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Bits and Boolean functions

▶ Data is stored as bits:
b ∈ {0, 1}

▶ Sequences of bits form bit strings:

b ∈ {0, 1}n

▶ Transformations are given by Boolean functions:

f : {0, 1}n → {0, 1}m
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Logic circuits

Cannot directly implement most Boolean functions, instead decompose them as
circuits over a small set of logic gates.

name symbol function

and x , y 7→ x ∧ y

or x , y 7→ x ∨ y

not x 7→ ¬x

xor x , y 7→ x ⊕ y

copy x 7→ x , x

f (x , y , z ,w) = ¬(x∧y)∨(z∧w)

Number of gates in circuit can be used as measure of computational complexity.
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Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called
Dirac notation:

0 7→
(
1
0

)
=: |0⟩ 1 7→

(
0
1

)
=: |1⟩

The vector associated to a bit string is the tensor product (Kronecker product) of
the bit vectors – essentially a unary encoding:

01 7→ |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗

(
0
1

)
=


00 0
01 1
10 0
11 0

 =: |01⟩

In Dirac notation, the ⊗ symbol is sometimes left out, e.g. |0⟩ |1⟩ = |0⟩ ⊗ |1⟩.
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Linear algebra notation for Boolean functions

Transformations are represented as matrices, e.g. the and gate becomes

(00 01 10 11

0 1 1 1 0
1 0 0 0 1

)

Then 0 ∧ 1 can be computed as

(
1 1 1 0
0 0 0 1

)
|01⟩ =

(
1 1 1 0
0 0 0 1

)
0
1
0
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Linear algebra for logic circuits

Use tensor product for parallel composition and matrix product for serial
composition:

or (not⊗ I )

=

(
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0 1 1 1
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1 0

)
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1 0
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Reversible logic gates
A logic gate is reversible if the corresponding matrix is invertible.

▶ The and gate is not reversible since ( 1 1 1 0
0 0 0 1 ) is not square.

▶ The not gate is reversible since it corresponds to the matrix

(0 1

0 0 1
1 1 0

)

The cnot gate is considered a reversible version of xor: x , y 7→ x , y ⊕ x


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0
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The Toffoli gate and functional universality

x , y , z 7→ x , y , z ⊕ (x ∧ y)



000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0



The Toffoli gate is functionally universal: any Boolean function can be computed
by a logic circuit consisting of Toffoli gates (and constant inputs).
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The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space C2:

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ α, β ∈ C, |α|2 + |β|2 = 1

The values α, β are called amplitudes. If α, β are both non-zero, the state is a
superposition of |0⟩ and |1⟩.

It is physically impossible to distinguish two states that differ only by a global
factor |ψ′⟩ = γ |ψ⟩, where |γ| = 1. Single-qubit states can thus be written as:

|ψ⟩ = cos
(
θ
2

)
|0⟩+ e iφ sin

(
θ
2

)
|1⟩ θ ∈ [0, π], φ ∈ [0, 2π)
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Visualising single-qubit states on the Bloch sphere

|ψ⟩

|+⟩

|i⟩

|0⟩

|1⟩

φ

θ

|ψ⟩ = cos
(
θ
2

)
|0⟩+e iφ sin

(
θ
2

)
|1⟩

where θ ∈ [0, π], φ ∈ [0, 2π)

▶ |+⟩ = 1√
2
(|0⟩+ |1⟩)

▶ |i⟩ = 1√
2
(|0⟩+ i |1⟩)



The Pauli matrices and their eigenstates

name matrix eigenstates

X

(
0 1
1 0

)
|+⟩ , |−⟩

Y

(
0 −i
i 0

)
|i⟩ , |−i⟩

Z

(
1 0
0 −1

)
|0⟩ , |1⟩

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) and

|±i⟩ = 1√
2
(|0⟩ ± i |1⟩)

|+⟩

|i⟩

|0⟩

|1⟩

|−⟩
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Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)
▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

|+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.
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Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or
11.

The joint state space of two qubits is the Hilbert space C2 ⊗C2 ≃ C4; a state can
be written as a superposition over all the 2-bit strings:

|ψ⟩ =


00 α00

01 α01

10 α10

11 α11

 = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =
∑

x∈{0,1}2
αx |x⟩

where normalisation requires
∑

x∈{0,1}2 |αx|2 = 1.

The states {|x⟩}x∈{0,1}n are called the computational basis.
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Product states and entangled states

Some two-qubit states arise as tensor products of single-qubit states, e.g.:

▶ |0⟩ ⊗ |0⟩ = |00⟩
▶ |1⟩ ⊗ |−⟩ = |1⟩ ⊗ 1√

2
(|0⟩ − |1⟩) = 1√

2
(|10⟩ − |11⟩)

These are called product states.

