Introduction to Quantum Computing

Miriam Backens (they/them)
Inria & Loria
miriam.backens@inria.fr

"New trends in Computing" summer school, Strasbourg, 2024

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Bits and Boolean functions

▶ Data is stored as bits:

$$b\in\{0,1\}$$

Bits and Boolean functions

▶ Data is stored as bits:

$$b \in \{0, 1\}$$

► Sequences of bits form bit strings:

$$\mathbf{b} \in \{0,1\}^n$$

Bits and Boolean functions

Data is stored as bits:

$$b \in \{0, 1\}$$

► Sequences of bits form bit strings:

$$\mathbf{b} \in \{0, 1\}^n$$

► Transformations are given by Boolean functions:

$$f: \{0,1\}^n \to \{0,1\}^m$$

Logic circuits

Cannot directly implement most Boolean functions, instead decompose them as circuits over a small set of logic gates.

name	symbol	function
AND		$x, y \mapsto x \wedge y$
OR		$x, y \mapsto x \vee y$
NOT	->>-	$x \mapsto \neg x$
XOR	#	$x, y \mapsto x \oplus y$
COPY	$ $ \prec	$x \mapsto x, x$

$$f(x, y, z, w) = \neg(x \land y) \lor (z \land w)$$

Logic circuits

Cannot directly implement most Boolean functions, instead decompose them as circuits over a small set of logic gates.

name	symbol	function
AND		$x, y \mapsto x \wedge y$
OR		$x, y \mapsto x \vee y$
NOT	->-	$x \mapsto \neg x$
XOR		$x, y \mapsto x \oplus y$
COPY	$ $ \prec	$x \mapsto x, x$

$$f(x,y,z,w) = \neg(x \land y) \lor (z \land w)$$

Number of gates in circuit can be used as measure of computational complexity.

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called Dirac notation:

$$0\mapsto egin{pmatrix} 1 \ 0 \end{pmatrix}=:|0
angle \qquad \qquad 1\mapsto egin{pmatrix} 0 \ 1 \end{pmatrix}=:|1
angle$$

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called Dirac notation:

$$0\mapsto egin{pmatrix} 1 \ 0 \end{pmatrix}=:|0
angle \qquad \qquad 1\mapsto egin{pmatrix} 0 \ 1 \end{pmatrix}=:|1
angle$$

The vector associated to a bit string is the tensor product (Kronecker product) of the bit vectors – essentially a unary encoding:

$$|01\mapsto |0\rangle\otimes |1\rangle = \begin{pmatrix}1\\0\end{pmatrix}\otimes \begin{pmatrix}0\\1\end{pmatrix} = \begin{vmatrix}00\\1\\10\\0\end{pmatrix} = :|01\rangle$$

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called Dirac notation:

$$0\mapsto egin{pmatrix} 1 \ 0 \end{pmatrix}=:|0
angle \qquad \qquad 1\mapsto egin{pmatrix} 0 \ 1 \end{pmatrix}=:|1
angle$$

The vector associated to a bit string is the tensor product (Kronecker product) of the bit vectors – essentially a unary encoding:

$$|01\mapsto|0
angle\otimes|1
angle=egin{pmatrix}1\\0\end{pmatrix}\otimesegin{pmatrix}0\\1\end{pmatrix}=rac{00}{01}\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=:|01
angle$$

In Dirac notation, the \otimes symbol is sometimes left out, e.g. $|0\rangle |1\rangle = |0\rangle \otimes |1\rangle$.

Linear algebra notation for Boolean functions

Transformations are represented as matrices, e.g. the AND gate becomes

Linear algebra notation for Boolean functions

Transformations are represented as matrices, e.g. the AND gate becomes

Then $0 \wedge 1$ can be computed as

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} |01\rangle = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

Use tensor product for parallel composition and matrix product for serial composition:

or (Not \otimes I)

Use tensor product for parallel composition and matrix product for serial composition:

$$\mathrm{OR}\left(\mathrm{NOT}\otimes I\right) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Use tensor product for parallel composition and matrix product for serial composition:

$$OR(NOT \otimes I) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Use tensor product for parallel composition and matrix product for serial composition:

$$OR(NOT \otimes I) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

A logic gate is reversible if the corresponding matrix is invertible.

▶ The AND gate is not reversible since $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not square.

A logic gate is reversible if the corresponding matrix is invertible.

- ▶ The AND gate is not reversible since $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not square.
- ► The NOT gate is reversible since it corresponds to the matrix

$$\begin{array}{ccc} 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

A logic gate is reversible if the corresponding matrix is invertible.

- ▶ The AND gate is not reversible since $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not square.
- ► The NOT gate is reversible since it corresponds to the matrix

$$\begin{array}{ccc}
0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

A logic gate is reversible if the corresponding matrix is invertible.

- ► The AND gate is not reversible since $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not square.
- ► The NOT gate is reversible since it corresponds to the matrix

$$\begin{array}{ccc}
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}$$

The CNOT gate is considered a reversible version of XOR: $x, y \mapsto x, y \oplus x$

The Toffoli gate and functional universality

$$x, y, z \mapsto x, y, z \oplus (x \wedge y)$$

	000	001	010	011	100	101	110	111
000	/1	0	0	0	0	0	0	0 \
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	0	0	1	0	0	0	0 0 0 0 0
100		-	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	0	1
111	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	0	0	0	0	0	1	o /
	•							,

The Toffoli gate and functional universality

$$x, y, z \mapsto x, y, z \oplus (x \wedge y)$$

	000	001	010	011	100	101	110	111
000	/ 1	0	0	0	0	0	0	0 \
001	0	1	0	0	0	0	0	0
010	0 0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0 0 0 0 0 1
100	0	0	0	0	1	0	0	0
101	0			0		1	0	0
110	0	0	0	0	0	0	0	1
111	0	0	0	0	0	0	1	o /

The Toffoli gate is functionally universal: any Boolean function can be computed by a logic circuit consisting of Toffoli gates (and constant inputs).

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space \mathbb{C}^2 :

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$
 $\alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space \mathbb{C}^2 :

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$
 $\alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$

The values α, β are called amplitudes. If α, β are both non-zero, the state is a superposition of $|0\rangle$ and $|1\rangle$.

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space \mathbb{C}^2 :

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$
 $\alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$

The values α, β are called amplitudes. If α, β are both non-zero, the state is a superposition of $|0\rangle$ and $|1\rangle$.

