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Motivation

Challenge: Numerical solving of nonlinear Partial Di�erential Equations
in high dimensions with multiple scales.

AIM: Design e�cient and robust solvers for these problems.

• Di�erent methods to speed up their rate of convergence: multigrid
methods, domain decomposition methods.

• Parallelization techniques: design algorithms adapted to many-core
modern architectures ⇝ faster simulations.

When communication time completely dominate the overall computing
time ⇒ use the time direction for parallelization

This talk: focus on parallelism in time, despite the sequential nature of
evolution problems.
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Parallelism in time overview

• multiple shooting

• domain
decomposition and
waveform relaxation

• time-space multigrid

• direct method

• overview papers

from M. J. Gander: 50 Years of Time Parallel Time Integration, 2015.



Domain of application

Plasma physics

A gas heated at more than 10000 K ⇝ electrons leave the orbit of their
atoms ⇝ plasma = a mixture of ions, neutrals and free electrons.

Plasma is sensitive to electromagnetic �elds ⇝ complex dynamics.

The thermonuclear fusion, by magnetic con�nement:
strong magnetic �eld ⇒ trapped particles ⇒ fusion possibility
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Modelization

1 Microscopic (Newton law)

2 Mesoscopic (kinetic model)

3 Macroscopic (�uid model)

Kinetic approach

• a large number of particles −→ statistic description −→ evolution in
time of a function f entailing how the particles are placed.

• f ≡ f(t,x,v). fdxdv a statistical mean of the repartition of
particles in the box of the phase space



Vlasov equation
• after Anatoly A. Vlasov (1908-1975)
• f = fs distribution function of particle species s.

∂fs
∂t︸︷︷︸ + v · ∂fs

∂x︸ ︷︷ ︸ +
q

m
(E+ v ×B) · ∂fs

∂v︸ ︷︷ ︸ = 0

variations in time variations in space variations en velocity

where
• q the species charge (±1)
• m the particle mass
• E electric �eld, B magnetic �eld, which are external.

To take into account the self-consistent electric �eld −→ coupling
with the Poisson equation.

∂fs
∂t

+ v · ∂fs
∂x

+
q

m
(Esc + v ×B) · ∂fs

∂v
= 0,

∇·Esc = ρ, where ρ(t,x) = q

∫
fs(t,x,v)dv.

fs(0,x,v) = f0(x,v).
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Characteristics

The solution of the Vlasov equation can be expressed by the
characteristics, solutions of the ODEs

dX

dt
= V,

dV

dt
=

q

m

(
E+V ×B

)
,

+ i.c.

Then, the solution of the Vlasov equation writes

f(t,x,v) = f0(X(0,x,v, t),V(0,x,v, t)).
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Parallelism in time

Initial-value problem

du

dt
= f(u) in [0, Tend], u(0) = u0. (1)

Build N time slices [Tn, Tn+1] such that
0 = T0 < T1 < · · · < TN = Tend. Denote ∆t = Tn+1 − Tn.

Then, replace (1) by

dun

dt
= f(un) in [Tn, Tn+1], un(Tn) = Un, n = 0, 1, . . . , N − 1,

where the initial values (Un)n∈{0,1,...,N−1} are to be found.

Propagator notation: un(Tn+1) = P (Un), where P (·) = P (·,∆t).
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The problem

(Un)n are such that P (U0) = U1, P (U1) = U2, . . . , P (UN−2) = UN−1.

Reformulation: Denoting U = (U0, U1, . . . , UN−1) we have to solve

�nd U such that F(U) = 0,

where

F(U) :=


U0 − u0

U1 − P (U0)
...

UN−1 − P (UN−2)

 .



The problem

(Un)n are such that P (U0) = U1, P (U1) = U2, . . . , P (UN−2) = UN−1.

Reformulation: Denoting U = (U0, U1, . . . , UN−1) we have to solve

�nd U such that F(U) = 0,

where

F(U) :=


U0 − u0

U1 − P (U0)
...

UN−1 − P (UN−2)

 .



Solving with Newton method

For a given U0 ∈ RN , iterate

Uk+1 = Uk −
[
F ′(Uk)

]−1F(Uk), for k = 0, 1, . . . ,

where F ′ is the Jacobian of F and

F ′(U) =


I

−P ′(U0) I
−P ′(U1) I

. . .
. . .

−P ′(UN−2) I

 .

=>

{
Uk+1
0 = u0,

Uk+1
n+1 = P (Uk

n) + P ′(Uk
n)
(
Uk+1
n − Uk

n

)
, for n = 0, 1, . . . , N − 1.
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Computing the terms P ′(Uk
n) can be too expensive.

