
Introduction to Quantum Computing

Miriam Backens (they/them)
Inria & Loria

miriam.backens@inria.fr

“New trends in Computing” summer school, Strasbourg, 2024

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Bits and Boolean functions

▶ Data is stored as bits:
b ∈ {0, 1}

▶ Sequences of bits form bit strings:

b ∈ {0, 1}n

▶ Transformations are given by Boolean functions:

f : {0, 1}n → {0, 1}m

Bits and Boolean functions

▶ Data is stored as bits:
b ∈ {0, 1}

▶ Sequences of bits form bit strings:

b ∈ {0, 1}n

▶ Transformations are given by Boolean functions:

f : {0, 1}n → {0, 1}m

Bits and Boolean functions

▶ Data is stored as bits:
b ∈ {0, 1}

▶ Sequences of bits form bit strings:

b ∈ {0, 1}n

▶ Transformations are given by Boolean functions:

f : {0, 1}n → {0, 1}m

Logic circuits

Cannot directly implement most Boolean functions, instead decompose them as
circuits over a small set of logic gates.

name symbol function

and x , y 7→ x ∧ y

or x , y 7→ x ∨ y

not x 7→ ¬x

xor x , y 7→ x ⊕ y

copy x 7→ x , x

f (x , y , z ,w) = ¬(x∧y)∨(z∧w)

Number of gates in circuit can be used as measure of computational complexity.

Logic circuits

Cannot directly implement most Boolean functions, instead decompose them as
circuits over a small set of logic gates.

name symbol function

and x , y 7→ x ∧ y

or x , y 7→ x ∨ y

not x 7→ ¬x

xor x , y 7→ x ⊕ y

copy x 7→ x , x

f (x , y , z ,w) = ¬(x∧y)∨(z∧w)

Number of gates in circuit can be used as measure of computational complexity.

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called
Dirac notation:

0 7→
(
1
0

)
=: |0⟩ 1 7→

(
0
1

)
=: |1⟩

The vector associated to a bit string is the tensor product (Kronecker product) of
the bit vectors – essentially a unary encoding:

01 7→ |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗

(
0
1

)
=


00 0
01 1
10 0
11 0

 =: |01⟩

In Dirac notation, the ⊗ symbol is sometimes left out, e.g. |0⟩ |1⟩ = |0⟩ ⊗ |1⟩.

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called
Dirac notation:

0 7→
(
1
0

)
=: |0⟩ 1 7→

(
0
1

)
=: |1⟩

The vector associated to a bit string is the tensor product (Kronecker product) of
the bit vectors – essentially a unary encoding:

01 7→ |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=


00 0
01 1
10 0
11 0

 =: |01⟩

In Dirac notation, the ⊗ symbol is sometimes left out, e.g. |0⟩ |1⟩ = |0⟩ ⊗ |1⟩.

Linear algebra notation for bits

Associate to each bit value a vector, which can also be written as a ket in so-called
Dirac notation:

0 7→
(
1
0

)
=: |0⟩ 1 7→

(
0
1

)
=: |1⟩

The vector associated to a bit string is the tensor product (Kronecker product) of
the bit vectors – essentially a unary encoding:

01 7→ |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=


00 0
01 1
10 0
11 0

 =: |01⟩

In Dirac notation, the ⊗ symbol is sometimes left out, e.g. |0⟩ |1⟩ = |0⟩ ⊗ |1⟩.

Linear algebra notation for Boolean functions

Transformations are represented as matrices, e.g. the and gate becomes

(00 01 10 11

0 1 1 1 0
1 0 0 0 1

)

Then 0 ∧ 1 can be computed as

(
1 1 1 0
0 0 0 1

)
|01⟩ =

(
1 1 1 0
0 0 0 1

)
0
1
0
0

 =

(
1
0

)
= |0⟩

Linear algebra notation for Boolean functions

Transformations are represented as matrices, e.g. the and gate becomes

(00 01 10 11

0 1 1 1 0
1 0 0 0 1

)

Then 0 ∧ 1 can be computed as

(
1 1 1 0
0 0 0 1

)
|01⟩ =

(
1 1 1 0
0 0 0 1

)
0
1
0
0

 =

(
1
0

)
= |0⟩

Linear algebra for logic circuits

Use tensor product for parallel composition and matrix product for serial
composition:

or (not⊗ I)

=

(
1 0 0 0
0 1 1 1

)((
0 1
1 0

)
⊗

(
1 0
0 1

))

=

(
1 0 0 0
0 1 1 1

)
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =

(
0 0 1 0
1 1 0 1

)

Linear algebra for logic circuits

Use tensor product for parallel composition and matrix product for serial
composition:

or (not⊗ I) =

(
1 0 0 0
0 1 1 1

)((
0 1
1 0

)
⊗
(
1 0
0 1

))

=

(
1 0 0 0
0 1 1 1

)
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =

(
0 0 1 0
1 1 0 1

)

Linear algebra for logic circuits

Use tensor product for parallel composition and matrix product for serial
composition:

or (not⊗ I) =

(
1 0 0 0
0 1 1 1

)((
0 1
1 0

)
⊗
(
1 0
0 1

))

=

(
1 0 0 0
0 1 1 1

)
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



=

(
0 0 1 0
1 1 0 1

)

Linear algebra for logic circuits

Use tensor product for parallel composition and matrix product for serial
composition:

or (not⊗ I) =

(
1 0 0 0
0 1 1 1

)((
0 1
1 0

)
⊗
(
1 0
0 1

))

=

(
1 0 0 0
0 1 1 1

)
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =

(
0 0 1 0
1 1 0 1

)

Reversible logic gates
A logic gate is reversible if the corresponding matrix is invertible.

▶ The and gate is not reversible since (1 1 1 0
0 0 0 1) is not square.

▶ The not gate is reversible since it corresponds to the matrix

(0 1

0 0 1
1 1 0

)

The cnot gate is considered a reversible version of xor: x , y 7→ x , y ⊕ x


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0



Reversible logic gates
A logic gate is reversible if the corresponding matrix is invertible.

▶ The and gate is not reversible since (1 1 1 0
0 0 0 1) is not square.

▶ The not gate is reversible since it corresponds to the matrix

(0 1

0 0 1
1 1 0

)

The cnot gate is considered a reversible version of xor: x , y 7→ x , y ⊕ x


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0



Reversible logic gates
A logic gate is reversible if the corresponding matrix is invertible.

▶ The and gate is not reversible since (1 1 1 0
0 0 0 1) is not square.