It is physically impossible to distinguish two states that differ only by a global factor $|\psi'\rangle=\gamma\,|\psi\rangle$, where $|\gamma|=1$. Single-qubit states can thus be written as:

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$
 $\theta \in [0,\pi], \ \varphi \in [0,2\pi)$

Visualising single-qubit states on the Bloch sphere

$$\begin{split} |\psi\rangle &= \cos\left(\tfrac{\theta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\tfrac{\theta}{2}\right)|1\rangle \\ \text{where } \theta \in [0,\pi] \text{, } \varphi \in [0,2\pi) \end{split}$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

The Pauli matrices and their eigenstates

name	matrix	eigenstates
Ζ	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\ket{0},\ket{1}$
	(0 -1)	

where
$$|\pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle\pm|1\rangle)$$
 and $|\pm i\rangle=\frac{1}{\sqrt{2}}(|0\rangle\pm i\,|1\rangle)$

The Pauli matrices and their eigenstates

name	matrix	eigenstates
X	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\ket{\ket{+},\ket{-}}$
,,	(1 0)	1 ' / ', 1 /
7	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	10\ 11\
Ζ	$\left \begin{array}{cc} 0 & -1 \end{array} \right $	$\ket{0},\ket{1}$

where
$$|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$$
 and $|\pm i\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm i |1\rangle)$

The Pauli matrices and their eigenstates

name	matrix	eigenstates
X	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\ket{+},\ket{-}$
Y	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$\ket{\ket{i}},\ket{-\pmb{i}}$
Ζ	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\ket{0},\ket{1}$

where
$$|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$$
 and $|\pm i\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm i |1\rangle)$

Quantum transformations are unitary linear maps, i.e. maps U which satisfy $U^{\dagger}U=UU^{\dagger}=I$, where U^{\dagger} is the Hermitian conjugate (or conjugate transpose). Important examples include:

▶ The Pauli matrices

Quantum transformations are unitary linear maps, i.e. maps U which satisfy $U^{\dagger}U=UU^{\dagger}=I$, where U^{\dagger} is the Hermitian conjugate (or conjugate transpose). Important examples include:

- ► The Pauli matrices
- ▶ The phase gates for $\xi \in [0, 2\pi)$:

$$P(\xi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\xi} \end{pmatrix}$$

Quantum transformations are unitary linear maps, i.e. maps U which satisfy $U^{\dagger}U=UU^{\dagger}=I$, where U^{\dagger} is the Hermitian conjugate (or conjugate transpose). Important examples include:

- ► The Pauli matrices
- ▶ The phase gates for $\xi \in [0, 2\pi)$:

$$P(\xi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\xi} \end{pmatrix}$$

► The Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Quantum transformations are unitary linear maps, i.e. maps U which satisfy $U^{\dagger}U=UU^{\dagger}=I$, where U^{\dagger} is the Hermitian conjugate (or conjugate transpose). Important examples include:

- ► The Pauli matrices
- ▶ The phase gates for $\xi \in [0, 2\pi)$:

$$P(\xi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\xi} \end{pmatrix}$$

► The Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Quantum transformations are unitary linear maps, i.e. maps U which satisfy $U^{\dagger}U=UU^{\dagger}=I$, where U^{\dagger} is the Hermitian conjugate (or conjugate transpose). Important examples include:

- ► The Pauli matrices
- ▶ The phase gates for $\xi \in [0, 2\pi)$:

$$P(\xi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\xi} \end{pmatrix}$$

► The Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Phase gates & Hadamard together are universal for single-qubit transformations.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or 11.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or 11.

The joint state space of two qubits is the Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$; a state can be written as a superposition over all the 2-bit strings:

$$|\psi\rangle = \frac{\frac{00}{01}}{\frac{10}{01}} \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle = \sum_{\mathbf{x} \in \{0,1\}^2} \alpha_{\mathbf{x}} |\mathbf{x}\rangle$$

where normalisation requires $\sum_{\mathbf{x} \in \{0,1\}^2} |\alpha_{\mathbf{x}}|^2 = 1$.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or 11.

The joint state space of two qubits is the Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$; a state can be written as a superposition over all the 2-bit strings:

$$|\psi\rangle = \frac{{00\atop 01}}{{10\atop 10}} \left({\alpha_{00}\atop \alpha_{01}\atop \alpha_{10}\atop \alpha_{11}} \right) = \alpha_{00} \, |00\rangle + \alpha_{01} \, |01\rangle + \alpha_{10} \, |10\rangle + \alpha_{11} \, |11\rangle = \sum_{\mathbf{x} \in \{0,1\}^2} \alpha_{\mathbf{x}} \, |\mathbf{x}\rangle$$

where normalisation requires $\sum_{\mathbf{x} \in \{0,1\}^2} |\alpha_{\mathbf{x}}|^2 = 1$.

The states $\{|\mathbf{x}\rangle\}_{\mathbf{x}\in\{0,1\}^n}$ are called the computational basis.

Product states and entangled states

Some two-qubit states arise as tensor products of single-qubit states, e.g.:

- $ightharpoonup |0\rangle\otimes|0\rangle=|00\rangle$
- $lackbox{ } |1
 angle\otimes|angle=|1
 angle\otimesrac{1}{\sqrt{2}}(|0
 angle-|1
 angle)=rac{1}{\sqrt{2}}(|10
 angle-|11
 angle)$

These are called product states.

Product states and entangled states

Some two-qubit states arise as tensor products of single-qubit states, e.g.:

- $ightharpoonup |0\rangle\otimes|0\rangle=|00\rangle$
- $\blacktriangleright |1\rangle \otimes |-\rangle = |1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle |1\rangle) = \frac{1}{\sqrt{2}}(|10\rangle |11\rangle)$

These are called product states.

There are also states which cannot be expressed as a tensor product of any pair of single-qubit states, e.g. the 'Bell state':

$$|\Phi_{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Such states are called entangled.

The state of n qubits lives in the Hilbert space $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$ and is written as a superposition over all the n-bit strings:

$$\ket{\psi} = \sum_{\mathbf{x} \in \{0,1\}^n} lpha_{\mathbf{x}} \ket{\mathbf{x}}$$

where
$$\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$$
.

The state of n qubits lives in the Hilbert space $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$ and is written as a superposition over all the n-bit strings:

$$\ket{\psi} = \sum_{\mathbf{x} \in \{0,1\}^n} lpha_{\mathbf{x}} \ket{\mathbf{x}}$$

where $\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$.

An *n*-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

The state of n qubits lives in the Hilbert space $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$ and is written as a superposition over all the n-bit strings:

$$|\psi
angle = \sum_{\mathbf{x} \in \{0,1\}^n} lpha_{\mathbf{x}} |\mathbf{x}
angle$$

where $\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$.