There are also states which cannot be expressed as a tensor product of any pair of
single-qubit states, e.g. the ‘Bell state’:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Such states are called entangled.
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Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).



Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).



Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).



Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).



Multi-qubit transformations and quantum circuits

Reversible classical gates such as not, cnot, and Toffoli are also unitary.

Gates can be composed into quantum circuits:

P(7π
4
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Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

cnot, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

cnot, Hadamard and T = P(π
4
) =

(
1 0
0 e iπ/4

)
together are universal in the sense

that any unitary operation can be efficiently approximated to arbitrary accuracy by
a circuit over these gates.

Theorem (Gottesmann & Knill, 1998)

Circuits over cnot, Hadamard and S = P(π
2
) = ( 1 0

0 i ) are efficiently classically
simulable. (They are called Clifford circuits or stabiliser circuits.)
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Dirac notation for row vectors and inner product

Given a vector |ψ⟩ =
(
α0 α1 . . . αk−1

)T
, its Hermitian conjugate is the ‘bra’

⟨ψ| = (|ψ⟩)† =
(
α∗
0 α∗

1 . . . α∗
k−1

)

Given a second vector |ϕ⟩ =
(
β0 β1 . . . βk−1

)T
, the inner product of |ψ⟩ and

|ϕ⟩ is written as the following ‘braket’:

⟨ψ|ϕ⟩ =
(
α∗
0 α∗

1 . . . α∗
k−1

)


β0
β1
...

βk−1

 =
k−1∑
j=0

α∗
j βj

The outer product can be written as a ‘ketbra’ |ϕ⟩⟨ψ|. With both vectors equal,
|ψ⟩⟨ψ| is the projector onto the vector space spanned by |ψ⟩.
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Observables and quantum measurement

It is impossible to ‘read out’ the state vector directly. To gain information about a
quantum state, need to perform a measurement, which is most commonly
described by an observable: a Hermitian linear map.

Write such an observable as O =
∑

λ λPλ, where λ are the eigenvalues and Pλ are
the projectors onto the corresponding eigenspaces.

Measuring the observable O on state |ψ⟩ has the following effects:

▶ With probability pλ = ⟨ψ|Pλ |ψ⟩, it produces the outcome λ.

▶ The state of the quantum system is simultaneously projected into the
corresponding eigenspace, i.e. post-measurement, the system is in the state

Pλ |ψ⟩√
pλ
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Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.
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Example: X -measurement

The Pauli-X matrix is also an observable X = |+⟩⟨+|+ (−1) |−⟩⟨−|. Suppose a
qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Measuring X has the following effect:

▶ With probability

p+1 = ⟨ψ|+⟩ ⟨+|ψ⟩ = |⟨+|ψ⟩|2 =
∣∣∣ 1√

2
(α + β)

∣∣∣2
the outcome is +1 and the qubit is left in the state |+⟩.

▶ With probability

p−1 = |⟨−|ψ⟩|2 =
∣∣∣ 1√

2
(α− β)

∣∣∣2
the outcome is −1 and the qubit is left in the state |−⟩.
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Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes.

An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.
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Quantum implementations of Boolean functions

Given a Boolean function f : {0, 1}n → {0, 1}m, we can build a quantum circuit
on (n +m) qubits implementing the unitary linear map

Uf (|x⟩ |y⟩) = |x⟩ |y + f (x)⟩

where x ∈ {0, 1}n, y ∈ {0, 1}m and the sum y + f (x) interprets the bit strings as
binary numbers and is taken modulo 2m.

The first n qubits are called the input
register and the last m qubits are called the output register.

E.g. if f is and, then Uf is the Toffoli gate, which for any x1, x2, y ∈ {0, 1} acts as

Uand(|x1x2⟩ |y⟩) = |x1x2⟩ |y ⊕ (x1 ∧ x2)⟩
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Deutsch’s problem

Input: A ‘black box’ implementation of a function f : {0, 1}n → {0, 1},
which is promised to be either constant or balanced.

Output: Decide with certainty whether f is constant or balanced.

‘Black box’ means the only way to interact with the implementation is to enter an
input and read out the corresponding output: this is called a query.

Classically, in the worst case, need 2n−1 + 1 queries for certainty.