▶ The not gate is reversible since it corresponds to the matrix

(0 1

0 0 1
1 1 0

)

The cnot gate is considered a reversible version of xor: x , y 7→ x , y ⊕ x


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0



Reversible logic gates
A logic gate is reversible if the corresponding matrix is invertible.

▶ The and gate is not reversible since (1 1 1 0
0 0 0 1) is not square.

▶ The not gate is reversible since it corresponds to the matrix

(0 1

0 0 1
1 1 0

)

The cnot gate is considered a reversible version of xor: x , y 7→ x , y ⊕ x


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0



The Toffoli gate and functional universality

x , y , z 7→ x , y , z ⊕ (x ∧ y)



000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0



The Toffoli gate is functionally universal: any Boolean function can be computed
by a logic circuit consisting of Toffoli gates (and constant inputs).

The Toffoli gate and functional universality

x , y , z 7→ x , y , z ⊕ (x ∧ y)



000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0


The Toffoli gate is functionally universal: any Boolean function can be computed
by a logic circuit consisting of Toffoli gates (and constant inputs).

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space C2:

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ α, β ∈ C, |α|2 + |β|2 = 1

The values α, β are called amplitudes. If α, β are both non-zero, the state is a
superposition of |0⟩ and |1⟩.

It is physically impossible to distinguish two states that differ only by a global
factor |ψ′⟩ = γ |ψ⟩, where |γ| = 1. Single-qubit states can thus be written as:

|ψ⟩ = cos
(
θ
2

)
|0⟩+ e iφ sin

(
θ
2

)
|1⟩ θ ∈ [0, π], φ ∈ [0, 2π)

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space C2:

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ α, β ∈ C, |α|2 + |β|2 = 1

The values α, β are called amplitudes. If α, β are both non-zero, the state is a
superposition of |0⟩ and |1⟩.

It is physically impossible to distinguish two states that differ only by a global
factor |ψ′⟩ = γ |ψ⟩, where |γ| = 1. Single-qubit states can thus be written as:

|ψ⟩ = cos
(
θ
2

)
|0⟩+ e iφ sin

(
θ
2

)
|1⟩ θ ∈ [0, π], φ ∈ [0, 2π)

The quantum bit, or qubit

The state of a qubit is described by a normalised vector in the Hilbert space C2:

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ α, β ∈ C, |α|2 + |β|2 = 1

The values α, β are called amplitudes. If α, β are both non-zero, the state is a
superposition of |0⟩ and |1⟩.

It is physically impossible to distinguish two states that differ only by a global
factor |ψ′⟩ = γ |ψ⟩, where |γ| = 1. Single-qubit states can thus be written as:

|ψ⟩ = cos
(
θ
2

)
|0⟩+ e iφ sin

(
θ
2

)
|1⟩ θ ∈ [0, π], φ ∈ [0, 2π)

Visualising single-qubit states on the Bloch sphere

|ψ⟩

|+⟩

|i⟩

|0⟩

|1⟩

φ

θ

|ψ⟩ = cos
(
θ
2

)
|0⟩+e iφ sin

(
θ
2

)
|1⟩

where θ ∈ [0, π], φ ∈ [0, 2π)

▶ |+⟩ = 1√
2
(|0⟩+ |1⟩)

▶ |i⟩ = 1√
2
(|0⟩+ i |1⟩)

The Pauli matrices and their eigenstates

name matrix eigenstates

X

(
0 1
1 0

)
|+⟩ , |−⟩

Y

(
0 −i
i 0

)
|i⟩ , |−i⟩

Z

(
1 0
0 −1

)
|0⟩ , |1⟩

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) and

|±i⟩ = 1√
2
(|0⟩ ± i |1⟩)

|+⟩

|i⟩

|0⟩

|1⟩

|−⟩

|−i⟩

The Pauli matrices and their eigenstates

name matrix eigenstates

X

(
0 1
1 0

)
|+⟩ , |−⟩

Y

(
0 −i
i 0

)
|i⟩ , |−i⟩

Z

(
1 0
0 −1

)
|0⟩ , |1⟩

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) and

|±i⟩ = 1√
2
(|0⟩ ± i |1⟩)

|+⟩

|i⟩

|0⟩

|1⟩

|−⟩

|−i⟩

The Pauli matrices and their eigenstates

name matrix eigenstates

X

(
0 1
1 0

)
|+⟩ , |−⟩

Y

(
0 −i
i 0

)
|i⟩ , |−i⟩

Z

(
1 0
0 −1

)
|0⟩ , |1⟩

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) and

|±i⟩ = 1√
2
(|0⟩ ± i |1⟩)

|+⟩

|i⟩

|0⟩

|1⟩

|−⟩

|−i⟩

Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)
▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

|+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.

Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)

▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

|+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.

Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)
▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

) |+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.

Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)
▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

) |+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.

Single-qubit transformations

Quantum transformations are unitary linear maps, i.e. maps U which satisfy
U†U = UU† = I , where U† is the Hermitian conjugate (or conjugate transpose).
Important examples include:

▶ The Pauli matrices

▶ The phase gates for ξ ∈ [0, 2π):

P(ξ) =

(
1 0
0 e iξ

)
▶ The Hadamard gate:

H =
1√
2

(
1 1
1 −1

) |+⟩

|i⟩

|0⟩

|1⟩

Phase gates & Hadamard together are universal for single-qubit transformations.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or
11.

The joint state space of two qubits is the Hilbert space C2 ⊗C2 ≃ C4; a state can
be written as a superposition over all the 2-bit strings:

|ψ⟩ =


00 α00

01 α01

10 α10

11 α11

 = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =
∑

x∈{0,1}2
αx |x⟩

where normalisation requires
∑

x∈{0,1}2 |αx|2 = 1.

The states {|x⟩}x∈{0,1}n are called the computational basis.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or
11.
The joint state space of two qubits is the Hilbert space C2 ⊗C2 ≃ C4; a state can
be written as a superposition over all the 2-bit strings:

|ψ⟩ =


00 α00

01 α01

10 α10

11 α11

 = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =
∑

x∈{0,1}2
αx |x⟩

where normalisation requires
∑

x∈{0,1}2 |αx|2 = 1.

The states {|x⟩}x∈{0,1}n are called the computational basis.