Approximations:

• Use P (Uk+1
n )− P (Uk

n) ≈ P ′(Uk
n)
(
Uk+1
n − Uk

n

)
=> Uk+1

n+1 = P (Uk
n).

• Use P (Uk+1
n )− P (Uk

n) ≈ G(Uk+1
n )−G(Uk

n), where G is a cheap
approximation.

⇓

Parareal iteration:{
Uk+1
0 = u0,

Uk+1
n+1 = P (Uk

n) +G(Uk+1
n )−G(Uk

n), for n = 0, 1, . . . , N − 1,

• Derivative Parareal alg. Uk+1
n+1 = P (Uk

n) +G′(Uk
n)
(
Uk+1
n − Uk

n

)
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Parareal algorithm
• First step

U0
n+1 = G(Tn+1, Tn, U

0
n) for n = 0, 1, . . . , N − 2, U0

0 = u0.

• Fix k ∈ {0, 1, . . . }. Assume (Uk
n)n∈{0,1,...,N−1} known. Uk+1

0 = u0.

1 Compute in parallel F (Tn+1, Tn, U
k
n).

2 For n = 0, 1, . . . , N − 1 do

Uk+1
n+1 = G(Tn+1, Tn, U

k+1
n ) + F (Tn+1, Tn, U

k
n)−G(Tn+1, Tn, U

k
n).

from M. Gander's paper.
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E�ciency

Finite step convergence
The outcome of the parareal algorithm veri�es

Uk
n = F (Tn, 0,u0) when k ≥ n.

However

Goal: Speed up the simulation if

• Cost(G)≪ Cost(F )

• achieve convergence for

K ≪ N.
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Theoretic Speedup

Computing (F (Tn+1, Tn, U
k
n))n=0,...,N−1 in parallel over N processors.

The total time of the parareal run is

Tpar = Tinit +K
(Tfine

N
+ Tcoarse

)
,

where K is the number of parareal iterations leading to the target error.

Thus S(N) =
Tfine

Tpar
=

1(
1 +K

) Tc

Tf
+

K

N

where Tfine = NTf , Tcoarse = NTc.

Tf is the computation time of the �ne solver.

AIM: KTc/Tf ≪ 1 and K ≪ N .
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The strategy

Question: What choice for the coarse solver G?

Standard choices:

• G = approximation scheme of F solver but with a larger time step

• G = di�erent approximation scheme than F 's, with lower accuracy

Nice examples in M. J. Gander and E. Hairer. Nonlinear convergence
analysis for the parareal algorithm. Lecture Notes in Computational
Science and Engineering, 2008.

• Brusselator eq. (speedup of 8 for N = 32)

• Arenstorf orbit (speedup of 62 for N = 250)

• Lorenz eq. (speedup of 18 for N = 180)

Choice: 4th order Runge-Kutta method for both solvers, with ∆t≫ δt.
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Charged particle example
For ε = 0.01 solve

dx

dt
= v, x(0) = x0,

dv

dt
=

1

ε
v × e1 +E(x), v(0) = v0,

(2)

where v × e1 = (0, v3,−v2)T . Take E(x) = (−x1, 0, 0)
T .

Initial condition x0 = v0 = (1, 1, 1)T and Tend = 2.



Using standard Parareal

Take N = 20 time windows for [0, Tend].

Fine solver F is 2nd order Runge-Kutta with δt = Tend/1800.
Coarse solver G is 2nd order Runge-Kutta with ∆t = Tend/600.

=> Tc/Tf = 1/3.

This strategy needs K = 8 parareal iterations for a su�ciently small error.

Speedup is S ∼ 0.3.





If we lower the accuracy of G to ∆t = Tend/400
=> Tf/Tc = 4.5

we need more parareal iterations for the similar target error, K = 15.

Speedup is then S = 0.23.
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Error estimation

Recall u is the solution to (1). Assume F is exact.

u(Tn+1)− Uk+1
n+1 = Fu(Tn)− FUk

n −GUk+1
n +GUk

n

= Fu(Tn)−Gu(Tn)− FUk
n −GUk+1

n +GUk
n+Gu(Tn)

= (F −G)(u(Tn)− Uk
n) +Gu(Tn)−GUk+1

n

Assumptions:

• truncation error of G : ∥(F −G)x∥ ≤ C1(∆t)p+1∥x∥
• Lipschitz property for G : ∥Gx−Gy∥ ≤ (1 + C2∆t)∥x− y∥

Then

∥u(Tn+1)−Uk+1
n+1∥ ≤ C1(∆t)p+1∥u(Tn)−Uk

n∥+ (1+C2∆t)∥u(Tn)−Uk+1
n ∥.
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Error estimation

Theorem
Under these assumptions

∥u(Tn)− Uk
n∥ ≤

(C1(∆t)p+1)k+1

(k + 1)!
(1 + C2∆t)n−k−1

k∏
j=0

(n− j)

≤ (C1Tn)
k+1

(k + 1)!
eC2(Tn−Tk+1)(∆t)p(k+1).