If the implementation is quantum, the Deutsch-Jozsa algorithm shows a single
query is enough.
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The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

|0⟩ |0⟩ |0⟩

For any n, we have |+⟩⊗n = 1√
2n

∑
x∈{0,1}n |x⟩. This means p00 = 1 if f is

constant, p00 = 0 if f is balanced; so one query suffices.
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The discrete Fourier transform

Given a complex vector (x0, . . . , xN−1) of fixed length N , its discrete Fourier
transform is the vector (y0, . . . , yN−1) defined for any 0 ≤ k < N as

yk :=
1√
N

N−1∑
j=0

e2πijk/Nxj .

The classical Fast Fourier Transform algorithm (FFT) runs in O(N logN).

The quantum Fourier transform is a discrete Fourier transform on the amplitudes
of the state vector:

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩ or equivalently
N−1∑
j=0

xj |j⟩ 7→
N−1∑
k=0

yk |k⟩

If N = 2n, this uses n qubits.
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The quantum Fourier transform

Suppose N = 2n and write j in binary: j1j2 . . . jn ∈ {0, 1}n corresponding to the
number

∑n
ℓ=1 jℓ2

n−ℓ.

Then we can write |j⟩ 7→ 1√
2n

∑2n−1
k=0 e2πijk/2

n |k⟩ as

|j1...jn⟩ 7→ 1√
2n
(|0⟩+e2πijn/2 |1⟩)(|0⟩+e2πi(jn−1/2+jn/4) |1⟩) · · · (|0⟩+e2πi

∑n
ℓ=1 jℓ2

−ℓ |1⟩)

... · · ·

· · · ...

n − 1 QFTn−1

H

P(π
2
)

n − 1
P( π

2n−2 )

P( π
2n−1 )
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The quantum period finding problem

Suppose 1 ≤ r <
√
2n. An n-qubit state ‘has period r ’ if it is of the form

|ψr ,x0⟩ :=
1√
A

A−1∑
ℓ=0

|x0 + ℓr⟩

where x0 is a random offset in the range 0 ≤ x0 < r that may be different for each
state produced, and A is the smallest integer such that x0 + Ar ≥ 2n.

Input: a black box producing quantum states |ψr ,x0⟩ for some unknown fixed
r , and a method for checking whether a guess for r is correct

Output: the period r

This can be solved using the QFT.
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Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.
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Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√

N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.
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Phase kickback and a useful subspace

The quantum black box is given as Uf (|x⟩ |y⟩) = |x⟩ |y ⊕ f (x)⟩, but we can use
the ‘phase kickback trick’ from Deutsch-Jozsa algorithm to turn it into
U ′
f (|x⟩ |−⟩) = (−1)f (x) |x⟩ |−⟩.

Consider the 2-dimensional vector space spanned by

|ϕ1⟩ =
1√
M

∑
x∈A

|x⟩ and |ϕ0⟩ =
1√

N −M

∑
x∈{0,1}n\A

|x⟩

This space also contains

|+⟩⊗n =
1√
N

∑
x∈{0,1}n

|x⟩ =
√

N −M

N
|ϕ0⟩+

√
M

N
|ϕ1⟩
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The Grover operator

Let G = U+U
′
f , where U+ = 2 |++ . . .+⟩⟨++ . . .+| − I .

|ϕ0⟩

|ϕ1⟩

|+⟩⊗n

|ψ⟩

G |ψ⟩

U ′
f |ψ⟩

G performs a rotation by angle θ ≈ 2
√

M/N , so after O(
√

N/M) applications,
probability of measuring a state in A is high. Checking correctness is easy.
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Transmitting quantum information without a quantum channel

Suppose Alice wants to send a quantum state to Bob, but she can only send bits,
not qubits.

▶ If Alice knows the state, she can send a classical description: but this would
require a lot of data and still be approximate.

▶ Yet with some advance preparation, Alice can send even an unknown
quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).
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The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I ) |ψ⟩ |Φ+⟩

= (H ⊗ I2)(cnot⊗ I )
1√
2
(α |0⟩+ β |1⟩)(|00⟩+ |11⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)
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|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I ) |ψ⟩ |Φ+⟩

=
1

2

(
|00⟩ (α |0⟩+ β |1⟩) + |01⟩ (α |1⟩+ β |0⟩) + |10⟩ (α |0⟩ − β |1⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)



Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions



Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.
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The ZX-calculus components: (mostly) spiders instead of gates

Hadamard gate
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Wires in the ZX-calculus
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Translating circuits into ZX-diagrams
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This is made mathematically rigorous using monoidal category theory.
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A complete set of ZX-calculus rewrite rules
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Summary

▶ qubit states are vectors ( α
β ) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers
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