An *n*-qubit state is called:

- a product state if it can be written as a tensor product of single-qubit states,
- genuinely entangled if it cannot be written as a tensor product at all,

The state of n qubits lives in the Hilbert space $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$ and is written as a superposition over all the n-bit strings:

$$|\psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^n} lpha_{\mathbf{x}} |\mathbf{x}
angle$$

where $\sum_{\mathbf{x} \in \{0,1\}^n} |\alpha_{\mathbf{x}}|^2 = 1$.

An *n*-qubit state is called:

- a product state if it can be written as a tensor product of single-qubit states,
- genuinely entangled if it cannot be written as a tensor product at all,
- partly entangled if it can be written as a tensor product (but not necessarily of single-qubit states).

Multi-qubit transformations and quantum circuits

Reversible classical gates such as NOT, CNOT, and Toffoli are also unitary.

Multi-qubit transformations and quantum circuits

Reversible classical gates such as NOT, CNOT, and Toffoli are also unitary.

Gates can be composed into quantum circuits:

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

CNOT, phase gates, and Hadamard together are universal.

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

CNOT, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

CNOT, Hadamard and $T = P(\frac{\pi}{4}) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ together are universal in the sense that any unitary operation can be efficiently approximated to arbitrary accuracy by a circuit over these gates.

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

CNOT, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

CNOT, Hadamard and $T = P(\frac{\pi}{4}) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ together are universal in the sense that any unitary operation can be efficiently approximated to arbitrary accuracy by a circuit over these gates.

Theorem (Gottesmann & Knill, 1998)

Circuits over CNOT, Hadamard and $S = P(\frac{\pi}{2}) = (\frac{1}{0}, \frac{0}{i})$ are efficiently classically simulable. (They are called Clifford circuits or stabiliser circuits.)

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Dirac notation for row vectors and inner product

Given a vector
$$|\psi\rangle = \begin{pmatrix} \alpha_0 & \alpha_1 & \dots & \alpha_{k-1} \end{pmatrix}^T$$
, its Hermitian conjugate is the 'bra'
$$\langle \psi| = (|\psi\rangle)^\dagger = \begin{pmatrix} \alpha_0^* & \alpha_1^* & \dots & \alpha_{k-1}^* \end{pmatrix}$$

Dirac notation for row vectors and inner product

Given a vector $|\psi\rangle = \begin{pmatrix} \alpha_0 & \alpha_1 & \dots & \alpha_{k-1} \end{pmatrix}^T$, its Hermitian conjugate is the 'bra'

$$\langle \psi | = (|\psi\rangle)^{\dagger} = \begin{pmatrix} \alpha_0^* & \alpha_1^* & \dots & \alpha_{k-1}^* \end{pmatrix}$$

Given a second vector $|\phi\rangle = \begin{pmatrix} \beta_0 & \beta_1 & \dots & \beta_{k-1} \end{pmatrix}^T$, the inner product of $|\psi\rangle$ and $|\phi\rangle$ is written as the following 'braket':

$$\langle \psi | \phi \rangle = \begin{pmatrix} \alpha_0^* & \alpha_1^* & \dots & \alpha_{k-1}^* \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-1} \end{pmatrix} = \sum_{j=0}^{k-1} \alpha_j^* \beta_j$$

Dirac notation for row vectors and inner product

Given a vector $|\psi\rangle = \begin{pmatrix} \alpha_0 & \alpha_1 & \dots & \alpha_{k-1} \end{pmatrix}^T$, its Hermitian conjugate is the 'bra'

$$\langle \psi | = (|\psi\rangle)^{\dagger} = \begin{pmatrix} \alpha_0^* & \alpha_1^* & \dots & \alpha_{k-1}^* \end{pmatrix}$$

Given a second vector $|\phi\rangle = \begin{pmatrix} \beta_0 & \beta_1 & \dots & \beta_{k-1} \end{pmatrix}^T$, the inner product of $|\psi\rangle$ and $|\phi\rangle$ is written as the following 'braket':

$$\langle \psi | \phi \rangle = \begin{pmatrix} \alpha_0^* & \alpha_1^* & \dots & \alpha_{k-1}^* \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-1} \end{pmatrix} = \sum_{j=0}^{k-1} \alpha_j^* \beta_j$$

The outer product can be written as a 'ketbra' $|\phi\rangle\langle\psi|$. With both vectors equal, $|\psi\rangle\langle\psi|$ is the projector onto the vector space spanned by $|\psi\rangle$.

It is impossible to 'read out' the state vector directly. To gain information about a quantum state, need to perform a measurement, which is most commonly described by an observable: a Hermitian linear map.

It is impossible to 'read out' the state vector directly. To gain information about a quantum state, need to perform a measurement, which is most commonly described by an observable: a Hermitian linear map.

Write such an observable as $O = \sum_{\lambda} \lambda P_{\lambda}$, where λ are the eigenvalues and P_{λ} are the projectors onto the corresponding eigenspaces.

It is impossible to 'read out' the state vector directly. To gain information about a quantum state, need to perform a measurement, which is most commonly described by an observable: a Hermitian linear map.

Write such an observable as $O = \sum_{\lambda} \lambda P_{\lambda}$, where λ are the eigenvalues and P_{λ} are the projectors onto the corresponding eigenspaces.

Measuring the observable O on state $|\psi\rangle$ has the following effects:

▶ With probability $p_{\lambda} = \langle \psi | P_{\lambda} | \psi \rangle$, it produces the outcome λ .

It is impossible to 'read out' the state vector directly. To gain information about a quantum state, need to perform a measurement, which is most commonly described by an observable: a Hermitian linear map.

Write such an observable as $O = \sum_{\lambda} \lambda P_{\lambda}$, where λ are the eigenvalues and P_{λ} are the projectors onto the corresponding eigenspaces.

Measuring the observable O on state $|\psi\rangle$ has the following effects:

- ▶ With probability $p_{\lambda} = \langle \psi | P_{\lambda} | \psi \rangle$, it produces the outcome λ .
- ► The state of the quantum system is simultaneously projected into the corresponding eigenspace, i.e. post-measurement, the system is in the state

$$rac{P_{\lambda}\ket{\psi}}{\sqrt{p_{\lambda}}}$$

The most common measurement on a single qubit is associated with the observable $Z=|0\rangle\langle 0|+(-1)\,|1\rangle\langle 1|.$

The most common measurement on a single qubit is associated with the observable $Z = |0\rangle\langle 0| + (-1)|1\rangle\langle 1|$.

Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Then measuring Z has the following effect:

▶ With probability $p_{+1} = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\alpha|^2$, the outcome is +1 and the qubit is left in the state $|0\rangle$.

The most common measurement on a single qubit is associated with the observable $Z=|0\rangle\langle 0|+(-1)|1\rangle\langle 1|.$

Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Then measuring Z has the following effect:

- ▶ With probability $p_{+1} = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\alpha|^2$, the outcome is +1 and the qubit is left in the state $|0\rangle$.
- ▶ With probability $p_{-1} = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\beta|^2$, the outcome is -1 and the qubit is left in the state $|1\rangle$.

The most common measurement on a single qubit is associated with the observable $Z=|0\rangle\langle 0|+(-1)|1\rangle\langle 1|.$

Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Then measuring Z has the following effect:

- ▶ With probability $p_{+1} = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\alpha|^2$, the outcome is +1 and the qubit is left in the state $|0\rangle$.
- ▶ With probability $p_{-1} = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\beta|^2$, the outcome is -1 and the qubit is left in the state $|1\rangle$.

The most common measurement on a single qubit is associated with the observable $Z = |0\rangle\langle 0| + (-1)|1\rangle\langle 1|$.

Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Then measuring Z has the following effect:

- ▶ With probability $p_{+1} = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\alpha|^2$, the outcome is +1 and the qubit is left in the state $|0\rangle$.
- ▶ With probability $p_{-1} = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\beta|^2$, the outcome is -1 and the qubit is left in the state $|1\rangle$.

Instead of the labels ± 1 , we often use labels 0,1 and call this a 'computational basis measurement': i.e. we write $p_0 = |\alpha|^2$ and $p_1 = |\beta|^2$.

Example: X-measurement

The Pauli-X matrix is also an observable $X=|+\rangle\langle+|+(-1)|-\rangle\langle-|$. Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Measuring X has the following effect:

▶ With probability

$$p_{+1} = \langle \psi | + \rangle \langle + | \psi \rangle = |\langle + | \psi \rangle|^2 = \left| \frac{1}{\sqrt{2}} (\alpha + \beta) \right|^2$$

the outcome is +1 and the qubit is left in the state $|+\rangle$.

Example: X-measurement

The Pauli-X matrix is also an observable $X=|+\rangle\langle+|+(-1)|-\rangle\langle-|$. Suppose a qubit is in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. Measuring X has the following effect:

With probability

$$p_{+1} = \langle \psi | + \rangle \langle + | \psi \rangle = |\langle + | \psi \rangle|^2 = \left| \frac{1}{\sqrt{2}} (\alpha + \beta) \right|^2$$

the outcome is +1 and the qubit is left in the state $|+\rangle$.

With probability

$$p_{-1} = \left| \left\langle - |\psi \right\rangle \right|^2 = \left| \frac{1}{\sqrt{2}} (\alpha - \beta) \right|^2$$

the outcome is -1 and the qubit is left in the state $|-\rangle$.

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes.

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

Suppose $|\psi'\rangle=\gamma\,|\psi\rangle$, where $\gamma\in\mathbb{C}$ satisfies $|\gamma|=1$.

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

$$\langle \psi' | P_{\lambda} | \psi' \rangle$$

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

$$\langle \psi' | P_{\lambda} | \psi' \rangle = (|\psi' \rangle)^{\dagger} P_{\lambda} | \psi' \rangle$$

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

$$\langle \psi' | P_{\lambda} | \psi' \rangle = (|\psi'\rangle)^{\dagger} P_{\lambda} | \psi' \rangle = (\gamma |\psi\rangle)^{\dagger} P_{\lambda} (\gamma |\psi\rangle)$$

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

$$\langle \psi' | P_{\lambda} | \psi' \rangle = (|\psi'\rangle)^{\dagger} P_{\lambda} | \psi' \rangle = (\gamma |\psi\rangle)^{\dagger} P_{\lambda} (\gamma |\psi\rangle) = \gamma^* \gamma \langle \psi | P_{\lambda} | \psi \rangle$$

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

Suppose $|\psi'\rangle=\gamma\,|\psi\rangle$, where $\gamma\in\mathbb{C}$ satisfies $|\gamma|=1$. Then for any observable $O=\sum_{\lambda}\lambda P_{\lambda}$, the probability of outcome λ satisfies

$$\langle \psi' | P_{\lambda} | \psi' \rangle = (|\psi'\rangle)^{\dagger} P_{\lambda} | \psi' \rangle = (\gamma |\psi\rangle)^{\dagger} P_{\lambda} (\gamma |\psi\rangle) = \gamma^* \gamma \langle \psi | P_{\lambda} | \psi \rangle = \langle \psi | P_{\lambda} | \psi \rangle$$

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved

The state of a qubit is described by two complex numbers (or at least two real numbers) but measurement gives 2 discrete outcomes. An n-qubit state is described by 2^n complex numbers but the (up to) 2^n possible measurement outcomes can be described using at most n bits.

Global factors are physically irrelevant

Suppose $|\psi'\rangle=\gamma\,|\psi\rangle$, where $\gamma\in\mathbb{C}$ satisfies $|\gamma|=1$. Then for any observable $O=\sum_{\lambda}\lambda P_{\lambda}$, the probability of outcome λ satisfies

$$\langle \psi' | P_{\lambda} | \psi' \rangle = (|\psi'\rangle)^{\dagger} P_{\lambda} | \psi' \rangle = (\gamma | \psi \rangle)^{\dagger} P_{\lambda} (\gamma | \psi \rangle) = \gamma^* \gamma \langle \psi | P_{\lambda} | \psi \rangle = \langle \psi | P_{\lambda} | \psi \rangle$$

The same holds for any more general form of measurement, justifying the assumption we made when introducing the Bloch sphere picture.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Quantum implementations of Boolean functions

Given a Boolean function $f: \{0,1\}^n \to \{0,1\}^m$, we can build a quantum circuit on (n+m) qubits implementing the unitary linear map

$$U_f(\ket{\mathtt{x}}\ket{\mathtt{y}}) = \ket{\mathtt{x}}\ket{\mathtt{y}+f(\mathtt{x})}$$

where $\mathbf{x} \in \{0,1\}^n$, $\mathbf{y} \in \{0,1\}^m$ and the sum $\mathbf{y} + f(\mathbf{x})$ interprets the bit strings as binary numbers and is taken modulo 2^m .

