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Scheduling independent tasks

Multiprocessor scheduling problem PN

» Input instance: n tasks with duration p;, m machines

» Solution: a schedule where each task has a starting time s;, so that each machine
runs only one job at a time

» Objective: minimize the makespan Cyax = max; C; = max; s; + p;
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Scheduling independent tasks

Multiprocessor scheduling problem 2| Ciee

» Input instance: n tasks with duration p;, m machines

» Solution: a schedule where each task has a starting time s;, so that each machine
runs only one job at a time

» Objective: minimize the makespan Cynax = max; C; = max; s; + p;

Worst-case Approximation Algorithm

» Algorithm which never gives a very bad solution
» Algorithm A is a p-approximation if:
1. It solves the problem: V instance /, A(/) is a valid solution
2. With an approximation guarantee: V instance /,V solution s, cost(A(/)) < p - cost(s)



List Scheduling

List Scheduling Algorithm (Graham, 1956)
Organize tasks into a list £, in an arbitrary order;
while L is non empty do

When a machine k is available
| start the first task in £ on machine k;
end




List is an approximation

Theorem

List is a 2-approximation algorithm

Lower bounds
For any instance / with m machines and task durations p;,
» Cr. (1) > max; p; — “unbounded resources’ case

> Cro.(l) > (1/m)>; pi — “area bound”




Approximation proof

Theorem

List is a 2-approximation algorithm

Proof:
» Let / be an instance, and O the schedule computed by List.
> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.
From time O to time s;, all machines are busy
This means m-s; <> . p;
Crax(O) = sj+ pj < (1/m)>"; pi + max; p;
Hence, Crnax(0) < 2C.. (1)

vvyyypy



Non-approximation proof

Theorem

For any p < 2, List is not a p-approximation algorithm



Non-approximation proof
Theorem

For any p < 2, List is not a p-approximation algorithm

For any m, we can build an instance / with m machines so that
Crsx(1) = (2= 7)) Graxl/)

max



Non-approximation proof

Theorem

For any p < 2, List is not a p-approximation algorithm

For any m, we can build an instance / with m machines so that

Coox(1) = (2= ) Grax(1)
Proof:

» Let / be an instance with m(m — 1) tasks of duration 1, et 1 task of duration m.
> CrT‘Iax(/) =m

> Sila tiche de durée m est a la fin de £, CKt = (m — 1)+ m

max




More precise approximation proof

Theorem

- . 1 . . . . . .
List is a 2 — ~--approximation algorithm on any instance with m machines

Proof:
» Let / be an instance, and O the schedule computed by List.
> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.

» From time O to time s;, all machines are busy with tasks other than j

v

This means m-s; <> . p;
> Cnax(0) = 55+ pj = (1/m) 2, pi + pj

» Hence, Cnax(0) <2 Crax(1)
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Theorem

- . 1 . . . . . .
List is a 2 — ~--approximation algorithm on any instance with m machines

Proof:
» Let / be an instance, and O the schedule computed by List.
> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.

» From time O to time s;, all machines are busy with tasks other than j
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This means m-s; <> . p; — p;
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More precise approximation proof

Theorem

- . 1 . . . . . .
List is a 2 — ~--approximation algorithm on any instance with m machines

Proof:
» Let / be an instance, and O the schedule computed by List.
> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.

» From time O to time s;, all machines are busy with tasks other than j

v

This means m-s; <> . p; — p;
> Coax(0) = s+ p; < (1/m) 32 pi — pj/m + p

» Hence, Cnax(0) <2 Crax(1)



More precise approximation proof

Theorem

- . 1 . . . . . .
List is a 2 — ~--approximation algorithm on any instance with m machines

Proof:
» Let / be an instance, and O the schedule computed by List.

> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.

From time O to time s;, all machines are busy with tasks other than j
This means m-s; < Z,- pi — pj

Cmax(0) = sj + pj < (1/m) >_; pi — pj/m+ pj

Cnax(0) < (1/m) 32, pi + (max; pi)(1 — )

Hence, Cnax(0) <2 Crax(1)
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More precise approximation proof

Theorem

- . 1 . . . . . .
List is a 2 — ~--approximation algorithm on any instance with m machines

Proof:
» Let / be an instance, and O the schedule computed by List.

