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Scheduling independent tasks

Multiprocessor scheduling problem P ||Cmax

▶ Input instance: n tasks with duration pi , m machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi



Scheduling independent tasks

Multiprocessor scheduling problem P ||Cmax

▶ Input instance: n tasks with duration pi , m machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi

Worst-case Approximation Algorithm

▶ Algorithm which never gives a very bad solution
▶ Algorithm A is a ρ-approximation if:

1. It solves the problem: ∀ instance I ,A(I ) is a valid solution

2. With an approximation guarantee: ∀ instance I ,∀ solution s, cost(A(I )) ≤ ρ · cost(s)



List Scheduling

List Scheduling Algorithm (Graham, 1956)

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When a machine k is available
start the first task in L on machine k;

end



List is an approximation

Theorem

List is a 2-approximation algorithm

Lower bounds

For any instance I with m machines and task durations pi ,

▶ C ∗
max(I ) ≥ maxi pi – “unbounded resources” case

▶ C ∗
max(I ) ≥ (1/m)

∑
i pi – “area bound”



Approximation proof

Theorem

List is a 2-approximation algorithm

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy

▶ This means m · sj ≤
∑

i pi
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi +maxi pi

▶ Hence, Cmax(O) ≤ 2C ∗
max(I )



Non-approximation proof

Theorem

For any ρ < 2, List is not a ρ-approximation algorithm

For any m, we can build an instance I with m machines so that
CList
max(I ) = (2− 1

m )C ∗
max(I )

Proof:
▶ Let I be an instance with m(m − 1) tasks of duration 1, et 1 task of duration m.
▶ C ∗

max(I ) = m
▶ Si la tâche de durée m est à la fin de L, CList

max = (m − 1) +m
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max = (m − 1) +m



Non-approximation proof

Theorem

For any ρ < 2, List is not a ρ-approximation algorithm

For any m, we can build an instance I with m machines so that
CList
max(I ) = (2− 1

m )C ∗
max(I )

Proof:
▶ Let I be an instance with m(m − 1) tasks of duration 1, et 1 task of duration m.
▶ C ∗

max(I ) = m
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More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi

− pj/m

+ pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi )(1− 1
m )

▶ Hence, Cmax(O) ≤ 2

(2− 1
m )

C ∗
max(I )
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Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized



Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ
▶ α: specifies the architecture

▶ 1 for single machine
▶ P for parallel (identical) machines, P2 for exactly 2 processors
▶ Q for parallel machines with different speeds (related)
▶ R when task i on machine j has arbitrary duration pij (unrelated)
▶ and other more specific cases (flow-shop, open-shop, ...) related to production

environments

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized



Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture
▶ β: describes the tasks

▶ for “default” behavior (non-preemptive, fixed durations, ...)
▶ prec for precedence constraints
▶ pmtn for tasks that can be paused and resumed
▶ pj = 1 for tasks with Unitary Execution Time
▶ dj for tasks with due dates, rj for release times
▶ sizej for tasks which require several machines

▶ γ: describes the objective function to be optimized



Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks
▶ γ: describes the objective function to be optimized

▶ Makespan Cmax

▶ Sum of completion times
∑

Ci , weighted version
∑

wiCi

▶ Lateness Li = Ci − di , tardiness Ti = max(Ci − di , 0), earliness Ei = max(0, dj − Cj)
▶ Throughput Uj = 1 if Cj ≤ dj , 0 otherwise



Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized

Examples

▶ 1||
∑

wjCj : minimize sum of weighted completion times on one machine

▶ 1|prec |Lmax: minimize maximum lateness with precedence constraints

▶ P||Cmax: multiprocessor scheduling

▶ Q2|rj |
∑

Ci : 2 related processors, minimize average completion time with release
dates
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Scheduling with precedence constraints

Multiprocessor scheduling problem with precedence P |prec|Cmax

▶ Input instance: n tasks with duration pi , with a precedence relationship i ⇝ j
m identical machines