Quantum implementations of Boolean functions

Given a Boolean function $f: \{0,1\}^n \to \{0,1\}^m$, we can build a quantum circuit on (n+m) qubits implementing the unitary linear map

$$U_f(\ket{\mathtt{x}}\ket{\mathtt{y}}) = \ket{\mathtt{x}}\ket{\mathtt{y}+f(\mathtt{x})}$$

where $\mathbf{x} \in \{0,1\}^n$, $\mathbf{y} \in \{0,1\}^m$ and the sum $\mathbf{y} + f(\mathbf{x})$ interprets the bit strings as binary numbers and is taken modulo 2^m . The first n qubits are called the input register and the last m qubits are called the output register.

Quantum implementations of Boolean functions

Given a Boolean function $f: \{0,1\}^n \to \{0,1\}^m$, we can build a quantum circuit on (n+m) qubits implementing the unitary linear map

$$U_f(\ket{\mathtt{x}}\ket{\mathtt{y}}) = \ket{\mathtt{x}}\ket{\mathtt{y}+f(\mathtt{x})}$$

where $\mathbf{x} \in \{0,1\}^n$, $\mathbf{y} \in \{0,1\}^m$ and the sum $\mathbf{y} + f(\mathbf{x})$ interprets the bit strings as binary numbers and is taken modulo 2^m . The first n qubits are called the input register and the last m qubits are called the output register.

E.g. if f is AND, then U_f is the Toffoli gate, which for any $x_1, x_2, y \in \{0,1\}$ acts as

$$U_{\scriptscriptstyle ext{AND}}(\ket{x_1x_2}\ket{y}) = \ket{x_1x_2}\ket{y\oplus(x_1\wedge x_2)}$$

Deutsch's problem

Input: A 'black box' implementation of a function $f: \{0,1\}^n \to \{0,1\}$,

which is promised to be either constant or balanced.

Output: Decide with certainty whether *f* is constant or balanced.

'Black box' means the only way to interact with the implementation is to enter an input and read out the corresponding output: this is called a query.

Deutsch's problem

Input: A 'black box' implementation of a function $f: \{0,1\}^n \to \{0,1\}$,

which is promised to be either constant or balanced.

Output: Decide with certainty whether *f* is constant or balanced.

'Black box' means the only way to interact with the implementation is to enter an input and read out the corresponding output: this is called a query.

Classically, in the worst case, need $2^{n-1} + 1$ queries for certainty.

Deutsch's problem

Input: A 'black box' implementation of a function $f: \{0,1\}^n \to \{0,1\}$,

which is promised to be either constant or balanced.

Output: Decide with certainty whether *f* is constant or balanced.

'Black box' means the only way to interact with the implementation is to enter an input and read out the corresponding output: this is called a query.

Classically, in the worst case, need $2^{n-1} + 1$ queries for certainty.

If the implementation is quantum, the Deutsch-Jozsa algorithm shows a single query is enough.

$$|0\rangle \longrightarrow H \longrightarrow H \longrightarrow H$$

$$|0\rangle \longrightarrow X \longrightarrow H \longrightarrow U_f \longrightarrow H$$

$$|+\rangle |+\rangle |-\rangle = \frac{1}{2\sqrt{2}} \sum_{\mathbf{x} \in \{0,1\}^2} |\mathbf{x}\rangle (|0\rangle - |1\rangle)$$

For any n, we have $|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle$.

$$\frac{1}{2\sqrt{2}}\sum_{\mathbf{x}\in\{0,1\}^2}|\mathbf{x}\rangle\left(|0\oplus f(\mathbf{x})\rangle-|1\oplus f(\mathbf{x})\rangle=\frac{1}{2}\sum_{\mathbf{x}\in\{0,1\}^2}(-1)^{f(\mathbf{x})}\left|\mathbf{x}\rangle\right.|-\rangle$$

This way of moving the value of a function to the exponent of a scalar is called phase kickback.

$$|0\rangle$$
 H U_f H $|0\rangle$ X H

$$(H^{\otimes 2} \otimes I)\frac{1}{2} \sum_{\mathbf{x} \in \{0,1\}^2} (-1)^{f(\mathbf{x})} \ket{\mathbf{x}} \ket{-} = \frac{1}{4} \sum_{\mathbf{x} \in \{0,1\}^2} \sum_{\mathbf{y} \in \{0,1\}^2} (-1)^{f(\mathbf{x}) + \mathbf{x} \cdot \mathbf{y}} \ket{\mathbf{y}} \ket{-}$$

Note:
$$H|x\rangle = \frac{1}{\sqrt{2}} \sum_{y \in \{0,1\}} (-1)^{xy} |y\rangle$$
 for any $x \in \{0,1\}$.

$$|0\rangle$$
 H U_f H $|0\rangle$ X H

$$(H^{\otimes 2} \otimes I) \frac{1}{2} \sum_{\mathbf{x} \in \{0,1\}^2} (-1)^{f(\mathbf{x})} \ket{\mathbf{x}} \ket{-} = \frac{1}{4} \sum_{\mathbf{y} \in \{0,1\}^2} \left(\sum_{\mathbf{x} \in \{0,1\}^2} (-1)^{f(\mathbf{x}) + \mathbf{x} \cdot \mathbf{y}} \right) \ket{\mathbf{y}} \ket{-}$$

If f is constant, $\left|\sum_{\mathbf{x}\in\{0,1\}^2}(-1)^{f(\mathbf{x})+\mathbf{x}\cdot\mathbf{0}}\right|=4$; if f is balanced, this sum is 0.

$$|0\rangle$$
 H U_f H $|0\rangle$ X H

$$(H^{\otimes 2} \otimes I) \frac{1}{2} \sum_{\mathbf{x} \in \{0,1\}^2} (-1)^{f(\mathbf{x})} \ket{\mathbf{x}} \ket{-} = \frac{1}{4} \sum_{\mathbf{y} \in \{0,1\}^2} \left(\sum_{\mathbf{x} \in \{0,1\}^2} (-1)^{f(\mathbf{x}) + \mathbf{x} \cdot \mathbf{y}} \right) \ket{\mathbf{y}} \ket{-}$$

If f is constant, $\left|\sum_{\mathbf{x}\in\{0,1\}^2}(-1)^{f(\mathbf{x})+\mathbf{x}\cdot\mathbf{0}}\right|=4$; if f is balanced, this sum is 0. This means $p_{00}=1$ if f is constant, $p_{00}=0$ if f is balanced; so one query suffices.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Fourier transform: intuition

frequency domain

Given a complex vector (x_0, \ldots, x_{N-1}) of fixed length N, its discrete Fourier transform is the vector (y_0, \ldots, y_{N-1}) defined for any $0 \le k < N$ as

$$y_k := \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} x_j.$$

Given a complex vector (x_0, \ldots, x_{N-1}) of fixed length N, its discrete Fourier transform is the vector (y_0, \ldots, y_{N-1}) defined for any $0 \le k < N$ as

$$y_k := \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} e^{2\pi i j k/N} x_j.$$

The classical Fast Fourier Transform algorithm (FFT) runs in $O(N \log N)$.

