use the two-scale limit model to de�ne G.
K given by the error of the �ne solver w.r.t. the very �ne solution.
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Theoretic Speedup

Computing (F (Tn+1, Tn, U
k
n))n=0,...,N−1 in parallel over N processors.

The total time of the parareal run is

Tpar = Tinit +K
(Tfine

N
+ Tcoarse

)
,

where K is the parareal iterations number.

Thus S(N) =
1(

1 +K
) Tc

Tf
+

K

N

where Tfine = NTf , Tcoarse = NTc.



Pipelined Parareal

- allows to reduce the time of coarse calculations from NTc to Tc.
Minion (2010), Aubanel (2011), Ruprecht (2017)

from D. Ruprecht's paper �Shared Memory Pipelined Parareal�, Euro-Par 2017.

Thus Sp(N) =
1(

1 +
K

N

) Tc

Tf
+

K

N
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Minion (2010), Aubanel (2011), Ruprecht (2017)

from D. Ruprecht's paper �Shared Memory Pipelined Parareal�, Euro-Par 2017.

Thus Sp(N) =
1(

1 +
K

N

) Tc

Tf
+

K

N

> S(N), since K
N ≪ K.



Pipelined Parareal

-standard implementation using MPI.



Speedup of the pipelined implementation

simulations on Leto.
case H ≡ 0 and ε = 0.005 (i.e. an accurate coarse solver)
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Speedup for ε = 0.01 and ε = 0.05
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Speedup for ε = 0.01 and ε = 0.05
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Summary and Outlook

Conclusion:
Parareal algorithm provides accurate results at any Tend and for any ε,
with a low computational cost.
The pipelined version speeds up the simulations.

Shared memory parallelism to be added.

Cons:

• need for �nding the reduced model (not always an easy task).

• derive estimate for the error of the reduced model.

• parareal does not allow to speed up for ε ∼ 0.1.

Thank you!
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