Details in M. J. Gander and E. Hairer. Nonlinear convergence analysis for the

parareal algorithm. Domain Decomposition Methods in Science and

Engineering XVII, vol. 60 of Lecture Notes in Computational Science and

Engineering, pag. 45�56, 2008.
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Outlook

" ... also the coarse integrator should have a certain accuracy. Otherwise
the convergence of the parareal iterations would be too slow, and the
time window, where the algorithm can be applied, would be rather small
preventing an e�cient integration. "

from M. J. Gander, E. Hairer : Journal of Computational and Applied
Mathematics, Vol. 259, 2014.
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General problem
Solve

du

dt
= f(t,u) in [0, Tend], u(0) = u0,

where the unknown is u ≡ u(t), u : [0, Tend]→ Rn, where n ∈ N, n ≥ 2.
f is given and is Lipschitz continuous in u etc.

Sti� equation: highly oscillatory case. The solution evolves at several
(di�erent) time scales.
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General problem � Motivation

no analytic solution ⇒ numerical solving of the ODE.

• explicit methods lack stability ⇝ tiny time steps.

• implicit methods: don't need small time steps but still not accurate.

Goals:

1 High accuracy ←↩ the method needs to resolve all the oscillations
in the solution

2 Long simulations (millions of time steps) ⇝ high computational
cost ⇝ numerical ine�ciency.

AIM: time schemes for solving accurately and e�ciently sti� ODEs.
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Speci�c problem

Solve for 0 < ε≪ 1

du

dt
=

1

ε
Lu+N(u), u(0) = u0,

where L is a skew-Hermitian matrix with imaginary eigenvalues of large
modulus and N is a nonlinear operator.

AIM: Solve the equation with a method which is not constraint by ε.

Possible strategies:

1 Infer a limit model when ε→ 0, that can accurately be solved with
large time steps.

2 Use a parallel in time method.
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Speci�c problem

Solve for 0 < ε≪ 1

du

dt
=

1

ε
Lu+N

( t
ε
,u
)
, u(0) = u0, (3)

where L is a skew-Hermitian matrix with imaginary eigenvalues of large
modulus and N is a nonlinear operator.

AIM: Solve the equation with a method which is not constraint by ε.

Possible strategies:

1 Infer a limit model when ε→ 0, that can accurately be solved with
large time steps.

2 Use parallel in time method.



Application - Newton equations

Study the dynamics of charged particles (ions and free electrons) in
electromagnetic �elds.

Consider in (3) u = (x,v).

Equations of motion for x(t)=position, v(t)=velocity

Solve for 0 < ε≪ 1
dx

dt
= v, x(0) = x0,

dv

dt
=

1

ε
v ×B+E

( t
ε
,x
)
, v(0) = v0,

where

• (x0,v0) ∈ R6 is an initial condition at the initial time t = 0.

• B ∈ R3 is a given constant magnetic �eld, B = e1 = (1, 0, 0)T .

• E : R+ × R3 → R3 is the electric �eld, 2π-periodic in τ .
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Dynamics of a particle

A charged particle (q = ±1) with velocity v
in an electric �eld E and a magnetic �eld B undergoes the Lorentz force

F = q(E+ v ×B).

The electric force accelerates (or slows

down) the charge. The magnetic force de�ects the
charge.



Application - II

Previous system is of the form (3),
d

dt

(
x
v

)
=

1

ε
L

(
x
v

)
+N

(
x
v

)
by taking

L =

(
O3 O3

O3 l

)
where l =

0 0 0
0 0 1
0 −1 0


and

N(x,v) =

(
v

E(x)

)
.
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Toward averaged model I

Consider only the rapid term equation

du

dt
=

1

ε
Lu in [0, Tend], u(0) = u0,

to which the solution is

u(t) = e(t/ε)Lu0,

where for any matrix A, we have eA =
∑∞

k=0
1
k!
Ak.