> Let j be the task that finishes last in O, s; its starting time, and C; = Cnax(O) its
ending time.

From time O to time s;, all machines are busy with tasks other than j
This means m-s; < Z,- pi — pj

Cmax(0) = sj + pj < (1/m) >_; pi — pj/m+ pj

Cnax(0) < (1/m) 32, pi + (max; pi)(1 — )

Hence, Cnax(0) < (2= 1) Gnax(1)

vVvYyyvyy
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Interlude: Graham three field notation for scheduling problems

Three field notation: « | |y

» «: specifies the architecture
» [3: describes the tasks

» ~: describes the objective function to be optimized



Interlude: Graham three field notation for scheduling problems

Three field notation: « | |y

» «: specifies the architecture

1 for single machine

P for parallel (identical) machines, P2 for exactly 2 processors

Q for parallel machines with different speeds (related)

R when task i on machine j has arbitrary duration p;; (unrelated)

and other more specific cases (flow-shop, open-shop, ...) related to production
environments

» [3: describes the tasks
» ~: describes the objective function to be optimized

VVYVYVYY



Interlude: Graham three field notation for scheduling problems

Three field notation: « | |y

» «: specifies the architecture
» [3: describes the tasks
> for “default” behavior (non-preemptive, fixed durations, ...)
» prec for precedence constraints
» pmtn for tasks that can be paused and resumed
» p; =1 for tasks with Unitary Execution Time
» d; for tasks with due dates, r; for release times
» size; for tasks which require several machines

» ~: describes the objective function to be optimized



Interlude: Graham three field notation for scheduling problems

Three field notation: « | |y

» «: specifies the architecture

» [3: describes the tasks
» ~: describes the objective function to be optimized

> Makespan Cpax

> Sum of completion times Y C;, weighted version > w;C;

> Lateness L; = C; — d, tardiness T; = max(C; — d;,0), earliness E; = max(0, dj — ;)
» Throughput U; =1 if C; < dj, 0 otherwise



Interlude: Graham three field notation for scheduling problems

Three field notation: « | |y

» «: specifies the architecture
» [(: describes the tasks

» ~: describes the objective function to be optimized

Examples

» 1[| >~ w;C;: minimize sum of weighted completion times on one machine
» 1|prec|Lmax: minimize maximum lateness with precedence constraints
» P||Cmax: multiprocessor scheduling

> Q2|rj| > Gt 2 related processors, minimize average completion time with release
dates
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Scheduling with precedence constraints

Multiprocessor scheduling problem with precedence

P|prec| Crax
» Input instance: n tasks with duration p;, with a precedence relationship i ~ j
m identical machines
» Solution: a schedule where each task has a starting time s;, so that
» each machine runs only one job at a time

» (; <s; for any precedence constraint / ~ j

» Objective: minimize the makespan Cnax = max; C; = max; s; + p;




List Scheduling with precedence constraints
List Scheduling

Organize tasks into a list £, in an arbitrary order;
while £ is non empty do
When a machine k is available

| start the first ready task in £ on machine k;
end

A task j is ready if all its predecessors are completed




Approximation proof with precedence constraints
Lower bounds

For any instance / with m machines and task durations p;,
> Crox(l)>(1/m)>"; pi — same “area bound” as before
> C*

max

(1) > maxp path in ~ Y_jcp Pi — “unbounded resources” case
The second bound is called the critical path CP.




Approximation proof with precedence constraints

Theorem

List is a 2-approximation algorithm for P|prec|Cax

Proof:
P> Let / be an instance, and O the schedule computed by List.
P Let jo be the task that finishes last in O. Consider ji, the predecessor of jy that
finishes last in O. Continue: ji1 is the predecessor of ji that finishes last
» From time Cj, to time s, all machines are busy
Partition the time into busy intervals (from Cj,
(from s, to Cj,)

v

to sj,) and critical intervals

» The total length (g of busy intervals satisfy m-¢g <> . p;
> i~ jk_1 ~ e~ j1 ~» o is a path in the precedence graph
» The total length ¢ of critical intervals satisfy ¢ < CP

» Crax(0) =Ll +lc < (1/m) Zip,' + CP

» Hence, Cnax(0) <2C (1)



Approximation proof

Theorem

List is a 2-approximation algorithm for P|prec|Cmax

DA



List Scheduling with parallel tasks
Parallel tasks scheduling problem P|size;| Crax

