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Motivation

Challenge: Numerical solving of nonlinear Partial Differential Equations
in high dimensions with multiple scales.

AIM: Design efficient and robust solvers for these problems.

e Different methods to speed up their rate of convergence: multigrid
methods, domain decomposition methods.

® Parallelization techniques: design algorithms adapted to many-core
modern architectures ~~ faster simulations.

When communication time completely dominate the overall computing
time = use the time direction for parallelization

This talk: focus on parallelism in time, despite the sequential nature of
evolution problems.
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Domain of application

Plasma physics

A gas heated at more than 10000 K ~- electrons leave the orbit of their
atoms ~~ plasma = a mixture of ions, neutrals and free electrons.

Plasma is sensitive to electromagnetic fields ~~ complex dynamics.

The thermonuclear fusion, by magnetic confinement:
strong magnetic field = trapped particles = fusion possibility




Modelization

@ Microscopic (Newton law)
® Mesoscopic (kinetic model)

® Macroscopic (fluid model)

Kinetic approach

® a large number of particles — statistic description — evolution in
time of a function f entailing how the particles are placed.

® f= f(t,x,v). fdxdv a statistical mean of the repartition of
particles in the box of the phase space

°
dv ° % o




Vlasov equation
e after Anatoly A. Vlasov (1908-1975)

e [ = f, distribution function of particle species s.

af, fs q fs _
o T Viax T o BrvxBgo=0
~~ N——




Vlasov equation
e after Anatoly A. Vlasov (1908-1975)

e [ = f, distribution function of particle species s.

af, o/, ¢ of.
o b Viax b EFvxB)gn=0
~~

variations in time variations in space variations en velocity

where



Vlasov equation
e after Anatoly A. Vlasov (1908-1975)

e [ = f, distribution function of particle species s.

8fs afs q afé_
NI A
~~

variations in time variations in space variations en velocity

where
® ¢ the species charge (+1)
® m the particle mass
e E electric field, B magnetic field, which are external.



Vlasov equation
e after Anatoly A. Vlasov (1908-1975)

e [ = f, distribution function of particle species s.

8fs afs q afé_
NI A
~~

variations in time variations in space variations en velocity

where
® ¢ the species charge (+1)
® m the particle mass
e E electric field, B magnetic field, which are external.

To take into account the self-consistent electric field — coupling
with the Poisson equation.

Ofs ofs  q ofs _
8t +v 3X+E(ESC+VXB) av—O,

V- Eg = p, where p(t,x) = Q/fs(taxv V)dV.

fs(0,x,v) = fo(x,v).




Characteristics

The solution of the Vlasov equation can be expressed by the
characteristics, solutions of the ODEs

dX

v

dt ’

dVv q
—=—(E+VxB
dt m( TV )’
+i.c.

Then, the solution of the Vlasov equation writes

flt,x,v) = fo(X(0,%x,v,t), V(0,x,v,1)).
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Parallelism in time
Initial-value problem

%‘t‘ = f(u) in [0, Tena], u(0) = uy.

Build N time slices [T}, T),+1] such that
0=Ty<Ty <+ <Tn =Tena. Denote At:Tn+1—Tn.

Then, replace (1) by

du,
dt

= f(u,) in [Ty, Thy1], un(Th) =U,, n=0,1,...,N—1,

where the initial values (Un)neqo,1,....n—1) are to be found.



Parallelism in time
Initial-value problem

%‘t‘ = f(u) in [0, Tena], u(0) = uy.

Build N time slices [T}, T),+1] such that
0=Ty<Ty <+ <Tn =Tena. Denote At:Tn+1—Tn.

Then, replace (1) by

du,
dt

= f(up) in [Tn,Tpi], un(Tp) =U,, n=0,1,...,N—1,

where the initial values (Un)neqo,1,....n—1) are to be found.

Propagator notation: u,(7,1) = P(U,), where P(-) = P(, At).
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The problem

(Un)n are such that P(Uo) = U17 P(Ul) = UQ, .. .,P(UN_Q) = UN—1~

Reformulation: Denoting U = (Uy, Uy, ...,Un_1) we have to solve
find U such that F(U) =0,

where
U() — Up
Uy, — P(Up)
FU):= .

Un-1—P(Un-2)
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Solving with Newton method
For a given UY € RY, iterate
Ukt — Uk — [F/(U")] T FUP), for k=0,1,...,

where F’ is the Jacobian of F and

k+1 _
{UO = U,

Ukt = P(UF) + P/(UF) (UK —UF), forn=0,1,...,N - 1.



Computing the terms P'(UF) can be too expensive.