Given a complex vector (x_0, \ldots, x_{N-1}) of fixed length N, its discrete Fourier transform is the vector (y_0, \ldots, y_{N-1}) defined for any $0 \le k < N$ as

$$y_k := \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} x_j.$$

The classical Fast Fourier Transform algorithm (FFT) runs in $O(N \log N)$.

The quantum Fourier transform is a discrete Fourier transform on the amplitudes of the state vector:

$$|j\rangle\mapsto rac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{2\pi ijk/N}\,|k\rangle$$
 or equivalently $\sum_{j=0}^{N-1}x_j\,|j\rangle\mapsto \sum_{k=0}^{N-1}y_k\,|k\rangle$

Given a complex vector (x_0, \ldots, x_{N-1}) of fixed length N, its discrete Fourier transform is the vector (y_0, \ldots, y_{N-1}) defined for any $0 \le k < N$ as

$$y_k := \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} x_j.$$

The classical Fast Fourier Transform algorithm (FFT) runs in $O(N \log N)$.

The quantum Fourier transform is a discrete Fourier transform on the amplitudes of the state vector:

$$|j\rangle\mapsto rac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{2\pi ijk/N}\,|k\rangle$$
 or equivalently $\sum_{j=0}^{N-1}x_j\,|j\rangle\mapsto \sum_{k=0}^{N-1}y_k\,|k\rangle$

If $N = 2^n$, this uses n qubits.

The quantum Fourier transform

Suppose $N=2^n$ and write j in binary: $j_1j_2...j_n \in \{0,1\}^n$ corresponding to the number $\sum_{\ell=1}^n j_\ell 2^{n-\ell}$.

The quantum Fourier transform

Suppose $N=2^n$ and write j in binary: $j_1j_2\dots j_n\in\{0,1\}^n$ corresponding to the number $\sum_{\ell=1}^n j_\ell 2^{n-\ell}$. Then we can write $|j\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}e^{2\pi ijk/2^n}|k\rangle$ as

$$|j_1...j_n\rangle \mapsto \frac{1}{\sqrt{2^n}}(|0\rangle + e^{2\pi i j_n/2}|1\rangle)(|0\rangle + e^{2\pi i (j_{n-1}/2 + j_n/4)}|1\rangle) \cdot \cdot \cdot (|0\rangle + e^{2\pi i \sum_{\ell=1}^n j_\ell 2^{-\ell}}|1\rangle)$$

The quantum Fourier transform

Suppose $N=2^n$ and write j in binary: $j_1j_2\dots j_n\in\{0,1\}^n$ corresponding to the number $\sum_{\ell=1}^n j_\ell 2^{n-\ell}$. Then we can write $|j\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}e^{2\pi ijk/2^n}|k\rangle$ as

$$|j_1...j_n
angle \mapsto rac{1}{\sqrt{2^n}}(|0
angle + e^{2\pi i j_n/2}\,|1
angle)(|0
angle + e^{2\pi i (j_{n-1}/2 + j_n/4)}\,|1
angle) \cdot \cdot \cdot (|0
angle + e^{2\pi i \sum_{\ell=1}^n j_\ell 2^{-\ell}}\,|1
angle)$$

The quantum period finding problem

Suppose $1 \le r < \sqrt{2^n}$. An *n*-qubit state 'has period *r*' if it is of the form

$$|\psi_{r,x_0}\rangle := \frac{1}{\sqrt{A}} \sum_{\ell=0}^{A-1} |x_0 + \ell r\rangle$$

where x_0 is a random offset in the range $0 \le x_0 < r$ that may be different for each state produced, and A is the smallest integer such that $x_0 + Ar \ge 2^n$.

The quantum period finding problem

Suppose $1 \le r < \sqrt{2^n}$. An *n*-qubit state 'has period *r*' if it is of the form

$$|\psi_{r,x_0}\rangle := \frac{1}{\sqrt{A}} \sum_{\ell=0}^{A-1} |x_0 + \ell r\rangle$$

where x_0 is a random offset in the range $0 \le x_0 < r$ that may be different for each state produced, and A is the smallest integer such that $x_0 + Ar \ge 2^n$.

Input: a black box producing quantum states $|\psi_{r,x_0}\rangle$ for some unknown fixed r, and a method for checking whether a guess for r is correct

Output: the period r

The quantum period finding problem

Suppose $1 \le r < \sqrt{2^n}$. An *n*-qubit state 'has period *r*' if it is of the form

$$|\psi_{r,x_0}\rangle := \frac{1}{\sqrt{A}} \sum_{\ell=0}^{A-1} |x_0 + \ell r\rangle$$

where x_0 is a random offset in the range $0 \le x_0 < r$ that may be different for each state produced, and A is the smallest integer such that $x_0 + Ar \ge 2^n$.

Input: a black box producing quantum states $|\psi_{r,\mathsf{x}_0}\rangle$ for some unknown fixed

r, and a method for checking whether a guess for r is correct

Output: the period r

This can be solved using the QFT.

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

N is not prime (this can be done in polynomial time),

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

- N is not prime (this can be done in polynomial time),
- ▶ *N* is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

- N is not prime (this can be done in polynomial time),
- N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and
- N cannot be written as $N=a^b$ for any integers $a \ge 1$, $b \ge 2$ (this check runs in polynomial time and, if applicable, outputs the non-trivial factor a).

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

- N is not prime (this can be done in polynomial time),
- N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and
- N cannot be written as $N=a^b$ for any integers $a \ge 1$, $b \ge 2$ (this check runs in polynomial time and, if applicable, outputs the non-trivial factor a).