» Input instance: n tasks with duration p; requiring g; machines
m identical machines
» Solution: a schedule where each task has a starting time s;, so that each machine
runs only one job at a time

» Objective: minimize the makespan Cnax = max; C; = max; s; + p;




List Scheduling with parallel tasks
List Scheduling

Organize tasks into a list £, in an arbitrary order;
while L is non empty do
When k > 1 machines are available
| start the first task in £ with g; < k;
end




Approximation proof with parallel tasks

Theorem
List is a 2-approximation algorithm for P|sizej|Cmnax. More precisely:
Crist(1) < 2max(Pmaxs m > Pi)
Proof:
» Let / be an instance, and O the schedule computed by List. Set C = Cnax(O).
» Denote with r(t) the number of machines busy at time t in O
» Vi, t' < C with t' > t + pmax, r(t) + r(t') > m



Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej|Cmnax. More precisely:
CnIQI:)t((I) <2 max(pmaXa % Z,’ Pi)

Proof:
» Let / be an instance, and O the schedule computed by List. Set C = Cnax(O).
» Denote with r(t) the number of machines busy at time t in O
> Vi, t' < C with t' > t + pmax, r(t) + r(t') > m
> Assume C > 2Pmax. Then pmay < % so that Vt < C/2,r(t) + r(t+ C/2) > m



Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej|Cmnax. More precisely:
CnIQI:)t((I) <2 max(pmaXa % Z,’ Pi)

Proof:
» Let / be an instance, and O the schedule computed by List. Set C = Cnax(O).
» Denote with r(t) the number of machines busy at time t in O
> Vi, t' < C with t' > t + pmax, r(t) + r(t') > m
> Assume C > 2Pmax. Then pmay < % so that Vt < C/2,r(t) + r(t+ C/2) > m
C
> Integrate: /2 r(t)dt + /C r(t)dt > m- g
0

<
2



Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej|Cmnax. More precisely:
CnIQI:)t((I) <2 max(pmaXa % Z,’ Pi)

Proof:
» Let / be an instance, and O the schedule computed by List. Set C = Cnax(O).
» Denote with r(t) the number of machines busy at time t in O
> Vi, t' < C with t' > t + pmax, r(t) + r(t') > m
> Assume C > 2Pmax. Then pmay < % so that Vt < C/2,r(t) + r(t+ C/2) > m
C
> Integrate: /2 r(t)dt + /C r(t)dt > m- g
0
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Approximation proof with parallel tasks

Theorem

List is a 2-approximation algorithm for P|sizej|Cmnax. More precisely:
Cnlalit((l) <2 max(pmaXa % Z,’ Pi)

Proof:
» Let / be an instance, and O the schedule computed by List. Set C = Cnax(O).
» Denote with r(t) the number of machines busy at time t in O
> Vi, t' < C with t' > t + pmax, r(t) + r(t') > m
> Assume C > 2Pmax. Then pmay < % so that Vt < C/2,r(t) + r(t+ C/2) > m
C
Integrate: /2 r(t)dt + /C r(t)dt > m- g
0

<
2

v

/

z,'Pi
f - C 2 Pi
» Conclusion: > ; p;i > =, s0 C <2 ==



Comments on the previous results

» More general result in [Garey,Graham 1975]: List is an s + l-approximation

algorithm with s different resources.
» Can also be refined to 2 — % with more careful proof
» Previously C < area + CP, this one is weaker: C <2 - max(area, CP)
» This is related to the Work Stealing results



Work Stealing

» Work Stealing was made popular with the Cilk runtime
» Each thread can spawn new threads, and wait for completion of spawned threads
» Each worker has a queue of threads, process them in order

> Idle workers can steal available threads from the queue of other workers

Performance guarantee

With the right implementation, Work Stealing on a program with area T; and critical
path T, can achieve a running time of

T1

5 +0(7Tx)



Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list £, in an
arbitrary order;
while L is non empty do
Pick the first task j in £;
Schedule j at the earliest possible
time s;;
end




Warning: Wrong List Scheduling implementation

Task-centric List Scheduling

Organize tasks into a list £, in an
arbitrary order;
while L is non empty do
Pick the first task j in £;
Schedule j at the earliest possible
time s;;
end
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Heterogeneous Earliest Finish Time — R|prec, comm|Cyax