Approximations:
o Use P(UE) — P(UE) ~ PIUE) (UE — UE)

=> UFtl = P(UY).

e Use P(UFY) — P(UF) =~ G(UF) — G(UF), where G is a cheap
approximation.
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Computing the terms P'(UF) can be too expensive.

Approximations:
°* Use P(UF) — P(UY) = P'(UF) (UK — UE)

=> UFt! = P(U").

e Use P(UKY) — P(UF) =~ G(UF) — G(UF), where G is a cheap
approximation.

28
Parareal iteration:
U(])C—’_l = Uo,
Ukt = P(UF) + GUET) - GUF), forn=0,1,...,N -1,

where F(UF) is an accurate approximation of u,, (7, 11) and G(UF) is a
less accurate but cheaper approximation of u, (7},+1).

F'=the fine solver G=the coarse solver.



Parareal algorithm
® First step
U0, = G(Typ41,T,,,U) forn=0,1,...,N—2, UJ=ny.
° Fix k€ {0,1,...}. Assume (UF),c(01,...n—1} known. U5 H! = u,.
@ Compute in parallel F(Ty11,T,, UF).
® Forn=0,1,...,N —1do
Ukt = G(Tos1, Tn, U 4 F(Tosr, Tn, UY) — G(Tgr, T, Up).

Ty T3 T

from M. Gander's paper.
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Efficiency

Finite step convergence
The outcome of the parareal algorithm verifies

UF = F(T,,0,u0) when k > n.

However

Goal: Speed up the simulation if
® Cost(G) < Cost(F)

® achieve convergence for

K < N.



Theoretic Speedup

Computing (F(Tn+1,Tn,Ur’f))n:m_“,N_l in parallel over N processors.

The total time of the parareal run is
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N
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Theoretic Speedup
Computing (F(Tn+1,TmUrlf))nzo,...,N—l in parallel over N processors.

The total time of the parareal run is

Tﬁne
N

Tpar = Linit + K( + Tcoarse>7

where K is the number of parareal iterations leading to the target error.

_ Tﬁne _ 1
Tpar

Thus S(N) e

( )
WIe|ejﬁlle i'jixjcoalse Njc

Ty is the computation time of the fine solver.

AIM: KT./Ty < 1and K < N.
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e (G = different approximation scheme than Fs, with lower accuracy



The strategy

Question: What choice for the coarse solver G?

Standard choices:
® (G = approximation scheme of F' solver but with a larger time step
e (G = different approximation scheme than Fs, with lower accuracy

Nice examples in M. J. Gander and E. Hairer. Nonlinear convergence
analysis for the parareal algorithm. Lecture Notes in Computational
Science and Engineering, 2008.

® Brusselator eq. (speedup of 8 for N = 32)
e Arenstorf orbit (speedup of 62 for N = 250)
® |orenz eq. (speedup of 18 for N = 180)

Choice: 4th order Runge-Kutta method for both solvers, with At > §t.



Charged particle example
For ¢ = 0.01 solve

dx

T v, x(0) = xq,
dv 1

prie Ev x e1 + E(x), v(0) = vy,

where v x e; = (0,v3, —vg)T. Take E(x) = (—1,0,0)7.
Initial condition xo = vo = (1,1, l)T and Tong = 2.

08

“oos 0975
0985 098 U
0.995 1 0995 099

101 1005 7



Using standard Parareal

Take N = 20 time windows for [0, Tepd]-

Fine solver F'is 2nd order Runge-Kutta with §t = Tepq/1800.
Coarse solver G is 2nd order Runge-Kutta with At = T¢,4/600.

=> TC/Tf = 1/3.
This strategy needs K = 8 parareal iterations for a sufficiently small error.

Speedup is S ~ 0.3.
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Parareal iteration 8
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Parareal teration 6 Parareal iteration 8

“The soluton

The soluion

—#— Parareal solution —— Parareal solution

T <

N z X —
0975 099 0.98 975 7 0.995

If we lower the accuracy of G to At = Tepg/400
=> T} /T. = 4.5

we need more parareal iterations for the similar target error, K = 15.

Speedup is then S = 0.23.
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Error estimation

Recall u is the solution to (1). Assume F is exact.

