
Scheduling on heterogeneous machines

Lionel Eyraud-Dubois

New Trends in Computing Summer School
August 2024

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Scheduling independent tasks

Multiprocessor scheduling problem P ||Cmax

▶ Input instance: n tasks with duration pi , m machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi

Scheduling independent tasks

Multiprocessor scheduling problem P ||Cmax

▶ Input instance: n tasks with duration pi , m machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi

Worst-case Approximation Algorithm

▶ Algorithm which never gives a very bad solution
▶ Algorithm A is a ρ-approximation if:

1. It solves the problem: ∀ instance I ,A(I) is a valid solution

2. With an approximation guarantee: ∀ instance I ,∀ solution s, cost(A(I)) ≤ ρ · cost(s)

List Scheduling

List Scheduling Algorithm (Graham, 1956)

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When a machine k is available
start the first task in L on machine k;

end

List is an approximation

Theorem

List is a 2-approximation algorithm

Lower bounds

For any instance I with m machines and task durations pi ,

▶ C ∗
max(I) ≥ maxi pi – “unbounded resources” case

▶ C ∗
max(I) ≥ (1/m)

∑
i pi – “area bound”

Approximation proof

Theorem

List is a 2-approximation algorithm

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy

▶ This means m · sj ≤
∑

i pi
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi +maxi pi

▶ Hence, Cmax(O) ≤ 2C ∗
max(I)

Non-approximation proof

Theorem

For any ρ < 2, List is not a ρ-approximation algorithm

For any m, we can build an instance I with m machines so that
CList
max(I) = (2− 1

m)C ∗
max(I)

Proof:
▶ Let I be an instance with m(m − 1) tasks of duration 1, et 1 task of duration m.
▶ C ∗

max(I) = m
▶ Si la tâche de durée m est à la fin de L, CList

max = (m − 1) +m

Non-approximation proof

Theorem

For any ρ < 2, List is not a ρ-approximation algorithm

For any m, we can build an instance I with m machines so that
CList
max(I) = (2− 1

m)C ∗
max(I)

Proof:
▶ Let I be an instance with m(m − 1) tasks of duration 1, et 1 task of duration m.
▶ C ∗

max(I) = m
▶ Si la tâche de durée m est à la fin de L, CList

max = (m − 1) +m

Non-approximation proof

Theorem

For any ρ < 2, List is not a ρ-approximation algorithm

For any m, we can build an instance I with m machines so that
CList
max(I) = (2− 1

m)C ∗
max(I)

Proof:
▶ Let I be an instance with m(m − 1) tasks of duration 1, et 1 task of duration m.
▶ C ∗

max(I) = m
▶ Si la tâche de durée m est à la fin de L, CList

max = (m − 1) +m

More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi

− pj/m

+ pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi)(1− 1
m)

▶ Hence, Cmax(O) ≤ 2

(2− 1
m)

C ∗
max(I)

More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi − pj
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi

− pj/m

+ pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi)(1− 1
m)

▶ Hence, Cmax(O) ≤ 2

(2− 1
m)

C ∗
max(I)

More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi − pj
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi − pj/m + pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi)(1− 1
m)

▶ Hence, Cmax(O) ≤ 2

(2− 1
m)

C ∗
max(I)

More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi − pj
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi − pj/m + pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi)(1− 1
m)

▶ Hence, Cmax(O) ≤ 2

(2− 1
m)

C ∗
max(I)

More precise approximation proof

Theorem

List is a 2− 1
m -approximation algorithm on any instance with m machines

Proof:

▶ Let I be an instance, and O the schedule computed by List.

▶ Let j be the task that finishes last in O, sj its starting time, and Cj = Cmax(O) its
ending time.