HEFT is a very well known heuristic for this problem. It has two phases:

» Compute a ranking of the tasks (priorities):
ri = pi + max (G + rx)
k i~k

» Consider tasks by highest priority first

P> Assign each task to the machine where it finishes earliest



Heterogeneous Earliest Finish Time — R|prec, comm|Cax

HEFT is not an approximation algorithm, even for R||Cya.x [Bleuse, Monna 2015]
Instance with m CPUs and 1 GPU:
Type

| Number| PCPU PGPU | rank
A m € m+1 (em+m+1)/(m+1)
Bi,i=0...m—-1 1 1—i/m 1—i/m 1—i/m
G,i=0...m-1 m 1—i/m 1/m?> | (m—i+1/m?)/(m+1)
> ra>rg, >rg, > rg > >
> G’ =

m 3 1 *
7+ 5 — 7;, whereas C,

max:]'




Heterogeneous Earliest Finish Time — R|prec, comm|Cax

HEFT is not an approximation algorithm, even for R||Cya.x [Bleuse, Monna 2015]
Instance with m CPUs and 1 GPU:
Type

| Number| PCPU PGPU | rank
A m € m+1 (em+m+1)/(m+1)
Bi,i=0...m—-1 1 1—i/m 1—i/m 1—i/m
G,i=0...m-1 m 1—i/m 1/m?> | (m—i+1/m?)/(m+1)
> ra>rg, > g, >rg > g >
> CHEFT _

m 3_ 1 *
7+35— whereas C

max:]'




Outline

List Scheduling

Heterogeneous Scheduling

Approximation algorithm

GPU/CPU Scheduling

Going further



Scheduling on heterogeneous machines

Scheduling on unrelated machines R||Cnax

» Input: n tasks, m machines, processing times p; ;
» Solution: a schedule where each task has a starting time s; on a machine o;, so
that each machine runs only one job at a time

» Objective: minimize makespan Cpax



Scheduling on heterogeneous machines

Scheduling on unrelated machines R||Cnax

» Input: n tasks, m machines, processing times p; ;
» Solution: a schedule where each task has a starting time s; on a machine o;, so
that each machine runs only one job at a time

» Objective: minimize makespan Cpax

Remarks
» How to generalize the notion of “area bound”?

» More relevant to view it as an assignment problem



Scheduling on heterogeneous machines
Scheduling on unrelated machines — assignment version R|| Cnax
» Input: n tasks, m machines, processing times p; ;
» Solution: for each machine j, a set S; of tasks assigned to machine j

» Objective: minimize the highest load, Cpax = maxj’”:1 <Zi€5j p,-,j)



Scheduling on heterogeneous machines
Scheduling on unrelated machines — assignment version R|| Cnax
» Input: n tasks, m machines, processing times p; ;
» Solution: for each machine j, a set S; of tasks assigned to machine j

» Objective: minimize the highest load, Cpax = maxj’":1 (Ziesj p,-,j)

Linear Programming Formulation

xjj = 1 if task i assigned to machine j, 0 otherwise

minimize C s.t.

i 1§i§n, ij:lx,-’jzl
V 1<j<m, Yl xjpij<C

Vi, j, xij<{0,1}



Scheduling on heterogeneous machines
Scheduling on unrelated machines — assignment version R|| Cnax
» Input: n tasks, m machines, processing times p; ;
» Solution: for each machine j, a set S; of tasks assigned to machine j

» Objective: minimize the highest load, Cpax = maxj’":1 (Ziesj p,-,j)

Linear Programming Formulation (relaxed)

x;j = fraction of task /i assigned to machine j

minimize C s.t.

i 1§i§n, ij:lx,-’jzl
V 1<j<m, Yi,xjpij<C

Vi, J, X,',J'E[O,l]



Scheduling on heterogeneous machines

Scheduling on unrelated machines — assignment version R|| Cnax

» Input: n tasks, m machines, processing times p; ;

» Solution: for each machine j, a set S; of tasks assigned to machine j

» Objective: minimize the highest load, Cpax = maxj’":1 (Ziesj p,-,j)

Linear Programming Formulation (relaxed)

x;j = fraction of task /i assigned to machine j The optimal solution of the
relaxed problem is a lower bound
minimize C s.t.