W(Ty41) — Ut} = Fu(Ty,) — FUE — GUF + GUE
= Fu(T},)-Gu(T,) — FU* — GU*! + GUF+Gu(T;,)
= (F - G)(u(T,) — U}) + Gu(T,) — GU}*

Assumptions:
® truncation error of G : ||(F — G)z| < C1(At)PH|z|]
® Lipschitz property for G : |Gz — Gyl|| < (1 + C2At) ||z — y|

Then
[a(Tni1) = Ut < Cr AP u(T) — Un ||+ 1+ CoAt) [u(T,) — UL,



Error estimation

Theorem
Under these assumptions

(Cr(AtPEr

k
TES R § (G

J=0

la(T5) = Uyl <

(OT)*™ o) (pgypls+1)
= (k1) '

Details in M. J. Gander and E. Hairer. Nonlinear convergence analysis for the
parareal algorithm. Domain Decomposition Methods in Science and
Engineering XVII, vol. 60 of Lecture Notes in Computational Science and
Engineering, pag. 45-56, 2008.



Error estimation

Theorem
Under these assumptions

(Cr(AtPEr

k
G Cean I3

J=0

la(T5) = Uyl <

(ClTn)k+1 Co(Tr,—Tr+1) p(k+1)
- (k+ 1) ¢ (&1) '

Details in M. J. Gander and E. Hairer. Nonlinear convergence analysis for the
parareal algorithm. Domain Decomposition Methods in Science and
Engineering XVII, vol. 60 of Lecture Notes in Computational Science and
Engineering, pag. 45-56, 2008.



Outlook

" .. also the coarse integrator should have a certain accuracy. Otherwise
the convergence of the parareal iterations would be too slow, and the
time window, where the algorithm can be applied, would be rather small
preventing an efficient integration. "

from M. J. Gander, E. Hairer : Journal of Computational and Applied
Mathematics, Vol. 259, 2014.
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General problem

Solve d
= = F(tw) in 0. Tend], u(0) = o,
where the unknown is u = u(t), u: [0, Teng) — R™, where n € N;n > 2.

f is given and is Lipschitz continuous in u etc.

Stiff equation: highly oscillatory case. The solution evolves at several
(different) time scales.

£=0.01 —

X(t)

Temps
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no analytic solution = numerical solving of the ODE.

e explicit methods lack stability ~~ tiny time steps.

® implicit methods: don't need small time steps but still not accurate.
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General problem — Motivation

no analytic solution = numerical solving of the ODE.

e explicit methods lack stability ~~ tiny time steps.

® implicit methods: don't need small time steps but still not accurate.

Goals:

@ High accuracy < the method needs to resolve all the oscillations
in the solution

@® Long simulations (millions of time steps) ~» high computational
cost ~~» numerical inefficiency.

AIM: time schemes for solving accurately and efficiently stiff ODEs.




Specific problem

Solve for0 < e < 1

du 1
T ngH'N(u)v u(0) = u,

where L is a skew-Hermitian matrix with imaginary eigenvalues of large
modulus and N is a nonlinear operator.

AIM: Solve the equation with a method which is not constraint by ¢.
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where L is a skew-Hermitian matrix with imaginary eigenvalues of large
modulus and N is a nonlinear operator.
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Possible strategies:

@ Infer a limit model when ¢ — 0, that can accurately be solved with
large time steps.

® Use a parallel in time method.



Specific problem

Solve for0 < e < 1

du 1 t
i gLu—i— N(E7 u)7 u(0) = uy, (3)

where L is a skew-Hermitian matrix with imaginary eigenvalues of large
modulus and N is a nonlinear operator.

AIM: Solve the equation with a method which is not constraint by e.

Possible strategies:

@ Infer a limit model when ¢ — 0, that can accurately be solved with
large time steps.

® Use parallel in time method.
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electromagnetic fields.

Consider in (3) u = (x,v).



Application - Newton equations

Study the dynamics of charged particles (ions and free electrons) in
electromagnetic fields.

Consider in (3) u = (x,v).

Equations of motion for x(t)=position, v(t)=velocity

Solve for 0 < e < 1

dx

T v, x(0) = xo,
dv t
E—gVXB‘i’E(;,X), V(O)—VO,

where
® (X0, Vo) € RS is an initial condition at the initial time ¢ = 0.
® B € R? is a given constant magnetic field, B = e; = (1,0,0)7.
e E:RT x R® = R3 is the electric field, 27-periodic in 7.



Dynamics of a particle

A charged particle (¢ = 1) with velocity v
in an electric field E and a magnetic field B undergoes the Lorentz force

[F=g¢(E+vxB)|

\(1
0O X

The electric force accelerates (or slows

down) the charge. The magnetic force deflects the
charge.



Application - I
. ) d [x 1 (x X
Previous system is of the form (3), — = gL vt N v

by taking
0 0 0
L:(S?’ Oﬁ) where [=[0 0 1
3 0 -1 0

and
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Toward averaged model |

Consider only the rapid term equation

du 1 .
T gLu in [0, Tend], u(0) = uy,

to which the solution is
u(t) = ey,

where for any matrix A, we have e® =372 L AF.