Two-qubit states

To specify the state of two bits, we write down each bit individually: 00, 01, 10 or
11.
The joint state space of two qubits is the Hilbert space C2 ⊗C2 ≃ C4; a state can
be written as a superposition over all the 2-bit strings:

|ψ⟩ =


00 α00

01 α01

10 α10

11 α11

 = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =
∑

x∈{0,1}2
αx |x⟩

where normalisation requires
∑

x∈{0,1}2 |αx|2 = 1.

The states {|x⟩}x∈{0,1}n are called the computational basis.

Product states and entangled states

Some two-qubit states arise as tensor products of single-qubit states, e.g.:

▶ |0⟩ ⊗ |0⟩ = |00⟩
▶ |1⟩ ⊗ |−⟩ = |1⟩ ⊗ 1√

2
(|0⟩ − |1⟩) = 1√

2
(|10⟩ − |11⟩)

These are called product states.

There are also states which cannot be expressed as a tensor product of any pair of
single-qubit states, e.g. the ‘Bell state’:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Such states are called entangled.

Product states and entangled states

Some two-qubit states arise as tensor products of single-qubit states, e.g.:

▶ |0⟩ ⊗ |0⟩ = |00⟩
▶ |1⟩ ⊗ |−⟩ = |1⟩ ⊗ 1√

2
(|0⟩ − |1⟩) = 1√

2
(|10⟩ − |11⟩)

These are called product states.

There are also states which cannot be expressed as a tensor product of any pair of
single-qubit states, e.g. the ‘Bell state’:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Such states are called entangled.

Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).

Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).

Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).

Multi-qubit states

The state of n qubits lives in the Hilbert space (C2)⊗n ≃ C2n and is written as a
superposition over all the n-bit strings:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where
∑

x∈{0,1}n |αx|2 = 1.

An n-qubit state is called:

▶ a product state if it can be written as a tensor product of single-qubit states,

▶ genuinely entangled if it cannot be written as a tensor product at all,

▶ partly entangled if it can be written as a tensor product (but not necessarily
of single-qubit states).

Multi-qubit transformations and quantum circuits

Reversible classical gates such as not, cnot, and Toffoli are also unitary.

Gates can be composed into quantum circuits:

P(7π
4
) P(π

4
) P(7π

4
) P(π

4
)

P(7π
4
)

H P(π
4
) P(7π

4
) H

Multi-qubit transformations and quantum circuits

Reversible classical gates such as not, cnot, and Toffoli are also unitary.

Gates can be composed into quantum circuits:

P(7π
4
) P(π

4
) P(7π

4
) P(π

4
)

P(7π
4
)

H P(π
4
) P(7π

4
) H

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

cnot, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

cnot, Hadamard and T = P(π
4
) =

(
1 0
0 e iπ/4

)
together are universal in the sense

that any unitary operation can be efficiently approximated to arbitrary accuracy by
a circuit over these gates.

Theorem (Gottesmann & Knill, 1998)

Circuits over cnot, Hadamard and S = P(π
2
) = (1 0

0 i) are efficiently classically
simulable. (They are called Clifford circuits or stabiliser circuits.)

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

cnot, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

cnot, Hadamard and T = P(π
4
) =

(
1 0
0 e iπ/4

)
together are universal in the sense

that any unitary operation can be efficiently approximated to arbitrary accuracy by
a circuit over these gates.

Theorem (Gottesmann & Knill, 1998)

Circuits over cnot, Hadamard and S = P(π
2
) = (1 0

0 i) are efficiently classically
simulable. (They are called Clifford circuits or stabiliser circuits.)

Universality, and the fine line to classical simulability

Theorem (Barenco et al., 1995)

cnot, phase gates, and Hadamard together are universal.

Theorem (Solovay 1995, Kitaev 1997)

cnot, Hadamard and T = P(π
4
) =

(
1 0
0 e iπ/4

)
together are universal in the sense

that any unitary operation can be efficiently approximated to arbitrary accuracy by
a circuit over these gates.

Theorem (Gottesmann & Knill, 1998)

Circuits over cnot, Hadamard and S = P(π
2
) = (1 0

0 i) are efficiently classically
simulable. (They are called Clifford circuits or stabiliser circuits.)

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Dirac notation for row vectors and inner product

Given a vector |ψ⟩ =
(
α0 α1 . . . αk−1

)T
, its Hermitian conjugate is the ‘bra’

⟨ψ| = (|ψ⟩)† =
(
α∗
0 α∗

1 . . . α∗
k−1

)

Given a second vector |ϕ⟩ =
(
β0 β1 . . . βk−1

)T
, the inner product of |ψ⟩ and

|ϕ⟩ is written as the following ‘braket’:

⟨ψ|ϕ⟩ =
(
α∗
0 α∗

1 . . . α∗
k−1

)


β0
β1
...

βk−1

 =
k−1∑
j=0

α∗
j βj

The outer product can be written as a ‘ketbra’ |ϕ⟩⟨ψ|. With both vectors equal,
|ψ⟩⟨ψ| is the projector onto the vector space spanned by |ψ⟩.

Dirac notation for row vectors and inner product

Given a vector |ψ⟩ =
(
α0 α1 . . . αk−1

)T
, its Hermitian conjugate is the ‘bra’

⟨ψ| = (|ψ⟩)† =
(
α∗
0 α∗

1 . . . α∗
k−1

)
Given a second vector |ϕ⟩ =

(
β0 β1 . . . βk−1

)T
, the inner product of |ψ⟩ and

|ϕ⟩ is written as the following ‘braket’:

⟨ψ|ϕ⟩ =
(
α∗
0 α∗

1 . . . α∗
k−1

)


β0
β1
...

βk−1

 =
k−1∑
j=0

α∗
j βj

The outer product can be written as a ‘ketbra’ |ϕ⟩⟨ψ|. With both vectors equal,
|ψ⟩⟨ψ| is the projector onto the vector space spanned by |ψ⟩.

Dirac notation for row vectors and inner product

Given a vector |ψ⟩ =
(
α0 α1 . . . αk−1

)T
, its Hermitian conjugate is the ‘bra’

⟨ψ| = (|ψ⟩)† =
(
α∗
0 α∗

1 . . . α∗
k−1

)
Given a second vector |ϕ⟩ =

(
β0 β1 . . . βk−1

)T
, the inner product of |ψ⟩ and

|ϕ⟩ is written as the following ‘braket’:

⟨ψ|ϕ⟩ =
(
α∗
0 α∗

1 . . . α∗
k−1

)


β0
β1
...

βk−1

 =
k−1∑
j=0

α∗
j βj

The outer product can be written as a ‘ketbra’ |ϕ⟩⟨ψ|. With both vectors equal,
|ψ⟩⟨ψ| is the projector onto the vector space spanned by |ψ⟩.