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

- N is not prime (this can be done in polynomial time),
- N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and
- N cannot be written as $N = a^b$ for any integers $a \ge 1$, $b \ge 2$ (this check runs in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N-1 such that $\gcd(x, N) = 1$ Output: the smallest positive r such that $x^r \equiv 1 \pmod{N}$

Input: a positive integer N, which is promised to be a composite number Output: an integer p in the range 1 such that <math>p divides N

First verify:

- N is not prime (this can be done in polynomial time),
- ▶ *N* is odd (otherwise 2 is a non-trivial factor and the problem is solved), and
- N cannot be written as $N = a^b$ for any integers $a \ge 1$, $b \ge 2$ (this check runs in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N-1 such that $\gcd(x, N) = 1$ Output: the smallest positive r such that $x^r \equiv 1 \pmod{N}$

It is likely that r is even and one of $gcd(x^{r/2} \pm 1, N)$ is a non-trivial factor.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Input: a (quantum) black box implementing some Boolean function

 $f: \{0,1\}^n \to \{0,1\}$

Output: a bit string $\mathbf{x} \in \{0,1\}^n$ such that $f(\mathbf{x}) = 1$

Input: a (quantum) black box implementing some Boolean function

 $f: \{0,1\}^n \to \{0,1\}$

Output: a bit string $\mathbf{x} \in \{0,1\}^n$ such that $f(\mathbf{x}) = 1$

Let $A = \{ \mathbf{x} \in \{0,1\}^n \mid f(\mathbf{x}) = 1 \}$ and set M = |A|, $N = 2^n$.

Input: a (quantum) black box implementing some Boolean function

 $f: \{0,1\}^n \to \{0,1\}$

Output: a bit string $\mathbf{x} \in \{0,1\}^n$ such that $f(\mathbf{x}) = 1$

Let $A = \{ \mathbf{x} \in \{0,1\}^n \mid f(\mathbf{x}) = 1 \}$ and set M = |A|, $N = 2^n$.

Classically, need O(N/M) queries on average to find an element of A.

Input: a (quantum) black box implementing some Boolean function

 $f: \{0,1\}^n \to \{0,1\}$

Output: a bit string $\mathbf{x} \in \{0,1\}^n$ such that $f(\mathbf{x}) = 1$

Let $A = \{ \mathbf{x} \in \{0,1\}^n \mid f(\mathbf{x}) = 1 \}$ and set M = |A|, $N = 2^n$.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, $O(\sqrt{N/M})$ queries suffice if M is known and $M \ll N$.

Input: a (quantum) black box implementing some Boolean function

 $f: \{0,1\}^n \to \{0,1\}$

Output: a bit string $\mathbf{x} \in \{0,1\}^n$ such that $f(\mathbf{x}) = 1$

Let $A = \{ \mathbf{x} \in \{0,1\}^n \mid f(\mathbf{x}) = 1 \}$ and set M = |A|, $N = 2^n$.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, $O(\sqrt{N/M})$ queries suffice if M is known and $M \ll N$.

Combination of Grover's algorithm and QFT can also be used to determine M if it is unknown: this is 'quantum counting'.

Phase kickback and a useful subspace

The quantum black box is given as $U_f(|\mathbf{x}\rangle|y\rangle) = |\mathbf{x}\rangle|y \oplus f(x)\rangle$, but we can use the 'phase kickback trick' from Deutsch-Jozsa algorithm to turn it into $U'_f(|\mathbf{x}\rangle|-\rangle) = (-1)^{f(\mathbf{x})}|\mathbf{x}\rangle|-\rangle$.

Phase kickback and a useful subspace

The quantum black box is given as $U_f(|\mathbf{x}\rangle|y\rangle) = |\mathbf{x}\rangle|y \oplus f(x)\rangle$, but we can use the 'phase kickback trick' from Deutsch-Jozsa algorithm to turn it into $U_f'(|\mathbf{x}\rangle|-\rangle) = (-1)^{f(\mathbf{x})}|\mathbf{x}\rangle|-\rangle$.

Consider the 2-dimensional vector space spanned by

$$|\phi_1\rangle = \frac{1}{\sqrt{M}} \sum_{\mathbf{x} \in A} |\mathbf{x}\rangle$$
 and $|\phi_0\rangle = \frac{1}{\sqrt{N-M}} \sum_{\mathbf{x} \in \{0,1\}^n \setminus A} |\mathbf{x}\rangle$

This space also contains

$$|+\rangle^{\otimes n} = \frac{1}{\sqrt{N}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle = \sqrt{\frac{N-M}{N}} |\phi_0\rangle + \sqrt{\frac{M}{N}} |\phi_1\rangle$$

The Grover operator

Let $G = U_+ U'_f$, where $U_+ = 2 |++ ...+\rangle \langle ++ ...+| - I$.

The Grover operator

Let
$$G = U_+ U'_f$$
, where $U_+ = 2 |++ ... + \rangle \langle ++ ... + |-I|$.

G performs a rotation by angle $\theta \approx 2\sqrt{M/N}$, so after $O(\sqrt{N/M})$ applications, probability of measuring a state in A is high. Checking correctness is easy.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm Quantum Fourier transform and Shor's algorithm Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Suppose Alice wants to send a quantum state to Bob, but she can only send bits, not qubits.

▶ If Alice knows the state, she can send a classical description: but this would require a lot of data and still be approximate.

Suppose Alice wants to send a quantum state to Bob, but she can only send bits, not qubits.

- ▶ If Alice knows the state, she can send a classical description: but this would require a lot of data and still be approximate.
- ▶ Yet with some advance preparation, Alice can send even an unknown quantum state using only 2 bits of communication.

Suppose Alice wants to send a quantum state to Bob, but she can only send bits, not qubits.

- ▶ If Alice knows the state, she can send a classical description: but this would require a lot of data and still be approximate.
- ▶ Yet with some advance preparation, Alice can send even an unknown quantum state using only 2 bits of communication.

Suppose Alice wants to send a quantum state to Bob, but she can only send bits, not qubits.