▶ Solution: a schedule where each task has a starting time si , so that
▶ each machine runs only one job at a time
▶ Ci ≤ sj for any precedence constraint i ⇝ j

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi



List Scheduling with precedence constraints

List Scheduling

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When a machine k is available
start the first ready task in L on machine k ;

end

A task j is ready if all its predecessors are completed



Approximation proof with precedence constraints

Lower bounds

For any instance I with m machines and task durations pi ,

▶ C ∗
max(I ) ≥ (1/m)

∑
i pi – same “area bound” as before

▶ C ∗
max(I ) ≥ maxP path in ⇝

∑
i∈P pi – “unbounded resources” case

The second bound is called the critical path CP.



Approximation proof with precedence constraints

Theorem

List is a 2-approximation algorithm for P|prec|Cmax

Proof:
▶ Let I be an instance, and O the schedule computed by List.
▶ Let j0 be the task that finishes last in O. Consider j1, the predecessor of j0 that

finishes last in O. Continue: jk+1 is the predecessor of jk that finishes last
▶ From time Cj1 to time sj0 , all machines are busy
▶ Partition the time into busy intervals (from Cjk+1

to sjk ) and critical intervals
(from sjk to Cjk )

▶ The total length ℓB of busy intervals satisfy m · ℓB ≤
∑

i pi
▶ jK ⇝ jK−1 ⇝ · · ·⇝ j1 ⇝ j0 is a path in the precedence graph
▶ The total length ℓC of critical intervals satisfy ℓC ≤ CP
▶ Cmax(O) = ℓB + ℓC ≤ (1/m)

∑
i pi + CP

▶ Hence, Cmax(O) ≤ 2C ∗
max(I )



Approximation proof

Theorem

List is a 2-approximation algorithm for P|prec|Cmax



List Scheduling with parallel tasks

Parallel tasks scheduling problem P |sizej |Cmax

▶ Input instance: n tasks with duration pi requiring qi machines
m identical machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi



List Scheduling with parallel tasks

List Scheduling

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When k ≥ 1 machines are available
start the first task in L with qi ≤ k ;

end



Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I ) ≤ 2max(pmax,

1
m

∑
i pi )

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt > m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m
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Comments on the previous results

▶ More general result in [Garey,Graham 1975]: List is an s + 1-approximation
algorithm with s different resources.

▶ Can also be refined to 2− 1
m with more careful proof

▶ Previously C ≤ area + CP, this one is weaker: C ≤ 2 ·max(area,CP)

▶ This is related to the Work Stealing results



Work Stealing

▶ Work Stealing was made popular with the Cilk runtime

▶ Each thread can spawn new threads, and wait for completion of spawned threads

▶ Each worker has a queue of threads, process them in order

▶ Idle workers can steal available threads from the queue of other workers

Performance guarantee

With the right implementation, Work Stealing on a program with area T1 and critical
path T∞ can achieve a running time of

T1

P
+O(T∞)



Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list L, in an
arbitrary order;
while L is non empty do

Pick the first task j in L;
Schedule j at the earliest possible
time sj ;

end



Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list L, in an
arbitrary order;
while L is non empty do

Pick the first task j in L;
Schedule j at the earliest possible
time sj ;

end
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Heterogeneous Earliest Finish Time – R |prec, comm|Cmax

HEFT is a very well known heuristic for this problem. It has two phases:

▶ Compute a ranking of the tasks (priorities):

ri = pi + max
k | i⇝k

(ci ,k + rk)

▶ Consider tasks by highest priority first

▶ Assign each task to the machine where it finishes earliest



Heterogeneous Earliest Finish Time – R |prec, comm|Cmax

HEFT is not an approximation algorithm, even for R ||Cmax [Bleuse, Monna 2015]

Instance with m CPUs and 1 GPU:

Type Number pCPU pGPU rank

A m ϵ m + 1 (ϵm +m + 1)/(m + 1)
Bi , i = 0 . . .m − 1 1 1− i/m 1− i/m 1− i/m
Ci , i = 0 . . .m − 1 m 1− i/m 1/m2 (m − i + 1/m2)/(m + 1)

▶ rA > rB0 > rC0 > rB1 > rC1 > · · ·
▶ CHEFT

max = m
2 + 3

2 −
1
m , whereas C ∗

max = 1
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Scheduling on heterogeneous machines

Scheduling on unrelated machines R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: a schedule where each task has a starting time si on a machine σi , so

that each machine runs only one job at a time

▶ Objective: minimize makespan Cmax

Remarks

▶ How to generalize the notion of “area bound”?