Observables and quantum measurement

It is impossible to ‘read out’ the state vector directly. To gain information about a
quantum state, need to perform a measurement, which is most commonly
described by an observable: a Hermitian linear map.

Write such an observable as O =
∑

λ λPλ, where λ are the eigenvalues and Pλ are
the projectors onto the corresponding eigenspaces.

Measuring the observable O on state |ψ⟩ has the following effects:

▶ With probability pλ = ⟨ψ|Pλ |ψ⟩, it produces the outcome λ.

▶ The state of the quantum system is simultaneously projected into the
corresponding eigenspace, i.e. post-measurement, the system is in the state

Pλ |ψ⟩√
pλ

Observables and quantum measurement

It is impossible to ‘read out’ the state vector directly. To gain information about a
quantum state, need to perform a measurement, which is most commonly
described by an observable: a Hermitian linear map.

Write such an observable as O =
∑

λ λPλ, where λ are the eigenvalues and Pλ are
the projectors onto the corresponding eigenspaces.

Measuring the observable O on state |ψ⟩ has the following effects:

▶ With probability pλ = ⟨ψ|Pλ |ψ⟩, it produces the outcome λ.

▶ The state of the quantum system is simultaneously projected into the
corresponding eigenspace, i.e. post-measurement, the system is in the state

Pλ |ψ⟩√
pλ

Observables and quantum measurement

It is impossible to ‘read out’ the state vector directly. To gain information about a
quantum state, need to perform a measurement, which is most commonly
described by an observable: a Hermitian linear map.

Write such an observable as O =
∑

λ λPλ, where λ are the eigenvalues and Pλ are
the projectors onto the corresponding eigenspaces.

Measuring the observable O on state |ψ⟩ has the following effects:

▶ With probability pλ = ⟨ψ|Pλ |ψ⟩, it produces the outcome λ.

▶ The state of the quantum system is simultaneously projected into the
corresponding eigenspace, i.e. post-measurement, the system is in the state

Pλ |ψ⟩√
pλ

Observables and quantum measurement

It is impossible to ‘read out’ the state vector directly. To gain information about a
quantum state, need to perform a measurement, which is most commonly
described by an observable: a Hermitian linear map.

Write such an observable as O =
∑

λ λPλ, where λ are the eigenvalues and Pλ are
the projectors onto the corresponding eigenspaces.

Measuring the observable O on state |ψ⟩ has the following effects:

▶ With probability pλ = ⟨ψ|Pλ |ψ⟩, it produces the outcome λ.

▶ The state of the quantum system is simultaneously projected into the
corresponding eigenspace, i.e. post-measurement, the system is in the state

Pλ |ψ⟩√
pλ

Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.

Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.

Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.

Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.

Example: Z observable and computational basis measurements

The most common measurement on a single qubit is associated with the
observable Z = |0⟩⟨0|+ (−1) |1⟩⟨1|.

Suppose a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Then measuring Z has the
following effect:

▶ With probability p+1 = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2, the outcome is +1 and the qubit
is left in the state |0⟩.

▶ With probability p−1 = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2, the outcome is −1 and the qubit
is left in the state |1⟩.

Instead of the labels ±1, we often use labels 0, 1 and call this a ‘computational
basis measurement’: i.e. we write p0 = |α|2 and p1 = |β|2.

Example: X -measurement

The Pauli-X matrix is also an observable X = |+⟩⟨+|+ (−1) |−⟩⟨−|. Suppose a
qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Measuring X has the following effect:

▶ With probability

p+1 = ⟨ψ|+⟩ ⟨+|ψ⟩ = |⟨+|ψ⟩|2 =
∣∣∣ 1√

2
(α + β)

∣∣∣2
the outcome is +1 and the qubit is left in the state |+⟩.

▶ With probability

p−1 = |⟨−|ψ⟩|2 =
∣∣∣ 1√

2
(α− β)

∣∣∣2
the outcome is −1 and the qubit is left in the state |−⟩.

Example: X -measurement

The Pauli-X matrix is also an observable X = |+⟩⟨+|+ (−1) |−⟩⟨−|. Suppose a
qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩. Measuring X has the following effect:

▶ With probability

p+1 = ⟨ψ|+⟩ ⟨+|ψ⟩ = |⟨+|ψ⟩|2 =
∣∣∣ 1√

2
(α + β)

∣∣∣2
the outcome is +1 and the qubit is left in the state |+⟩.

▶ With probability

p−1 = |⟨−|ψ⟩|2 =
∣∣∣ 1√

2
(α− β)

∣∣∣2
the outcome is −1 and the qubit is left in the state |−⟩.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes.

An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1.

Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩

= (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩

= (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩)

= γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩

= ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Some implications of quantum measurements

Most information stored in a quantum state cannot be retrieved
The state of a qubit is described by two complex numbers (or at least two real
numbers) but measurement gives 2 discrete outcomes. An n-qubit state is
described by 2n complex numbers but the (up to) 2n possible measurement
outcomes can be described using at most n bits.

Global factors are physically irrelevant
Suppose |ψ′⟩ = γ |ψ⟩, where γ ∈ C satisfies |γ| = 1. Then for any observable
O =

∑
λ λPλ, the probability of outcome λ satisfies

⟨ψ′|Pλ |ψ′⟩ = (|ψ′⟩)†Pλ |ψ′⟩ = (γ |ψ⟩)†Pλ(γ |ψ⟩) = γ∗γ ⟨ψ|Pλ |ψ⟩ = ⟨ψ|Pλ |ψ⟩

The same holds for any more general form of measurement, justifying the
assumption we made when introducing the Bloch sphere picture.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Quantum implementations of Boolean functions

Given a Boolean function f : {0, 1}n → {0, 1}m, we can build a quantum circuit
on (n +m) qubits implementing the unitary linear map

Uf (|x⟩ |y⟩) = |x⟩ |y + f (x)⟩

where x ∈ {0, 1}n, y ∈ {0, 1}m and the sum y + f (x) interprets the bit strings as
binary numbers and is taken modulo 2m.

The first n qubits are called the input
register and the last m qubits are called the output register.