▶ From time 0 to time sj , all machines are busy with tasks other than j

▶ This means m · sj ≤
∑

i pi − pj
▶ Cmax(O) = sj + pj ≤ (1/m)

∑
i pi − pj/m + pj

▶ Cmax(O) ≤ (1/m)
∑

i pi + (maxi pi)(1− 1
m)

▶ Hence, Cmax(O) ≤

2

(2− 1
m)C ∗

max(I)

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized

Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ
▶ α: specifies the architecture

▶ 1 for single machine
▶ P for parallel (identical) machines, P2 for exactly 2 processors
▶ Q for parallel machines with different speeds (related)
▶ R when task i on machine j has arbitrary duration pij (unrelated)
▶ and other more specific cases (flow-shop, open-shop, ...) related to production

environments

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized

Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture
▶ β: describes the tasks

▶ for “default” behavior (non-preemptive, fixed durations, ...)
▶ prec for precedence constraints
▶ pmtn for tasks that can be paused and resumed
▶ pj = 1 for tasks with Unitary Execution Time
▶ dj for tasks with due dates, rj for release times
▶ sizej for tasks which require several machines

▶ γ: describes the objective function to be optimized

Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks
▶ γ: describes the objective function to be optimized

▶ Makespan Cmax

▶ Sum of completion times
∑

Ci , weighted version
∑

wiCi

▶ Lateness Li = Ci − di , tardiness Ti = max(Ci − di , 0), earliness Ei = max(0, dj − Cj)
▶ Throughput Uj = 1 if Cj ≤ dj , 0 otherwise

Interlude: Graham three field notation for scheduling problems

Three field notation: α | β | γ

▶ α: specifies the architecture

▶ β: describes the tasks

▶ γ: describes the objective function to be optimized

Examples

▶ 1||
∑

wjCj : minimize sum of weighted completion times on one machine

▶ 1|prec |Lmax: minimize maximum lateness with precedence constraints

▶ P||Cmax: multiprocessor scheduling

▶ Q2|rj |
∑

Ci : 2 related processors, minimize average completion time with release
dates

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Scheduling with precedence constraints

Multiprocessor scheduling problem with precedence P |prec|Cmax

▶ Input instance: n tasks with duration pi , with a precedence relationship i ⇝ j
m identical machines

▶ Solution: a schedule where each task has a starting time si , so that
▶ each machine runs only one job at a time
▶ Ci ≤ sj for any precedence constraint i ⇝ j

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi

List Scheduling with precedence constraints

List Scheduling

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When a machine k is available
start the first ready task in L on machine k ;

end

A task j is ready if all its predecessors are completed

Approximation proof with precedence constraints

Lower bounds

For any instance I with m machines and task durations pi ,

▶ C ∗
max(I) ≥ (1/m)

∑
i pi – same “area bound” as before

▶ C ∗
max(I) ≥ maxP path in ⇝

∑
i∈P pi – “unbounded resources” case

The second bound is called the critical path CP.

Approximation proof with precedence constraints

Theorem

List is a 2-approximation algorithm for P|prec|Cmax

Proof:
▶ Let I be an instance, and O the schedule computed by List.
▶ Let j0 be the task that finishes last in O. Consider j1, the predecessor of j0 that

finishes last in O. Continue: jk+1 is the predecessor of jk that finishes last
▶ From time Cj1 to time sj0 , all machines are busy
▶ Partition the time into busy intervals (from Cjk+1

to sjk) and critical intervals
(from sjk to Cjk)

▶ The total length ℓB of busy intervals satisfy m · ℓB ≤
∑

i pi
▶ jK ⇝ jK−1 ⇝ · · ·⇝ j1 ⇝ j0 is a path in the precedence graph
▶ The total length ℓC of critical intervals satisfy ℓC ≤ CP
▶ Cmax(O) = ℓB + ℓC ≤ (1/m)

∑
i pi + CP

▶ Hence, Cmax(O) ≤ 2C ∗
max(I)

Approximation proof

Theorem

List is a 2-approximation algorithm for P|prec|Cmax

List Scheduling with parallel tasks

Parallel tasks scheduling problem P |sizej |Cmax

▶ Input instance: n tasks with duration pi requiring qi machines
m identical machines

▶ Solution: a schedule where each task has a starting time si , so that each machine
runs only one job at a time

▶ Objective: minimize the makespan Cmax = maxi Ci = maxi si + pi

List Scheduling with parallel tasks

List Scheduling

Organize tasks into a list L, in an arbitrary order;
while L is non empty do

When k ≥ 1 machines are available
start the first task in L with qi ≤ k ;

end

Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I) ≤ 2max(pmax,

1
m

∑
i pi)