i 1§i§n, ijzlx,'d’:l
V 1<j<m, Yi,xjpij<C

Vi, j, xij€][0,1]

= generalization of “area bound”



Scheduling on heterogeneous machines
Scheduling on unrelated machines — assignment version

» Input: n tasks, m machines, processing times p; ;

RI| Cinax
» Solution: for each machine j, a set S; of tasks assigned to machine j
> Objective: minimize the highest load, Crnax = max/Z; (Ziesj piJ)
Linear Programming Formulation (relaxed)
x; j = fraction of task / assigned to machine j

minimize

very good
C

Ss.t.
V 1<i<n,

Smaxij =1
vV 1<;<m,

But this lower bound may not be

Yo Xijpij < C
Vi, j, xije€l[0,1]




Scheduling on heterogeneous machines
Scheduling on unrelated machines — assignment version

» Input: n tasks, m machines, processing times p; ;

RHCmax
» Solution: for each machine j, a set S; of tasks assigned to machine j
> Objective: minimize the highest load, Crnax = max/Z; (Ziesj p,-J)
Linear Programming Formulation (relaxed)
x; j = fraction of task / assigned to machine j

minimize

C s.t.
V 1<i<n,

Smaxij =1
vV 1<;<m,

But this lower bound may not be
very good

Yo Xijpij < C
Vi, j, xije€l[0,1]



Scheduling on heterogeneous machines

Linear Programming Formulation for fixed T (relaxed)
Denote It = {(i,j) | pij < T}. Then (LP7) is:
Vol<is<n, 3jajenr Xij 21
V 1<;<m, Zil(id)elr Xijpij < T
V(f,j) & /T, Xi j E {0, 1}



Scheduling on heterogeneous machines

Linear Programming Formulation for fixed T
Denote It = {(i,j) | pij < T}. Then (LP7) is:
Vo1<i<n, Yjiper %21

V 1<;<m, Zil(iu’)elr Xijpij < T
v(i,j) € I, xij =0

Clearly : T>Cr

max

= (LPr) is feasible

We will design an algorithm S so that:

(x) solution of (LP7) = Cmax(S(x)) < 2T



Scheduling on heterogeneous machines: approximation

T>C;

m

ax = (LPT) is feasible (x) solution of (LPT) = Cmax(S(x)) < 2T

Find C;,, with dichotomic search
L 1,U < min; ) . pij;
while U—-L > 1 do This is a polynomial-time algorithm:

C+ (L+U)/2 » log(min; ), pi ;) iterations

if (LPc) feasible then U « C; » One iteration is polynomial

else L + C; - - . L

q » S(x*) is computed in polynomial time
en

(x*) solution of (LPy);
return S(x*);



Scheduling on heterogeneous machines: approximation

T>C;

m

ax = (LPT) is feasible (x) solution of (LPT) = Cmax(S(x)) < 2T

Find C;

max With dichotomic search

L 1,U < min; ) . pij;

. It is a 2-approximation algorithm:
while U - L > 1 do

» U is the smallest value so that (LPy)

C«+ (L+U)/2 . . . .
i (LFEC) feazi/ble then U « C- is feasible: (LPy_1) is not feasible
else L + C; > So U—1<Crae U< G

end » Hence Crax(S(x*)) < 2C.y

(x*) solution of (LPy);
return S(x*);



Scheduling on heterogeneous machines: how to build S(x) 7

Linear Formulation (LP+
(LPr) » (LPt) has v = card(/1) variables and

n+ m —+ v constraints

P> There exists an optimal solution x*

A 1<i<n ZI X;,J'Z].
v g ’ JlGd)elr - with v saturated constraints
<j<m e X ipii < . .
=J =M Z’H’J)E’T WP = » Which means in x*, at most n+ m
V(i,j)elr, xj>0 variables x; j are non-zero

» Consider graph G = (V, E) with V = {machines} U {tiches}, and
E={(i.j)xij > 0}
» This graph has n+ m vertices, < n+ m edges: at most one cycle



Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
Objective: each machine gets its “fully assigned” tasks, plus at most one extra task




Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
1. Fix the leaf tasks
2. Find a matching in the remaining graph



Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle

1. Fix the leaf tasks




Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
1. Fix the leaf tasks

Let / be a task of degree 1 in G. There is only one machine j with x; ; > 0, so x; ; = 1.
We build S = {i|x; = 1}. Then

ieSj(l)

Remove these tasks from G, and go to step 2



Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
1. Fix the Jeaf tasks vJ, Zies(l) pij<T
j

2. Find a matching in the remaining graph




Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
1. Fix the leaf tasks YJ, Zies(l) pij<T
i

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do
5}2) — Sj(l) U {task i connected to j};
Remove i and j from G;

end
Let M be a matching of G;

W(i,j) € M, « s U {i};



Scheduling on heterogeneous machines: how to build S(x) 7

1. Fix the /eaf tasks VJ, Z,—esgl) pij < T
J

Graph G with n+ m vertices, < n+ m edges: at most one cycle

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do
SJ-(2) — Sj(l) U {task i connected to j};
Remove i and j from G;

end
Let M be a matching of G;

W(i,j) € M, S s Uil




Scheduling on heterogeneous machines: how to build S(x) 7

Graph G with n+ m vertices, < n+ m edges: at most one cycle
1. Fix the leaf tasks VJ, Ziesm pij<T
j

2. Find a matching in the remaining graph

while there is a machine j with degree 1 in G do
Sj(z) — Sj(l) U {task i connected to j};
Remove i and j from G;

end

Let M be a matching of G;
W(i,j) € M, S s Uil

» At the end, no machine remains with degree 1: G is empty or a cycle
» At most one task i added to each machine j, with (i,)) € It
> So Vj,ziesj(z) pij<2T
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Scheduling with two types of resources — Pm, Pk|| Cyax

» Special case of R||Cnax
» Meaningful in practice for typical hardware: m CPUs, k GPUs

» Design specific efficient approximation algorithms

Notation

For task /, p,-+ is the CPU time, p; is the GPU time.
+
Acceleration ratio p; = Z—L

i



Two types of resources: area bound

Special case of area bound

xt =1 if task i is assigned to CPU

minimize C s.t.
X <m-C
S - xf)pr <k-C
Vi, xte[o,1]

» Optimal solution has a special structure: all tasks with xl.Jr = 1 have lower
acceleration ratio than all tasks with x,-+ =0

P> Can be obtained greedily, by sorting tasks in increasing values of p;
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HeteroPrio algorithm

HeteroPrio algorithm

» Sort tasks by increasing p; in a double-ended queue
» When a CPU is idle, it picks from the start of the queue
» When a GPU is idle, it picks from the end of the queue

This is not an approximation algorithm, because it is List-like: never leave a resource
idle if there is an available task

In an instance with m =1,k = 1, and two tasks with p?‘ = M and p; =1, HP
schedules one of them on CPU, even if M is very large.
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HeteroPrio algorithm

» Sort tasks by increasing p; in a double-ended queue
» When a CPU is idle, it picks from the start of the queue
» When a GPU is idle, it picks from the end of the queue
HP is a good approximation of the area bound idea, as long as all processors are busy:

Lemma

For any instance /, if all processors are busy up to time t, then
AreaBound(l) > t + AreaBound(I'(t))

where /’(t) is the sub-instance made of (partial) tasks not completed at time t.



HeteroPrio algorithm

Theorem: HP is a 2-approximation in the “high load” case

If Vi, max(p;", p; ) < G, then HP is a 2-approximation.

Proof:
» Denote by ty the first time a processor is idle in the HP schedule
» By previous Lemma, typ < AreaBound(!)
> After time tp, each processor processes at most one task

> CHE <ty + max; (max(p;, p;)) <2- Cx

max



HeteroPrio algorithm — the spoliation mechanism

HeteroPrio algorithm with spoliation

> Sort tasks by increasing p; in a double-ended queue
» When a CPU is idle, it picks from the start of the queue

» When a GPU is idle, it picks from the end of the queue
> |If no available task, pick a running task if it can make it finish earlier
» Choose the one with highest current finish time

CPU ‘

GPU
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HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs) | Approximation ratio | Worst case ex.
(1,1) 15 1,62 Lt/
(m,1) 3445 2,62 32+—2¢5
(m,n) 24+ 2~341 2+ 5=~ 315