E.g. if f is and, then Uf is the Toffoli gate, which for any x1, x2, y ∈ {0, 1} acts as

Uand(|x1x2⟩ |y⟩) = |x1x2⟩ |y ⊕ (x1 ∧ x2)⟩

Quantum implementations of Boolean functions

Given a Boolean function f : {0, 1}n → {0, 1}m, we can build a quantum circuit
on (n +m) qubits implementing the unitary linear map

Uf (|x⟩ |y⟩) = |x⟩ |y + f (x)⟩

where x ∈ {0, 1}n, y ∈ {0, 1}m and the sum y + f (x) interprets the bit strings as
binary numbers and is taken modulo 2m. The first n qubits are called the input
register and the last m qubits are called the output register.

E.g. if f is and, then Uf is the Toffoli gate, which for any x1, x2, y ∈ {0, 1} acts as

Uand(|x1x2⟩ |y⟩) = |x1x2⟩ |y ⊕ (x1 ∧ x2)⟩

Quantum implementations of Boolean functions

Given a Boolean function f : {0, 1}n → {0, 1}m, we can build a quantum circuit
on (n +m) qubits implementing the unitary linear map

Uf (|x⟩ |y⟩) = |x⟩ |y + f (x)⟩

where x ∈ {0, 1}n, y ∈ {0, 1}m and the sum y + f (x) interprets the bit strings as
binary numbers and is taken modulo 2m. The first n qubits are called the input
register and the last m qubits are called the output register.

E.g. if f is and, then Uf is the Toffoli gate, which for any x1, x2, y ∈ {0, 1} acts as

Uand(|x1x2⟩ |y⟩) = |x1x2⟩ |y ⊕ (x1 ∧ x2)⟩

Deutsch’s problem

Input: A ‘black box’ implementation of a function f : {0, 1}n → {0, 1},
which is promised to be either constant or balanced.

Output: Decide with certainty whether f is constant or balanced.

‘Black box’ means the only way to interact with the implementation is to enter an
input and read out the corresponding output: this is called a query.

Classically, in the worst case, need 2n−1 + 1 queries for certainty.

If the implementation is quantum, the Deutsch-Jozsa algorithm shows a single
query is enough.

Deutsch’s problem

Input: A ‘black box’ implementation of a function f : {0, 1}n → {0, 1},
which is promised to be either constant or balanced.

Output: Decide with certainty whether f is constant or balanced.

‘Black box’ means the only way to interact with the implementation is to enter an
input and read out the corresponding output: this is called a query.

Classically, in the worst case, need 2n−1 + 1 queries for certainty.

If the implementation is quantum, the Deutsch-Jozsa algorithm shows a single
query is enough.

Deutsch’s problem

Input: A ‘black box’ implementation of a function f : {0, 1}n → {0, 1},
which is promised to be either constant or balanced.

Output: Decide with certainty whether f is constant or balanced.

‘Black box’ means the only way to interact with the implementation is to enter an
input and read out the corresponding output: this is called a query.

Classically, in the worst case, need 2n−1 + 1 queries for certainty.

If the implementation is quantum, the Deutsch-Jozsa algorithm shows a single
query is enough.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

|0⟩ |0⟩ |0⟩

For any n, we have |+⟩⊗n = 1√
2n

∑
x∈{0,1}n |x⟩. This means p00 = 1 if f is

constant, p00 = 0 if f is balanced; so one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

|0⟩ |0⟩ |1⟩

For any n, we have |+⟩⊗n = 1√
2n

∑
x∈{0,1}n |x⟩. This means p00 = 1 if f is

constant, p00 = 0 if f is balanced; so one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

|+⟩ |+⟩ |−⟩ = 1

2
√
2

∑
x∈{0,1}2

|x⟩ (|0⟩ − |1⟩)

For any n, we have |+⟩⊗n = 1√
2n

∑
x∈{0,1}n |x⟩.

This means p00 = 1 if f is
constant, p00 = 0 if f is balanced; so one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

1

2
√
2

∑
x∈{0,1}2

|x⟩ (|0⊕ f (x)⟩ − |1⊕ f (x)⟩ = 1

2

∑
x∈{0,1}2

(−1)f (x) |x⟩ |−⟩

This way of moving the value of a function to the exponent of a scalar is called
phase kickback.

This means p00 = 1 if f is constant, p00 = 0 if f is balanced; so
one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

(H⊗2 ⊗ I)
1

2

∑
x∈{0,1}2

(−1)f (x) |x⟩ |−⟩ = 1

4

∑
x∈{0,1}2

∑
y∈{0,1}2

(−1)f (x)+x·y |y⟩ |−⟩

Note: H |x⟩ = 1√
2

∑
y∈{0,1}(−1)xy |y⟩ for any x ∈ {0, 1}.

This means p00 = 1 if f
is constant, p00 = 0 if f is balanced; so one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

(H⊗2 ⊗ I)
1

2

∑
x∈{0,1}2

(−1)f (x) |x⟩ |−⟩ = 1

4

∑
y∈{0,1}2

(∑
x∈{0,1}2

(−1)f (x)+x·y
)
|y⟩ |−⟩

If f is constant,
∣∣∣∑x∈{0,1}2(−1)f (x)+x·0

∣∣∣ = 4; if f is balanced, this sum is 0.

This

means p00 = 1 if f is constant, p00 = 0 if f is balanced; so one query suffices.

The Deutsch-Jozsa algorithm

|0⟩ H

Uf

H

|0⟩ H H

|0⟩ X H

(H⊗2 ⊗ I)
1

2

∑
x∈{0,1}2

(−1)f (x) |x⟩ |−⟩ = 1

4

∑
y∈{0,1}2

(∑
x∈{0,1}2

(−1)f (x)+x·y
)
|y⟩ |−⟩

If f is constant,
∣∣∣∑x∈{0,1}2(−1)f (x)+x·0

∣∣∣ = 4; if f is balanced, this sum is 0. This

means p00 = 1 if f is constant, p00 = 0 if f is balanced; so one query suffices.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Fourier transform: intuition

time domain frequency domain

The discrete Fourier transform

Given a complex vector (x0, . . . , xN−1) of fixed length N , its discrete Fourier
transform is the vector (y0, . . . , yN−1) defined for any 0 ≤ k < N as

yk :=
1√
N

N−1∑
j=0

e2πijk/Nxj .

The classical Fast Fourier Transform algorithm (FFT) runs in O(N logN).

The quantum Fourier transform is a discrete Fourier transform on the amplitudes
of the state vector:

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩ or equivalently
N−1∑
j=0

xj |j⟩ 7→
N−1∑
k=0

yk |k⟩

If N = 2n, this uses n qubits.