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt > m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m

Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I) ≤ 2max(pmax,

1
m

∑
i pi)

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt > m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m

Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I) ≤ 2max(pmax,

1
m

∑
i pi)

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt > m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m

Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I) ≤ 2max(pmax,

1
m

∑
i pi)

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt︸ ︷︷ ︸∑
i pi

> m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m

Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej |Cmax. More precisely:
CList
max(I) ≤ 2max(pmax,

1
m

∑
i pi)

Proof:

▶ Let I be an instance, and O the schedule computed by List. Set C = Cmax(O).
▶ Denote with r(t) the number of machines busy at time t in O
▶ ∀t, t ′ < C with t ′ ≥ t + pmax, r(t) + r(t ′) > m

▶ Assume C > 2pmax. Then pmax <
C
2 , so that ∀t < C/2, r(t) + r(t + C/2) > m

▶ Integrate:

∫ C
2

0
r(t)dt +

∫ C

C
2

r(t)dt︸ ︷︷ ︸∑
i pi

> m · C
2

▶ Conclusion:
∑

i pi >
mC
2 , so C < 2 ·

∑
i pi
m

Comments on the previous results

▶ More general result in [Garey,Graham 1975]: List is an s + 1-approximation
algorithm with s different resources.

▶ Can also be refined to 2− 1
m with more careful proof

▶ Previously C ≤ area + CP, this one is weaker: C ≤ 2 ·max(area,CP)

▶ This is related to the Work Stealing results

Work Stealing

▶ Work Stealing was made popular with the Cilk runtime

▶ Each thread can spawn new threads, and wait for completion of spawned threads

▶ Each worker has a queue of threads, process them in order

▶ Idle workers can steal available threads from the queue of other workers

Performance guarantee

With the right implementation, Work Stealing on a program with area T1 and critical
path T∞ can achieve a running time of

T1

P
+O(T∞)

Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list L, in an
arbitrary order;
while L is non empty do

Pick the first task j in L;
Schedule j at the earliest possible
time sj ;

end

Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list L, in an
arbitrary order;
while L is non empty do

Pick the first task j in L;
Schedule j at the earliest possible
time sj ;

end

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Heterogeneous Earliest Finish Time – R |prec, comm|Cmax

HEFT is a very well known heuristic for this problem. It has two phases:

▶ Compute a ranking of the tasks (priorities):

ri = pi + max
k | i⇝k

(ci ,k + rk)

▶ Consider tasks by highest priority first

▶ Assign each task to the machine where it finishes earliest

Heterogeneous Earliest Finish Time – R |prec, comm|Cmax

HEFT is not an approximation algorithm, even for R ||Cmax [Bleuse, Monna 2015]

Instance with m CPUs and 1 GPU:

Type Number pCPU pGPU rank

A m ϵ m + 1 (ϵm +m + 1)/(m + 1)
Bi , i = 0 . . .m − 1 1 1− i/m 1− i/m 1− i/m
Ci , i = 0 . . .m − 1 m 1− i/m 1/m2 (m − i + 1/m2)/(m + 1)

▶ rA > rB0 > rC0 > rB1 > rC1 > · · ·
▶ CHEFT

max = m
2 + 3

2 −
1
m , whereas C ∗

max = 1

Heterogeneous Earliest Finish Time – R |prec, comm|Cmax

HEFT is not an approximation algorithm, even for R ||Cmax [Bleuse, Monna 2015]

Instance with m CPUs and 1 GPU:

Type Number pCPU pGPU rank

A m ϵ m + 1 (ϵm +m + 1)/(m + 1)
Bi , i = 0 . . .m − 1 1 1− i/m 1− i/m 1− i/m
Ci , i = 0 . . .m − 1 m 1− i/m 1/m2 (m − i + 1/m2)/(m + 1)

▶ rA > rB0 > rC0 > rB1 > rC1 > · · ·
▶ CHEFT

max = m
2 + 3

2 −
1
m , whereas C ∗

max = 1

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Scheduling on heterogeneous machines

Scheduling on unrelated machines R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: a schedule where each task has a starting time si on a machine σi , so

that each machine runs only one job at a time

▶ Objective: minimize makespan Cmax

Remarks

▶ How to generalize the notion of “area bound”?