▶ More relevant to view it as an assignment problem
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▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: a schedule where each task has a starting time si on a machine σi , so

that each machine runs only one job at a time

▶ Objective: minimize makespan Cmax

Remarks

▶ How to generalize the notion of “area bound”?

▶ More relevant to view it as an assignment problem



Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)

Linear Programming Formulation

(relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ {0, 1}
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Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation

(relaxed)

xi ,j = 1 if task i assigned to machine j , 0 otherwise

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ {0, 1}
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Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation (relaxed)

xi ,j = fraction of task i assigned to machine j
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∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ [0, 1]

The optimal solution of the
relaxed problem is a lower bound

⇒ generalization of “area bound”



Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax
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But this lower bound may not be
very good
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Scheduling on heterogeneous machines

Linear Programming Formulation for fixed T (relaxed)

Denote IT = {(i , j) | pi ,j ≤ T}. Then (LPT ) is:

∀ 1 ≤ i ≤ n,
∑

j | (i ,j)∈IT xi ,j ≥ 1

∀ 1 ≤ j ≤ m,
∑

i | (i ,j)∈IT xi ,jpi ,j ≤ T

∀(i , j) ∈ IT , xi ,j ∈ {0, 1}

Clearly : T ≥ C ∗
max ⇒ (LPT ) is feasible

We will design an algorithm S so that:

(x) solution of (LPT )⇒ Cmax(S(x)) ≤ 2T
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(relaxed)
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We will design an algorithm S so that:

(x) solution of (LPT )⇒ Cmax(S(x)) ≤ 2T



Scheduling on heterogeneous machines: approximation

T ≥ C ∗
max ⇒ (LPT ) is feasible (x) solution of (LPT )⇒ Cmax(S(x)) ≤ 2T

Find C ∗
max with dichotomic search

L← 1,U ← minj
∑

i pi ,j ;
while U − L > 1 do

C ← (L+ U)/2;
if (LPC ) feasible then U ← C ;
else L← C ;

end
(x∗) solution of (LPU);
return S(x∗);

This is a polynomial-time algorithm:

▶ log(minj
∑

i pi ,j) iterations

▶ One iteration is polynomial

▶ S(x∗) is computed in polynomial time



Scheduling on heterogeneous machines: approximation

T ≥ C ∗
max ⇒ (LPT ) is feasible (x) solution of (LPT )⇒ Cmax(S(x)) ≤ 2T

Find C ∗
max with dichotomic search

L← 1,U ← minj
∑

i pi ,j ;
while U − L > 1 do

C ← (L+ U)/2;
if (LPC ) feasible then U ← C ;
else L← C ;

end
(x∗) solution of (LPU);
return S(x∗);

It is a 2-approximation algorithm:

▶ U is the smallest value so that (LPU)
is feasible: (LPU−1) is not feasible

▶ So U − 1 < C ∗
max: U ≤ C ∗

max

▶ Hence Cmax(S(x
∗)) ≤ 2C ∗

max



Scheduling on heterogeneous machines: how to build S(x) ?