The discrete Fourier transform

Given a complex vector (x0, . . . , xN−1) of fixed length N , its discrete Fourier
transform is the vector (y0, . . . , yN−1) defined for any 0 ≤ k < N as

yk :=
1√
N

N−1∑
j=0

e2πijk/Nxj .

The classical Fast Fourier Transform algorithm (FFT) runs in O(N logN).

The quantum Fourier transform is a discrete Fourier transform on the amplitudes
of the state vector:

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩ or equivalently
N−1∑
j=0

xj |j⟩ 7→
N−1∑
k=0

yk |k⟩

If N = 2n, this uses n qubits.

The discrete Fourier transform

Given a complex vector (x0, . . . , xN−1) of fixed length N , its discrete Fourier
transform is the vector (y0, . . . , yN−1) defined for any 0 ≤ k < N as

yk :=
1√
N

N−1∑
j=0

e2πijk/Nxj .

The classical Fast Fourier Transform algorithm (FFT) runs in O(N logN).

The quantum Fourier transform is a discrete Fourier transform on the amplitudes
of the state vector:

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩ or equivalently
N−1∑
j=0

xj |j⟩ 7→
N−1∑
k=0

yk |k⟩

If N = 2n, this uses n qubits.

The discrete Fourier transform

Given a complex vector (x0, . . . , xN−1) of fixed length N , its discrete Fourier
transform is the vector (y0, . . . , yN−1) defined for any 0 ≤ k < N as

yk :=
1√
N

N−1∑
j=0

e2πijk/Nxj .

The classical Fast Fourier Transform algorithm (FFT) runs in O(N logN).

The quantum Fourier transform is a discrete Fourier transform on the amplitudes
of the state vector:

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩ or equivalently
N−1∑
j=0

xj |j⟩ 7→
N−1∑
k=0

yk |k⟩

If N = 2n, this uses n qubits.

The quantum Fourier transform

Suppose N = 2n and write j in binary: j1j2 . . . jn ∈ {0, 1}n corresponding to the
number

∑n
ℓ=1 jℓ2

n−ℓ.

Then we can write |j⟩ 7→ 1√
2n

∑2n−1
k=0 e2πijk/2

n |k⟩ as

|j1...jn⟩ 7→ 1√
2n
(|0⟩+e2πijn/2 |1⟩)(|0⟩+e2πi(jn−1/2+jn/4) |1⟩) · · · (|0⟩+e2πi

∑n
ℓ=1 jℓ2

−ℓ |1⟩)

... · · ·

· · · ...

n − 1 QFTn−1

H

P(π
2
)

n − 1
P(π

2n−2)

P(π
2n−1)

The quantum Fourier transform

Suppose N = 2n and write j in binary: j1j2 . . . jn ∈ {0, 1}n corresponding to the
number

∑n
ℓ=1 jℓ2

n−ℓ. Then we can write |j⟩ 7→ 1√
2n

∑2n−1
k=0 e2πijk/2

n |k⟩ as

|j1...jn⟩ 7→ 1√
2n
(|0⟩+e2πijn/2 |1⟩)(|0⟩+e2πi(jn−1/2+jn/4) |1⟩) · · · (|0⟩+e2πi

∑n
ℓ=1 jℓ2

−ℓ |1⟩)

... · · ·

· · · ...

n − 1 QFTn−1

H

P(π
2
)

n − 1
P(π

2n−2)

P(π
2n−1)

The quantum Fourier transform

Suppose N = 2n and write j in binary: j1j2 . . . jn ∈ {0, 1}n corresponding to the
number

∑n
ℓ=1 jℓ2

n−ℓ. Then we can write |j⟩ 7→ 1√
2n

∑2n−1
k=0 e2πijk/2

n |k⟩ as

|j1...jn⟩ 7→ 1√
2n
(|0⟩+e2πijn/2 |1⟩)(|0⟩+e2πi(jn−1/2+jn/4) |1⟩) · · · (|0⟩+e2πi

∑n
ℓ=1 jℓ2

−ℓ |1⟩)

... · · ·

· · · ...

n − 1 QFTn−1

H

P(π
2
)

n − 1
P(π

2n−2)

P(π
2n−1)

The quantum period finding problem

Suppose 1 ≤ r <
√
2n. An n-qubit state ‘has period r ’ if it is of the form

|ψr ,x0⟩ :=
1√
A

A−1∑
ℓ=0

|x0 + ℓr⟩

where x0 is a random offset in the range 0 ≤ x0 < r that may be different for each
state produced, and A is the smallest integer such that x0 + Ar ≥ 2n.

Input: a black box producing quantum states |ψr ,x0⟩ for some unknown fixed
r , and a method for checking whether a guess for r is correct

Output: the period r

This can be solved using the QFT.

The quantum period finding problem

Suppose 1 ≤ r <
√
2n. An n-qubit state ‘has period r ’ if it is of the form

|ψr ,x0⟩ :=
1√
A

A−1∑
ℓ=0

|x0 + ℓr⟩

where x0 is a random offset in the range 0 ≤ x0 < r that may be different for each
state produced, and A is the smallest integer such that x0 + Ar ≥ 2n.

Input: a black box producing quantum states |ψr ,x0⟩ for some unknown fixed
r , and a method for checking whether a guess for r is correct

Output: the period r

This can be solved using the QFT.

The quantum period finding problem

Suppose 1 ≤ r <
√
2n. An n-qubit state ‘has period r ’ if it is of the form

|ψr ,x0⟩ :=
1√
A

A−1∑
ℓ=0

|x0 + ℓr⟩

where x0 is a random offset in the range 0 ≤ x0 < r that may be different for each
state produced, and A is the smallest integer such that x0 + Ar ≥ 2n.

Input: a black box producing quantum states |ψr ,x0⟩ for some unknown fixed
r , and a method for checking whether a guess for r is correct

Output: the period r

This can be solved using the QFT.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Shor’s algorithm for the Factoring problem

Input: a positive integer N , which is promised to be a composite number

Output: an integer p in the range 1 < p ≤
√
N such that p divides N

First verify:

▶ N is not prime (this can be done in polynomial time),

▶ N is odd (otherwise 2 is a non-trivial factor and the problem is solved), and

▶ N cannot be written as N = ab for any integers a ≥ 1, b ≥ 2 (this check runs
in polynomial time and, if applicable, outputs the non-trivial factor a).

Then solve the Order Finding problem:

Input: a number x in the range 1 < x < N − 1 such that gcd(x ,N) = 1

Output: the smallest positive r such that x r ≡ 1 (mod N)

It is likely that r is even and one of gcd(x r/2 ± 1,N) is a non-trivial factor.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√

N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.

Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√

N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.

Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√

N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.

Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√
N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.

Grover’s search problem

Input: a (quantum) black box implementing some Boolean function
f : {0, 1}n → {0, 1}

Output: a bit string x ∈ {0, 1}n such that f (x) = 1

Let A = {x ∈ {0, 1}n | f (x) = 1} and set M = |A|, N = 2n.

Classically, need O(N/M) queries on average to find an element of A.

Quantumly, O(
√
N/M) queries suffice if M is known and M ≪ N .

Combination of Grover’s algorithm and QFT can also be used to determine M if it
is unknown: this is ‘quantum counting’.

Phase kickback and a useful subspace

The quantum black box is given as Uf (|x⟩ |y⟩) = |x⟩ |y ⊕ f (x)⟩, but we can use
the ‘phase kickback trick’ from Deutsch-Jozsa algorithm to turn it into
U ′
f (|x⟩ |−⟩) = (−1)f (x) |x⟩ |−⟩.

Consider the 2-dimensional vector space spanned by

|ϕ1⟩ =
1√
M

∑
x∈A

|x⟩ and |ϕ0⟩ =
1√

N −M

∑
x∈{0,1}n\A

|x⟩

This space also contains

|+⟩⊗n =
1√
N

∑
x∈{0,1}n

|x⟩ =
√

N −M

N
|ϕ0⟩+

√
M

N
|ϕ1⟩

Phase kickback and a useful subspace

The quantum black box is given as Uf (|x⟩ |y⟩) = |x⟩ |y ⊕ f (x)⟩, but we can use
the ‘phase kickback trick’ from Deutsch-Jozsa algorithm to turn it into
U ′
f (|x⟩ |−⟩) = (−1)f (x) |x⟩ |−⟩.

Consider the 2-dimensional vector space spanned by

|ϕ1⟩ =
1√
M

∑
x∈A

|x⟩ and |ϕ0⟩ =
1√

N −M

∑
x∈{0,1}n\A

|x⟩

This space also contains

|+⟩⊗n =
1√
N

∑
x∈{0,1}n

|x⟩ =
√

N −M

N
|ϕ0⟩+

√
M

N
|ϕ1⟩

The Grover operator

Let G = U+U
′
f , where U+ = 2 |++ . . .+⟩⟨++ . . .+| − I .

|ϕ0⟩

|ϕ1⟩

|+⟩⊗n

|ψ⟩

G |ψ⟩

U ′
f |ψ⟩

G performs a rotation by angle θ ≈ 2
√

M/N , so after O(
√

N/M) applications,
probability of measuring a state in A is high. Checking correctness is easy.

The Grover operator

Let G = U+U
′
f , where U+ = 2 |++ . . .+⟩⟨++ . . .+| − I .

|ϕ0⟩

|ϕ1⟩

|+⟩⊗n

|ψ⟩

G |ψ⟩

U ′
f |ψ⟩

G performs a rotation by angle θ ≈ 2
√

M/N , so after O(
√

N/M) applications,
probability of measuring a state in A is high. Checking correctness is easy.

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Transmitting quantum information without a quantum channel

Suppose Alice wants to send a quantum state to Bob, but she can only send bits,
not qubits.

▶ If Alice knows the state, she can send a classical description: but this would
require a lot of data and still be approximate.

▶ Yet with some advance preparation, Alice can send even an unknown
quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

Transmitting quantum information without a quantum channel

Suppose Alice wants to send a quantum state to Bob, but she can only send bits,
not qubits.

▶ If Alice knows the state, she can send a classical description: but this would
require a lot of data and still be approximate.

▶ Yet with some advance preparation, Alice can send even an unknown
quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

Transmitting quantum information without a quantum channel

Suppose Alice wants to send a quantum state to Bob, but she can only send bits,
not qubits.

▶ If Alice knows the state, she can send a classical description: but this would
require a lot of data and still be approximate.

▶ Yet with some advance preparation, Alice can send even an unknown
quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

Transmitting quantum information without a quantum channel

Suppose Alice wants to send a quantum state to Bob, but she can only send bits,
not qubits.

▶ If Alice knows the state, she can send a classical description: but this would
require a lot of data and still be approximate.

▶ Yet with some advance preparation, Alice can send even an unknown
quantum state using only 2 bits of communication.

Alice and Bob need arrange ahead of time to share an entangled Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I) |ψ⟩ |Φ+⟩

= (H ⊗ I2)(cnot⊗ I)
1√
2
(α |0⟩+ β |1⟩)(|00⟩+ |11⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)

The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I) |ψ⟩ |Φ+⟩

= (H ⊗ I2)(cnot⊗ I)
1√
2
(α |000⟩+ α |011⟩+ β |100⟩+ β |111⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)

The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I) |ψ⟩ |Φ+⟩

= (H ⊗ I2)
1√
2
(α |000⟩+ α |011⟩+ β |110⟩+ β |101⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)

The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I) |ψ⟩ |Φ+⟩

=
1

2
(α |000⟩+α |100⟩+α |011⟩+α |111⟩+β |010⟩−β |110⟩+β |001⟩−β |101⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)

The quantum teleportation protocol

|ψ⟩ H

Alice

|Φ+⟩
X Z Bob

(H ⊗ I2)(cnot⊗ I) |ψ⟩ |Φ+⟩

=
1

2

(
|00⟩ (α |0⟩+ β |1⟩) + |01⟩ (α |1⟩+ β |0⟩) + |10⟩ (α |0⟩ − β |1⟩)

+ |01⟩ (α |1⟩ − β |0⟩)
)

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

Motivation: optimisation & equality checking

Quantum computational resources are limited, so we need to use them efficiently.

▶ Given a quantum circuit, can we find a more efficient circuit that describes
the same linear map?

▶ How can we check that two given circuits describe the same linear map?

For example, we might want

▶ a circuit with fewer gates in total, or

▶ a circuit with fewer layers of gates, or

▶ a circuit with fewer of a specific type of gate.

The ZX-calculus components: (mostly) spiders instead of gates

Hadamard gate

⇝ |+⟩⟨0|+ |−⟩⟨1| = 1√
2

(
1 1
1 −1

)

Z-spider

α

..
.

..
.n m

⇝ | 0 . . . 0︸ ︷︷ ︸
m

⟩⟨0 . . . 0︸ ︷︷ ︸
n

|+ e iα| 1 . . . 1︸ ︷︷ ︸
m

⟩⟨1 . . . 1︸ ︷︷ ︸
n

| =

1 . . . 0
...