Remark: In the example above, we can compute

etL =

(
I3 O3

O3 R(t)

)
where R(t) =

(
1 0 0
0 cos t sin t
0 − sin t cos t

)
.
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Toward averaged model II

More generally, assuming that etL is easy to compute, we use the change
of variable

w(t) := e−
t
εLu(t)

and thus, w is the solution to

dw

dt
= e−

t
εLN

(
e

t
εLw

)
, w(0) = u0.

Remark: no singular term but time oscillations are still present.
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Toward averaged model III

The equation is of the form
dw

dt
= N

( t
ε
,w
)
.

Theorem (Sanders-Verhulst, 1985 � periodic case)
If N : R+ × Rn → Rn satis�es

• λ-Lipschitz continuous in w,
• continuous over [0, Tend]×D where D ⊂ Rn bounded,
• η-periodic in t,
• sup

w∈D
sup

t∈[0,1]

|N (t,w)| <∞ is ε-independent.

Then we consider the averaged model

dw

dt
=

1

η

∫ η

0

N (s,w)ds, w(0) = u0.

which solution is assumed to be bounded over [0, 1].

Then, we have for some constant K > 0

|w(t)−w(t)| < Kεη eλt ∀t ∈ [0, 1].
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The non-periodic case

Theorem

If N : R+ × Rn → Rn satis�es
• λ-Lipschitz continuous in w,
• continuous over [0, Tend]×D where D ⊂ Rn bounded,
• sup

w∈D
sup

t∈[0,1]

|N (t,w)| <∞ is ε-independent.

Then we consider the local averaged model

dw

dt
=

1

η

∫ η

0

N
( t
ε
+ s,w

)
ds, w(0) = u0.

which solution is assumed to be bounded over [0, 1].

Then, we have for some constant K > 0

|w(t)−w(t)| < Kεη eλt ∀t ∈ [0, 1].



Charged particles - Example 1
In the canonical frame of R3 denote x = (x1, x2, x3)

T .

For ε = 0.05 solve
dx

dt
= v, x(0) = x0,

dv

dt
=

1

ε
v × e1 +E(x), v(0) = v0,

(4)

where v × e1 = (0, v3,−v2)
T .

Take E(x) = (−x1, 0, 0)
T .

Then (4) has an explicit
solution.

x0 = v0 = (1, 1, 1)T and
Tend = 20.



Charged particles - Example 2

Take E(x) = (−x1, 0,−x3)
T .

Then (4) has an explicit
solution.

x0 = v0 = (1, 1, 1)T and
Tend = 20.



Charged particles - Example 3
For ε = 0.05 solve

dx

dt
= v, x(0) = x0,

dv

dt
=

1

ε
v × e1 +E

( t
ε

)
, v(0) = v0.

(5)

Take E(τ) =
(
0, sin τ, cos τ

)T
.

Then (5) has an explicit
solution.

x0 = v0 = (1, 1, 1)T and
Tend = 20.



Examples - Averaged model
Denoting w = (X0,V0), recall that for the i.c. w(0) = u0

dw

dt
=

1

η

∫ η

0

N (s,w)ds

=
1

η

∫ η

0

e−sLN(esLw)ds

= ...

Specifying, we obtain

d

dt

(
X0

V0

)
=

1

2π

∫ 2π

0

(
R(s)V0

R(−s)E(s,X0)

)
ds

=

(
(V0

1, 0, 0)
T

(E1(X
0), 0, 0)T

)
for examples 1 and 2

or =

(
(V0

1, 0, 0)
T

(0, 0, 1)T

)
for example 3
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The theorem can be applied

Result: The Lipschitz condition is satis�ed for the 3 examples.

We have the error estimation

|w(t)−w(t)| < Kεη eλt ∀t ∈ [0, 1].

However, the averaged model is not accurate with respect to the sti�
ODE. (It captures only the motion along the e1 axis.)
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Conclusion

• In long times
(
∼

t

ε

)
averaged models are not accurate and fail to

approximate the original equation.

• The Parareal strategy allows to correct this error e�ciently (in a few
iterations).



Charged particle - Example 1

Take N = 20 time windows for [0, Tend] and Tend = 2.

Fine solver F is 2nd order Runge-Kutta with δt = Tend/1800.

Coarse solver G is 2nd order Runge-Kutta scheme
for the averaged model

with ∆t = Tend/N.

=> Tf/Tc = 90.

K = 3 parareal iterations are enough for the target accuracy.

Speedup is S ∼ 5.





Outlook

• Parareal method with the strategy of using averaged model for the
coarse solver is e�cient in computational cost.

• need for �nding the reduced model (not always an easy task).

• derive estimate for the error of the reduced model.

• averaged model is not always su�ciently accurate. First-order
averaged models are to be derived.
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END part I

Thank you!