▶ More relevant to view it as an assignment problem

Scheduling on heterogeneous machines

Scheduling on unrelated machines R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: a schedule where each task has a starting time si on a machine σi , so

that each machine runs only one job at a time

▶ Objective: minimize makespan Cmax

Remarks

▶ How to generalize the notion of “area bound”?

▶ More relevant to view it as an assignment problem

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)

Linear Programming Formulation

(relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ {0, 1}

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation

(relaxed)

xi ,j = 1 if task i assigned to machine j , 0 otherwise

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ {0, 1}

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation (relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ [0, 1]

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation (relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ [0, 1]

The optimal solution of the
relaxed problem is a lower bound

⇒ generalization of “area bound”

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation (relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ [0, 1]

But this lower bound may not be
very good

Scheduling on heterogeneous machines

Scheduling on unrelated machines – assignment version R ||Cmax

▶ Input: n tasks, m machines, processing times pi ,j
▶ Solution: for each machine j , a set Sj of tasks assigned to machine j

▶ Objective: minimize the highest load, Cmax = maxmj=1

(∑
i∈Sj pi ,j

)
Linear Programming Formulation (relaxed)

xi ,j = fraction of task i assigned to machine j

minimize C s.t.

∀ 1 ≤ i ≤ n,
∑m

j=1 xi ,j = 1

∀ 1 ≤ j ≤ m,
∑n

i=1 xi ,jpi ,j ≤ C

∀ i , j , xi ,j ∈ [0, 1]

But this lower bound may not be
very good

Scheduling on heterogeneous machines

Linear Programming Formulation for fixed T (relaxed)

Denote IT = {(i , j) | pi ,j ≤ T}. Then (LPT) is:

∀ 1 ≤ i ≤ n,
∑

j | (i ,j)∈IT xi ,j ≥ 1

∀ 1 ≤ j ≤ m,
∑

i | (i ,j)∈IT xi ,jpi ,j ≤ T

∀(i , j) ∈ IT , xi ,j ∈ {0, 1}

Clearly : T ≥ C ∗
max ⇒ (LPT) is feasible

We will design an algorithm S so that:

(x) solution of (LPT)⇒ Cmax(S(x)) ≤ 2T

Scheduling on heterogeneous machines

Linear Programming Formulation for fixed T

(relaxed)

Denote IT = {(i , j) | pi ,j ≤ T}. Then (LPT) is:

∀ 1 ≤ i ≤ n,
∑

j | (i ,j)∈IT xi ,j ≥ 1

∀ 1 ≤ j ≤ m,
∑

i | (i ,j)∈IT xi ,jpi ,j ≤ T

∀(i , j) ∈ IT , xi ,j ≥ 0

Clearly : T ≥ C ∗
max ⇒ (LPT) is feasible

We will design an algorithm S so that:

(x) solution of (LPT)⇒ Cmax(S(x)) ≤ 2T

Scheduling on heterogeneous machines: approximation

T ≥ C ∗
max ⇒ (LPT) is feasible (x) solution of (LPT)⇒ Cmax(S(x)) ≤ 2T

Find C ∗
max with dichotomic search

L← 1,U ← minj
∑

i pi ,j ;
while U − L > 1 do

C ← (L+ U)/2;
if (LPC) feasible then U ← C ;
else L← C ;

end
(x∗) solution of (LPU);
return S(x∗);

This is a polynomial-time algorithm:

▶ log(minj
∑

i pi ,j) iterations

▶ One iteration is polynomial

▶ S(x∗) is computed in polynomial time

Scheduling on heterogeneous machines: approximation

T ≥ C ∗
max ⇒ (LPT) is feasible (x) solution of (LPT)⇒ Cmax(S(x)) ≤ 2T

Find C ∗
max with dichotomic search

L← 1,U ← minj
∑

i pi ,j ;
while U − L > 1 do

C ← (L+ U)/2;
if (LPC) feasible then U ← C ;
else L← C ;

end
(x∗) solution of (LPU);
return S(x∗);

It is a 2-approximation algorithm:

▶ U is the smallest value so that (LPU)
is feasible: (LPU−1) is not feasible

▶ So U − 1 < C ∗
max: U ≤ C ∗

max

▶ Hence Cmax(S(x
∗)) ≤ 2C ∗

max

Scheduling on heterogeneous machines: how to build S(x) ?