Linear Formulation (LPT )

∀ 1 ≤ i ≤ n,
∑

j | (i ,j)∈IT xi ,j ≥ 1

∀ 1 ≤ j ≤ m,
∑

i | (i ,j)∈IT xi ,jpi ,j ≤ T

∀(i , j) ∈ IT , xi ,j ≥ 0

▶ (LPT ) has v = card(IT ) variables and
n +m + v constraints

▶ There exists an optimal solution x∗

with v saturated constraints

▶ Which means in x∗, at most n +m
variables xi ,j are non-zero

▶ Consider graph G = (V ,E ) with V = {machines} ∪ {tâches}, and
E = {(i , j)|xi ,j > 0}

▶ This graph has n +m vertices, ≤ n +m edges: at most one cycle



Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle
Objective: each machine gets its “fully assigned” tasks, plus at most one extra task
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Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks

2. Find a matching in the remaining graph

Let i be a task of degree 1 in G . There is only one machine j with xi ,j > 0, so xi ,j = 1.

We build S
(1)
j = {i | xi ,j = 1}. Then

∀j ,
∑
i∈S(1)

j

pi ,j ≤ T

Remove these tasks from G , and go to step 2
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Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks ∀j ,
∑

i∈S(1)
j

pi ,j ≤ T

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do

S
(2)
j ← S

(1)
j ∪ {task i connected to j};

Remove i and j from G ;

end
Let M be a matching of G ;

∀(i , j) ∈ M, S
(2)
j ← S

(1)
j ∪ {i};

▶ At the end, no machine remains with degree 1: G is empty or a cycle
▶ At most one task i added to each machine j , with (i , j) ∈ IT
▶ So ∀j ,

∑
i∈S(2)

j

pi ,j ≤ 2T
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Scheduling with two types of resources – Pm,Pk ||Cmax

▶ Special case of R||Cmax

▶ Meaningful in practice for typical hardware: m CPUs, k GPUs

▶ Design specific efficient approximation algorithms

Notation

For task i , p+i is the CPU time, p−i is the GPU time.

Acceleration ratio ρi =
p+i
p−i



Two types of resources: area bound

Special case of area bound

x+i = 1 if task i is assigned to CPU

minimize C s.t.∑
i x

+
i p+i ≤ m · C∑

i (1− x+i )p−i ≤ k · C
∀ i , x+i ∈ [0, 1]

▶ Optimal solution has a special structure: all tasks with x+i = 1 have lower
acceleration ratio than all tasks with x+i = 0

▶ Can be obtained greedily, by sorting tasks in increasing values of ρi
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HeteroPrio algorithm

HeteroPrio algorithm

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue

This is not an approximation algorithm, because it is List-like: never leave a resource
idle if there is an available task

In an instance with m = 1, k = 1, and two tasks with p+i = M and p−i = 1, HP
schedules one of them on CPU, even if M is very large.



HeteroPrio algorithm

HeteroPrio algorithm

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue

HP is a good approximation of the area bound idea, as long as all processors are busy:

Lemma

For any instance I , if all processors are busy up to time t, then

AreaBound(I ) ≥ t + AreaBound(I ′(t))

where I ′(t) is the sub-instance made of (partial) tasks not completed at time t.



HeteroPrio algorithm

Theorem: HP is a 2-approximation in the “high load” case

If ∀i ,max(p+i , p
−
i ) ≤ C ∗

max, then HP is a 2-approximation.

Proof:

▶ Denote by t0 the first time a processor is idle in the HP schedule

▶ By previous Lemma, t0 ≤ AreaBound(I )

▶ After time t0, each processor processes at most one task

▶ CHP
max ≤ t0 +maxi

(
max(p+i , p

−
i )

)
≤ 2 · C ∗

max



HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0
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HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0
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HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs) Approximation ratio Worst case ex.