- ▶ If Alice knows the state, she can send a classical description: but this would require a lot of data and still be approximate.
- ➤ Yet with some advance preparation, Alice can send even an unknown quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state $|\Phi_{+}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.

$$\begin{split} (H \otimes \mathit{I}_{2}) &(\text{Cnot} \otimes \mathit{I}) \ket{\psi} \ket{\Phi_{+}} \\ &= (H \otimes \mathit{I}_{2}) &(\text{cnot} \otimes \mathit{I}) \frac{1}{\sqrt{2}} (\alpha \ket{0} + \beta \ket{1}) (\ket{00} + \ket{11}) \end{split}$$

$$(H \otimes I_2)(\text{CNOT} \otimes I) |\psi\rangle |\Phi_+\rangle$$

$$= (H \otimes I_2)(\text{CNOT} \otimes I) \frac{1}{\sqrt{2}} (\alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle)$$

$$(H \otimes I_2)(\text{CNOT} \otimes I) |\psi\rangle |\Phi_+\rangle$$

$$= (H \otimes I_2) \frac{1}{\sqrt{2}} (\alpha |000\rangle + \alpha |011\rangle + \beta |110\rangle + \beta |101\rangle)$$

$$(H \otimes I_2)(\text{CNOT} \otimes I) |\psi\rangle |\Phi_+\rangle$$

$$= \frac{1}{2} (\alpha |000\rangle + \alpha |100\rangle + \alpha |011\rangle + \alpha |111\rangle + \beta |010\rangle - \beta |110\rangle + \beta |001\rangle - \beta |101\rangle)$$

$$|\psi
angle$$
 H A lice $|\Phi_{+}
angle$ X Z Bob

$$egin{aligned} (H\otimes I_2) &(ext{CNOT}\otimes I)\ket{\psi}\ket{\Phi_+} \ &= rac{1}{2}igg(\ket{00}ig(lpha\ket{0}+eta\ket{1}ig)+\ket{01}ig(lpha\ket{1}+eta\ket{0}ig)+\ket{10}ig(lpha\ket{0}-eta\ket{1}ig) \ &+\ket{01}ig(lpha\ket{1}-eta\ket{0}ig) \end{aligned}$$

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Quantum computational resources are limited, so we need to use them efficiently.

Quantum computational resources are limited, so we need to use them efficiently.

► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?

Quantum computational resources are limited, so we need to use them efficiently.

- ► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?
- ▶ How can we check that two given circuits describe the same linear map?

Quantum computational resources are limited, so we need to use them efficiently.

- ► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?
- ▶ How can we check that two given circuits describe the same linear map?

Quantum computational resources are limited, so we need to use them efficiently.

- ► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?
- ▶ How can we check that two given circuits describe the same linear map?

For example, we might want

a circuit with fewer gates in total, or

Quantum computational resources are limited, so we need to use them efficiently.

- ► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?
- ▶ How can we check that two given circuits describe the same linear map?

For example, we might want

- a circuit with fewer gates in total, or
- a circuit with fewer layers of gates, or

Quantum computational resources are limited, so we need to use them efficiently.

- ► Given a quantum circuit, can we find a more efficient circuit that describes the same linear map?
- ▶ How can we check that two given circuits describe the same linear map?

For example, we might want

- a circuit with fewer gates in total, or
- a circuit with fewer layers of gates, or
- a circuit with fewer of a specific type of gate.

Hadamard gate

Z-spider

Hadamard gate

$$\longrightarrow |+\rangle\langle 0|+|-\rangle\langle 1| = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Z-spider

$$n \left\{ \begin{array}{c} \\ \vdots \\ \\ \end{array} \right\} m$$

Hadamard gate

$$\longrightarrow$$
 $|+\rangle\langle 0|+|-\rangle\langle 1|=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Z-spider

$$n\left\{\begin{array}{ccc} m & \longrightarrow & \left|\underbrace{0\dots0}\right\rangle\langle\underbrace{0\dots0}\right| + e^{i\alpha}\left|\underbrace{1\dots1}\right\rangle\langle\underbrace{1\dots1}\right| = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{i\alpha} \end{pmatrix}$$

Hadamard gate

$$\longrightarrow$$
 $|+\rangle\langle 0|+|-\rangle\langle 1|=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$

Z-spider

$$n\left\{\underbrace{\vdots}\right\} m \quad \rightsquigarrow \quad |\underbrace{0\ldots 0}_{m}\rangle\langle\underbrace{0\ldots 0}_{n}| + e^{i\alpha}|\underbrace{1\ldots 1}_{m}\rangle\langle\underbrace{1\ldots 1}_{n}| = \begin{pmatrix} 1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & e^{i\alpha} \end{pmatrix}$$

$$n \left\{ \begin{array}{c} \\ \vdots \\ \\ \end{array} \right\} m \longrightarrow \left[\begin{array}{c} \\ \\ \\ \end{array} \right] \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\$$

$$\langle 0 \rangle \langle 0 | + |1 \rangle \langle 1 |$$

$$=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\longrightarrow |0\rangle\langle 0| + |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\longrightarrow |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\longrightarrow |0\rangle\langle 0| + |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\longrightarrow |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\longrightarrow \langle 00| + \langle 11| = (1 & 0 & 0 & 1)$$

Translating circuits into ZX-diagrams

Translating circuits into ZX-diagrams

Only connectivity matters

Only connectivity matters

Only connectivity matters

This is made mathematically rigorous using monoidal category theory.

A complete set of ZX-calculus rewrite rules

$$-\alpha - \beta - \gamma - = -\alpha - \beta - \gamma$$

Only connectivity matters.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms

The Deutsch-Jozsa algorithm

Quantum Fourier transform and Shor's algorithm

Grover's algorithm

Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

• qubit states are vectors $\binom{\alpha}{\beta} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- lacktriangle states of multiple qubits are vectors $\sum_{\mathbf{x}\in\{0,1\}} lpha_{\mathbf{x}} \, |\mathbf{x}\rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- lacktriangle states of multiple qubits are vectors $\sum_{\mathbf{x}\in\{0,1\}} lpha_{\mathbf{x}} |\mathbf{x}\rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ightharpoonup states of multiple qubits are vectors $\sum_{\mathbf{x}\in\{0,1\}} lpha_{\mathbf{x}} |\mathbf{x}\rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols
- optimisation of quantum computations using ZX-calculus is an area of active research

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols
- optimisation of quantum computations using ZX-calculus is an area of active research

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols
- optimisation of quantum computations using ZX-calculus is an area of active research

Topics not discussed:

quantum error correction

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols
- optimisation of quantum computations using ZX-calculus is an area of active research

Topics not discussed:

- quantum error correction
- quantum simulation

- qubit states are vectors $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ in \mathbb{C}^2
- ▶ states of multiple qubits are vectors $\sum_{\mathbf{x} \in \{0,1\}} \alpha_{\mathbf{x}} | \mathbf{x} \rangle$ in $(\mathbb{C}^2)^{\otimes n} \simeq \mathbb{C}^{2^n}$
- qubit transformations are unitary linear maps, they can be expressed as circuits using CNOT and single-qubit gates
- quantum measurements are probabilistic and change the state
- there are useful quantum algorithms and protocols
- optimisation of quantum computations using ZX-calculus is an area of active research

Topics not discussed:

- quantum error correction
- quantum simulation
- building physical quantum computers