Linear Formulation (LPT)

∀ 1 ≤ i ≤ n,
∑

j | (i ,j)∈IT xi ,j ≥ 1

∀ 1 ≤ j ≤ m,
∑

i | (i ,j)∈IT xi ,jpi ,j ≤ T

∀(i , j) ∈ IT , xi ,j ≥ 0

▶ (LPT) has v = card(IT) variables and
n +m + v constraints

▶ There exists an optimal solution x∗

with v saturated constraints

▶ Which means in x∗, at most n +m
variables xi ,j are non-zero

▶ Consider graph G = (V ,E) with V = {machines} ∪ {tâches}, and
E = {(i , j)|xi ,j > 0}

▶ This graph has n +m vertices, ≤ n +m edges: at most one cycle

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle
Objective: each machine gets its “fully assigned” tasks, plus at most one extra task

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks

2. Find a matching in the remaining graph

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks

2. Find a matching in the remaining graph

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks

2. Find a matching in the remaining graph

Let i be a task of degree 1 in G . There is only one machine j with xi ,j > 0, so xi ,j = 1.

We build S
(1)
j = {i | xi ,j = 1}. Then

∀j ,
∑
i∈S(1)

j

pi ,j ≤ T

Remove these tasks from G , and go to step 2

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks ∀j ,
∑

i∈S(1)
j

pi ,j ≤ T

2. Find a matching in the remaining graph

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks ∀j ,
∑

i∈S(1)
j

pi ,j ≤ T

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do

S
(2)
j ← S

(1)
j ∪ {task i connected to j};

Remove i and j from G ;

end
Let M be a matching of G ;

∀(i , j) ∈ M, S
(2)
j ← S

(1)
j ∪ {i};

▶ At the end, no machine remains with degree 1: G is empty or a cycle
▶ At most one task i added to each machine j , with (i , j) ∈ IT
▶ So ∀j ,

∑
i∈S(2)

j

pi ,j ≤ 2T

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks ∀j ,
∑

i∈S(1)
j

pi ,j ≤ T

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do

S
(2)
j ← S

(1)
j ∪ {task i connected to j};

Remove i and j from G ;

end
Let M be a matching of G ;

∀(i , j) ∈ M, S
(2)
j ← S

(1)
j ∪ {i};

▶ At the end, no machine remains with degree 1: G is empty or a cycle
▶ At most one task i added to each machine j , with (i , j) ∈ IT
▶ So ∀j ,

∑
i∈S(2)

j

pi ,j ≤ 2T

Scheduling on heterogeneous machines: how to build S(x) ?

Graph G with n +m vertices, ≤ n +m edges: at most one cycle

1. Fix the leaf tasks ∀j ,
∑

i∈S(1)
j

pi ,j ≤ T

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do

S
(2)
j ← S

(1)
j ∪ {task i connected to j};

Remove i and j from G ;

end
Let M be a matching of G ;

∀(i , j) ∈ M, S
(2)
j ← S

(1)
j ∪ {i};

▶ At the end, no machine remains with degree 1: G is empty or a cycle
▶ At most one task i added to each machine j , with (i , j) ∈ IT
▶ So ∀j ,

∑
i∈S(2)

j

pi ,j ≤ 2T

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Scheduling with two types of resources – Pm,Pk ||Cmax

▶ Special case of R||Cmax

▶ Meaningful in practice for typical hardware: m CPUs, k GPUs

▶ Design specific efficient approximation algorithms

Notation

For task i , p+i is the CPU time, p−i is the GPU time.