(1,1) 1+
√
5

2 ≈ 1.62 1+
√
5

2

(m,1) 3+
√
5

2 ≈ 2.62 3+
√
5

2

(m,n) 2 +
√
2 ≈ 3.41 2 + 2√

3
≈ 3.15

Task CPU Time GPU Time accel ratio

X ϕ 1 ϕ

Y 1 1
ϕ ϕ

Where ϕ = 1+
√
5

2

X

Y

GPU

CPU

0 1
t
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DualHP algorithm: 3/2-approximation

Main idea

Given a guess λ on the optimal makespan:

▶ Build a schedule with makespan 3λ
2

▶ Or prove that λ is not feasible
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DualHP algorithm: 3/2-approximation

Main idea

Given a guess λ on the optimal makespan:

▶ Build a schedule with makespan 3λ
2

▶ Or prove that λ is not feasible

Solve a multi-dimensional knapsack (for example with Dynamic Programming):

Find xi ∈ {0, 1} s.t.∑
i ,p+i >λ/2 xi ≤ m∑
i xip

+
i ≤ mλ∑

i ,p−i >λ/2(1− xi ) ≤ k∑
i (1− xi )p

−
i ≤ kλ

Theorem

Any solution of this knapsack problem can
be arranged in the shelves as shown in the
previous image.



DualHP algorithm: extend to get lower approximation ratio



DualHP algorithm: extend to get lower approximation ratio

Find xi ∈ {0, 1} s.t.∑
i ,p+i >2λ/3

xi +
1

2

∑
i ,2λ/3≥p+i >λ/3

xi ≤ m

∑
i

xip
+
i ≤ mλ

∑
i ,p−i >2λ/3

(1− xi ) +
1

2

∑
i ,2λ/2≥p−i >λ/3

(1− xi ) ≤ k

∑
i

(1− xi )p
−
i ≤ kλ

This yields a 4
3 -approximation algorithm. With more shelves, one can obtain stronger

approximation ratios, but the complexity of the knapsack problem increases very
quickly
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HLP – Approximation for Pm,Pk |prec|Cmax

Linear Programming Lower Bound

Minimize C

subject to:
∑
i

p+i xi ≤ m · C∑
i

p−i (1− xi ) ≤ k · C

∀i ⇝ j , Ci + p+i xi + p−i (1− xi ) ≤ Cj

∀i , 0 ≤ Ci ≤ C

∀i , xi ∈ [0, 1]



HLP algorithm

HLP algorithm

▶ Solve Linear Programming lower bound, obtain solution (x)

▶ Round x to the nearest integer: x̃i = 0 iff xi < 0.5

▶ Schedule with List Scheduling, according to x̃

Lemma: cost of rounding

The rounded solution x̃ has cost at most twice the cost of x

p+i x̃i ≤ 2p+i xi p−i (1− x̃i ) ≤ 2p−i (1− xi )



HLP algorithm

Theorem

HLP is a 6-approximation algorithm

Sketch of proof:

▶ Divide the schedule in 3 types of intervals: I+ all CPUs busy, I− all GPUs busy,
ICP at least one idle of each type

▶ ICP is bounded by the critical path according to x̃

▶ I+ and I− are bounded by the average workloads

▶ CHLP
max ≤ ICP + I+ + I− ≤ 3 · cost(x̃) ≤ 6 · cost(x) ≤ 6 · C ∗

max
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Locality-focused: DARTS scheduler

Data-Aware Reactive Task Scheduling

Main idea: focus on placing data rather than
scheduling tasks

▶ Plan tasks in advance, with flexibility:
plannedTasks and taskBuffer

▶ When a resource is idle, select the data that
will unlock the largest number of tasks

▶ Add all unlocked tasks to plannedTasks

▶ When memory is full, evict data Least Used in
the Future



Locality-focused: DARTS scheduler



Beyond HeteroPrio: MultiPrio

Refined version of HeteroPrio

Additional features:

▶ Affinity score to evaluate how tasks are
adapted to resources

▶ Criticality score to evaluate how much
workload is released when the task completes

▶ Locality score to evaluate how much tasks can
reuse already present data



Beyond HeteroPrio: MultiPrio



More research going on

Ongoing scheduling research around StarPU

▶ Dynamic task and data partitioning thanks to hierarchical tasks
▶ Dynamic scheduler selection:

▶ HeteroPrio-like when parallelism is high,
▶ HEFT-like scheduling when critical path matters more,
▶ DARTS-like when memory is constrained
▶ ...

In conclusion

Scheduling is difficult, but fun! If you want to join, you’re welcome!
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