CPU Y

Task | CPU Time | GPU Time | accel ratio
X ¢ 1 ¢
Y 1 é é erul X
1
Where ¢ = +2ﬁ
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HeteroPrio approximation results

Approximation results

(#CPUs, #GPUs)

Approximation ratio

Worst case ex.
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DualHP algorithm: 3/2-approximation

Main idea

Given a guess A on the optimal makespan:

> Build a schedule with makespan 3}

» Or prove that X is not feasible
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DualHP algorithm: 3/2-approximation
Main idea

Given a guess A on the optimal makespan:
> Build a schedule with makespan
» Or prove that A is not feasible

Solve a multi-dimensional knapsack (for example with Dynamic Programming):
Find x; € {0,1} s..
YiptsajeXi S m

E,-x,-piJr < mA Any solution of this knapsack problem can
Zi7p7>/\/2(1 —x;) < k be arranged in the shelves as shown in the

S (1 \o < kA previous image.
WL =Xi)p; =

Theorem



DualHP algorithm: extend to get lower approximation ratio

m CPUs
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DualHP algorithm: extend to get lower approximation ratio

Find x; € {0,1} s.t.

Z XH—% Z xp<m

i.pr>2)/3 i,2X/3>pF>\/3
S xip < mA
i

Z(l—x,-)—l—% S (-x)<k

i,p; >2\/3 i2X\/2>p”>\/3

> (1= x)p; < kA

i

This yields a %—approximation algorithm. With more shelves, one can obtain stronger
approximation ratios, but the complexity of the knapsack problem increases very
quickly
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HLP — Approximation for Pm, Pk|prec|Cpax

Linear Programming Lower Bound

Minimize C

subject to: prx,- <m-C
i

d pi(l-x)<k-C
Vi~ j, G+ pixi + p; (1—x) <G
Vi 0< G <C

Vi, x; € [0,1]



HLP algorithm

HLP algorithm

» Solve Linear Programming lower bound, obtain solution (x)
» Round x to the nearest integer: X; = 0 iff x; < 0.5
» Schedule with List Scheduling, according to X

Lemma: cost of rounding

The rounded solution X has cost at most twice the cost of x

pi % < 2p; xi pi (1= %) <2p; (1—x)



HLP algorithm

Theorem

HLP is a 6-approximation algorithm

Sketch of proof:

» Divide the schedule in 3 types of intervals: /™ all CPUs busy, /= all GPUs busy,
Icp at least one idle of each type

» Icp is bounded by the critical path according to X
» /T and /I~ are bounded by the average workloads
> CHLP < Jep 4+ 11 + 17 < 3 - cost(X) < 6 - cost(x) <6 C

max max
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Locality-focused: DARTS scheduler

Data-Aware Reactive Task Scheduling
Main idea: focus on placing data rather than
scheduling tasks

» Plan tasks in advance, with flexibility:
plannedTasks and taskBuffer

» When a resource is idle, select the data that
will unlock the largest number of tasks

Add all unlocked tasks to plannedTasks

» When memory is full, evict data Least Used in
the Future

v

§| EEE

DARTS
eviction policy)|

StarPU




Locality-focused: DARTS scheduler
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Figure 5.2: Results on the Cholesky factorization with 1 Tesla V100 GPU. Memory limited to 2000 MB.



Beyond HeteroPrio: MultiPrio

Refined version of HeteroPrio s temns e
Additional features: r/Q*% @% é@
» Affinity score to evaluate how tasks are ‘sbé ("5% ololo)
adapted to resources o e

» Criticality score to evaluate how much Ei gggg ‘% ¥

workload is released when the task completes

» [ocality score to evaluate how much tasks can
reuse already present data




Beyond HeteroPrio: MultiPrio
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(b) Performance on AMD-A100 platform.

Fig. 8: Performance of QR factorization (ordering METIS) on
Intel-V 100 and AMD-A100 both with 2 GPUs, relative to the
Dmdas scheduler. Matrices sorted by Gflops count.



More research going on

Ongoing scheduling research around StarPU

» Dynamic task and data partitioning thanks to hierarchical tasks
» Dynamic scheduler selection:

» HeteroPrio-like when parallelism is high,

» HEFT-like scheduling when critical path matters more,
» DARTS-like when memory is constrained

> .

In conclusion

Scheduling is difficult, but fun! If you want to join, you're welcome!
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