Acceleration ratio ρi =
p+i
p−i

Two types of resources: area bound

Special case of area bound

x+i = 1 if task i is assigned to CPU

minimize C s.t.∑
i x

+
i p+i ≤ m · C∑

i (1− x+i)p−i ≤ k · C
∀ i , x+i ∈ [0, 1]

▶ Optimal solution has a special structure: all tasks with x+i = 1 have lower
acceleration ratio than all tasks with x+i = 0

▶ Can be obtained greedily, by sorting tasks in increasing values of ρi

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

HeteroPrio algorithm

HeteroPrio algorithm

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue

This is not an approximation algorithm, because it is List-like: never leave a resource
idle if there is an available task

In an instance with m = 1, k = 1, and two tasks with p+i = M and p−i = 1, HP
schedules one of them on CPU, even if M is very large.

HeteroPrio algorithm

HeteroPrio algorithm

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue

HP is a good approximation of the area bound idea, as long as all processors are busy:

Lemma

For any instance I , if all processors are busy up to time t, then

AreaBound(I) ≥ t + AreaBound(I ′(t))

where I ′(t) is the sub-instance made of (partial) tasks not completed at time t.

HeteroPrio algorithm

Theorem: HP is a 2-approximation in the “high load” case

If ∀i ,max(p+i , p
−
i) ≤ C ∗

max, then HP is a 2-approximation.

Proof:

▶ Denote by t0 the first time a processor is idle in the HP schedule

▶ By previous Lemma, t0 ≤ AreaBound(I)

▶ After time t0, each processor processes at most one task

▶ CHP
max ≤ t0 +maxi

(
max(p+i , p

−
i)

)
≤ 2 · C ∗

max

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

HeteroPrio algorithm – the spoliation mechanism

HeteroPrio algorithm with spoliation

▶ Sort tasks by increasing ρi in a double-ended queue

▶ When a CPU is idle, it picks from the start of the queue

▶ When a GPU is idle, it picks from the end of the queue
▶ If no available task, pick a running task if it can make it finish earlier

▶ Choose the one with highest current finish time

CPU

GPU

t=0

���
���
���

���
���
���

HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs) Approximation ratio Worst case ex.

(1,1) 1+
√
5

2 ≈ 1.62 1+
√
5

2

(m,1) 3+
√
5

2 ≈ 2.62 3+
√
5

2

(m,n) 2 +
√
2 ≈ 3.41 2 + 2√

3
≈ 3.15

Task CPU Time GPU Time accel ratio

X ϕ 1 ϕ

Y 1 1
ϕ ϕ

Where ϕ = 1+
√
5

2

X

Y

GPU

CPU

0 1
t

HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs) Approximation ratio Worst case ex.

(1,1) 1+
√
5

2 ≈ 1.62 1+
√
5

2

(m,1) 3+
√
5

2 ≈ 2.62 3+
√
5

2

(m,n) 2 +
√
2 ≈ 3.41 2 + 2√

3
≈ 3.15

Task CPU Time GPU Time accel ratio

X ϕ 1 ϕ

Y 1 1
ϕ ϕ

Where ϕ = 1+
√
5

2

Y

X

0 1
ϕ ϕ

t

HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs) Approximation ratio Worst case ex.

(1,1) 1+
√
5

2 ≈ 1.62 1+
√
5

2

(m,1) 3+
√
5

2 ≈ 2.62 3+
√
5

2

(m,n) 2 +
√
2 ≈ 3.41 2 + 2√

3
≈ 3.15

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

DualHP algorithm: 3/2-approximation

Main idea

Given a guess λ on the optimal makespan:

▶ Build a schedule with makespan 3λ
2

▶ Or prove that λ is not feasible

DualHP algorithm: 3/2-approximation

Main idea

Given a guess λ on the optimal makespan:

▶ Build a schedule with makespan 3λ
2

▶ Or prove that λ is not feasible

DualHP algorithm: 3/2-approximation

Main idea

Given a guess λ on the optimal makespan:

▶ Build a schedule with makespan 3λ
2

▶ Or prove that λ is not feasible

Solve a multi-dimensional knapsack (for example with Dynamic Programming):

Find xi ∈ {0, 1} s.t.∑
i ,p+i >λ/2 xi ≤ m∑
i xip

+
i ≤ mλ∑

i ,p−i >λ/2(1− xi) ≤ k∑
i (1− xi)p

−
i ≤ kλ

Theorem

Any solution of this knapsack problem can
be arranged in the shelves as shown in the
previous image.