Toward averaged model |

Consider only the rapid term equation

du 1 .
T gLu in [0, Tend], u(0) = uy,

to which the solution is
u(t) = ey,

where for any matrix A, we have e® =372 L AF.

Remark: In the example above, we can compute

I 0 1 0 0
etL:(O?;, R(i)) where R(t) = 8 cost sint | .

—sint cost



Toward averaged model |l

More generally, assuming that e'” is easy to compute, we use the change
of variable

w(t) == e *lu(t)
and thus, w is the solution to

dw
dt



Toward averaged model |l

More generally, assuming that e'” is easy to compute, we use the change
of variable

w(t) == e *lu(t)
and thus, w is the solution to

dw
dt

Remark: no singular term but time oscillations are still present.



Toward averaged model Il

. dw t
The equation is of the form i N(;w).



Toward averaged model Il
Lo dw t
The equation is of the form i N(;w).

Theorem (Sanders-Verhulst, 1985 — periodic case)
If V' : Rt x R® — R” satisfies
e \-Lipschitz continuous in w,
e continuous over [0, Tena] X D where D C R™ bounded,
e 7-periodic in ¢,
e sup sup |N(¢t,w)| < oo is e-independent.
weD te0,1]

Then we consider the averaged model
dw 1 ["
= 5/0 N(s,W)ds,  w(0) = o,

which solution is assumed to be bounded over [0, 1].

Then, we have for some constant K > 0

|w(t) — W(t)| < Ken e Wt el0,1].



The non-periodic case

Theorem

If V' : Rt x R® — R" satisfies
e \-Lipschitz continuous in w,
e continuous over [0, Teng] X D where D C R™ bounded,

e sup sup |N (¢, w)| < oo is e-independent.
weD te0,1]

Then we consider the local averaged model

dw 1 [" t _ _
E = 5/0 N(g + S,W)dS, W(O) = Ug.
which solution is assumed to be bounded over [0, 1].

Then, we have for some constant K > 0

lw(t) — W(t)] < Ken e Vvt e[0,1].



Charged particles - Example 1

In the canonical frame of R® denote x = (z1, 2, x3)".

For e = 0.05 solve

dix =V, X(O) = Xo,
dt
(4)
d—V*}vxe + E(x) v(0) =v
dt ¢ ! ’ -

where v x e; = (0,vs, —v2)7.

15 |

Take E(x) = (~1,0,0)" | s |

X - strong B
Then (4) has an explicit 15
solution.

x0 =vo = (1,1,1)7 and
Teona = 20.




Charged particles - Example 2

SECHBS(} E =

15

Take E(x) = (—x1,0, —x3)" ost

X - strong B

-0.5

Then (4) has an explicit e
solution.




Charged particles - Example 3

For € = 0.05 solve

i_)tc =v, x(0) = xo,
dv 1 t ()
TV re +E(E)’ v(0) = vo.

Take E(7) = (0,sin7, cos T)T . .

15
X - strong B
10

Then (5) has an explicit
solution.

xo = vo = (1,1,1)T and
Tona = 20,




Examples - Averaged model
Denoting W = (X°, V?), recall that for the i.c. W(0) = uy

dw 1 [7
_— - d
a /0 N(s,W)ds
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The theorem can be applied

Result: The Lipschitz condition is satisfied for the 3 examples.

We have the error estimation

lw(t) — W(t)| < Ken e Vte[0,1].

However, the averaged model is not accurate with respect to the stiff
ODE. (It captures only the motion along the e; axis.)



Conclusion

. t .
® In long times <~ 7) averaged models are not accurate and fail to
€

approximate the original equation.

® The Parareal strategy allows to correct this error efficiently (in a few
iterations).



Charged particle - Example 1

Take N = 20 time windows for [0, Teng] and Teng = 2.

Fine solver F'is 2nd order Runge-Kutta with §t = Tep,q/1800.

Coarse solver G is 2nd order Runge-Kutta scheme
for the averaged model
with At = Tona/N.

=> Tf/TC = 90.

K = 3 parareal iterations are enough for the target accuracy.

Speedup is S ~ 5.



Parareal iteration 1

Parareal iteration 0
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Outlook

Parareal method with the strategy of using averaged model for the
coarse solver is efficient in computational cost.

need for finding the reduced model (not always an easy task).
derive estimate for the error of the reduced model.

averaged model is not always sufficiently accurate. First-order
averaged models are to be derived.



END part |

Thank you!