DualHP algorithm: extend to get lower approximation ratio

DualHP algorithm: extend to get lower approximation ratio

Find xi ∈ {0, 1} s.t.∑
i ,p+i >2λ/3

xi +
1

2

∑
i ,2λ/3≥p+i >λ/3

xi ≤ m

∑
i

xip
+
i ≤ mλ

∑
i ,p−i >2λ/3

(1− xi) +
1

2

∑
i ,2λ/2≥p−i >λ/3

(1− xi) ≤ k

∑
i

(1− xi)p
−
i ≤ kλ

This yields a 4
3 -approximation algorithm. With more shelves, one can obtain stronger

approximation ratios, but the complexity of the knapsack problem increases very
quickly

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

HLP – Approximation for Pm,Pk |prec|Cmax

Linear Programming Lower Bound

Minimize C

subject to:
∑
i

p+i xi ≤ m · C∑
i

p−i (1− xi) ≤ k · C

∀i ⇝ j , Ci + p+i xi + p−i (1− xi) ≤ Cj

∀i , 0 ≤ Ci ≤ C

∀i , xi ∈ [0, 1]

HLP algorithm

HLP algorithm

▶ Solve Linear Programming lower bound, obtain solution (x)

▶ Round x to the nearest integer: x̃i = 0 iff xi < 0.5

▶ Schedule with List Scheduling, according to x̃

Lemma: cost of rounding

The rounded solution x̃ has cost at most twice the cost of x

p+i x̃i ≤ 2p+i xi p−i (1− x̃i) ≤ 2p−i (1− xi)

HLP algorithm

Theorem

HLP is a 6-approximation algorithm

Sketch of proof:

▶ Divide the schedule in 3 types of intervals: I+ all CPUs busy, I− all GPUs busy,
ICP at least one idle of each type

▶ ICP is bounded by the critical path according to x̃

▶ I+ and I− are bounded by the average workloads

▶ CHLP
max ≤ ICP + I+ + I− ≤ 3 · cost(x̃) ≤ 6 · cost(x) ≤ 6 · C ∗

max

Outline

List Scheduling
Scheduling independent tasks
Notations
Generalizations

Heterogeneous Scheduling
HEFT
Approximation algorithm

GPU/CPU Scheduling
HeteroPrio
DualHP
HLP

Going further

Locality-focused: DARTS scheduler

Data-Aware Reactive Task Scheduling

Main idea: focus on placing data rather than
scheduling tasks

▶ Plan tasks in advance, with flexibility:
plannedTasks and taskBuffer

▶ When a resource is idle, select the data that
will unlock the largest number of tasks

▶ Add all unlocked tasks to plannedTasks

▶ When memory is full, evict data Least Used in
the Future

Locality-focused: DARTS scheduler

Beyond HeteroPrio: MultiPrio

Refined version of HeteroPrio

Additional features:

▶ Affinity score to evaluate how tasks are
adapted to resources

▶ Criticality score to evaluate how much
workload is released when the task completes

▶ Locality score to evaluate how much tasks can
reuse already present data

Beyond HeteroPrio: MultiPrio

More research going on

Ongoing scheduling research around StarPU

▶ Dynamic task and data partitioning thanks to hierarchical tasks
▶ Dynamic scheduler selection:

▶ HeteroPrio-like when parallelism is high,
▶ HEFT-like scheduling when critical path matters more,
▶ DARTS-like when memory is constrained
▶ ...

In conclusion

Scheduling is difficult, but fun! If you want to join, you’re welcome!

	List Scheduling
	Scheduling independent tasks
	Notations
	Generalizations

	Heterogeneous Scheduling
	HEFT
	Approximation algorithm

	GPU/CPU Scheduling
	HeteroPrio
	DualHP