. . .
...

0 . . . e iα



X-spider

α

..
.

..
.n m

⇝ |+ . . .+︸ ︷︷ ︸
m

⟩⟨+ . . .+︸ ︷︷ ︸
n

|+ e iα| − . . .−︸ ︷︷ ︸
m

⟩⟨− . . .−︸ ︷︷ ︸
n

|

The ZX-calculus components: (mostly) spiders instead of gates

Hadamard gate

⇝ |+⟩⟨0|+ |−⟩⟨1| = 1√
2

(
1 1
1 −1

)
Z-spider

α

..
.

..
.n m

⇝ | 0 . . . 0︸ ︷︷ ︸
m

⟩⟨0 . . . 0︸ ︷︷ ︸
n

|+ e iα| 1 . . . 1︸ ︷︷ ︸
m

⟩⟨1 . . . 1︸ ︷︷ ︸
n

| =

1 . . . 0
...

. . .
...

0 . . . e iα



X-spider

α

..
.

..
.n m

⇝ |+ . . .+︸ ︷︷ ︸
m

⟩⟨+ . . .+︸ ︷︷ ︸
n

|+ e iα| − . . .−︸ ︷︷ ︸
m

⟩⟨− . . .−︸ ︷︷ ︸
n

|

The ZX-calculus components: (mostly) spiders instead of gates

Hadamard gate

⇝ |+⟩⟨0|+ |−⟩⟨1| = 1√
2

(
1 1
1 −1

)
Z-spider

α

..
.

..
.n m ⇝ | 0 . . . 0︸ ︷︷ ︸

m

⟩⟨0 . . . 0︸ ︷︷ ︸
n

|+ e iα| 1 . . . 1︸ ︷︷ ︸
m

⟩⟨1 . . . 1︸ ︷︷ ︸
n

| =

1 . . . 0
...

. . .
...

0 . . . e iα


X-spider

α

..
.

..
.n m

⇝ |+ . . .+︸ ︷︷ ︸
m

⟩⟨+ . . .+︸ ︷︷ ︸
n

|+ e iα| − . . .−︸ ︷︷ ︸
m

⟩⟨− . . .−︸ ︷︷ ︸
n

|

The ZX-calculus components: (mostly) spiders instead of gates

Hadamard gate

⇝ |+⟩⟨0|+ |−⟩⟨1| = 1√
2

(
1 1
1 −1

)
Z-spider

α

..
.

..
.n m ⇝ | 0 . . . 0︸ ︷︷ ︸

m

⟩⟨0 . . . 0︸ ︷︷ ︸
n

|+ e iα| 1 . . . 1︸ ︷︷ ︸
m

⟩⟨1 . . . 1︸ ︷︷ ︸
n

| =

1 . . . 0
...

. . .
...

0 . . . e iα


X-spider

α

..
.

..
.n m ⇝ |+ . . .+︸ ︷︷ ︸

m

⟩⟨+ . . .+︸ ︷︷ ︸
n

|+ e iα| − . . .−︸ ︷︷ ︸
m

⟩⟨− . . .−︸ ︷︷ ︸
n

|

Wires in the ZX-calculus

⇝ |0⟩⟨0|+ |1⟩⟨1| =

(
1 0
0 1

)

⇝ |00⟩⟨00|+ |10⟩⟨01|+ |01⟩⟨10|+ |11⟩⟨11| =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⇝ ⟨00|+ ⟨11| =

(
1 0 0 1

)
⇝ |00⟩+ |11⟩ =


1
0
0
1



Wires in the ZX-calculus

⇝ |0⟩⟨0|+ |1⟩⟨1| =

(
1 0
0 1

)

⇝ |00⟩⟨00|+ |10⟩⟨01|+ |01⟩⟨10|+ |11⟩⟨11| =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



⇝ ⟨00|+ ⟨11| =
(
1 0 0 1

)
⇝ |00⟩+ |11⟩ =


1
0
0
1



Wires in the ZX-calculus

⇝ |0⟩⟨0|+ |1⟩⟨1| =

(
1 0
0 1

)

⇝ |00⟩⟨00|+ |10⟩⟨01|+ |01⟩⟨10|+ |11⟩⟨11| =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⇝ ⟨00|+ ⟨11| =

(
1 0 0 1

)

⇝ |00⟩+ |11⟩ =


1
0
0
1



Wires in the ZX-calculus

⇝ |0⟩⟨0|+ |1⟩⟨1| =

(
1 0
0 1

)

⇝ |00⟩⟨00|+ |10⟩⟨01|+ |01⟩⟨10|+ |11⟩⟨11| =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⇝ ⟨00|+ ⟨11| =

(
1 0 0 1

)
⇝ |00⟩+ |11⟩ =


1
0
0
1



Translating circuits into ZX-diagrams

Gate H P(α) Z X

ZX α π π

Z S

Z S S

⇝
π
2

π
2π

π
2π

Translating circuits into ZX-diagrams

Gate H P(α) Z X

ZX α π π

Z S

Z S S

⇝
π
2

π
2π

π
2π

Only connectivity matters

= = = =

π
2

β γ π

−γ

α

π
4

=
π
2

β

γ

π
−γ

α

π
4

This is made mathematically rigorous using monoidal category theory.

Only connectivity matters

= = = =

π
2

β γ π

−γ

α

π
4

=
π
2

β

γ

π
−γ

α

π
4

This is made mathematically rigorous using monoidal category theory.

Only connectivity matters

= = = =

π
2

β γ π

−γ

α

π
4

=
π
2

β

γ

π
−γ

α

π
4

This is made mathematically rigorous using monoidal category theory.

A complete set of ZX-calculus rewrite rules

β

..
.

..
.

α

..
.

..
.

=..
.

..
.

..
.α+β

..
.=

..
.

..
.αα

..
.

= = π
2

−π
2

π
2=

= = γα β′β α′ γ′=
δ′π

Only connectivity matters. π
4

−π
4

=

Example: quantum teleportation

aπ

bπ

bπ aπ

Alice

Bob

Example: quantum teleportation

aπ

bπ

bπ aπ

Alice

Bob

Example: quantum teleportation

aπ

bπ

bπ aπ

Alice

Bob

Example: quantum teleportation

aπ

2bπ aπ

Alice

Bob

Example: quantum teleportation

aπ

aπ

Alice

Bob

Example: quantum teleportation

2aπ

Alice

Bob

Example: quantum teleportation

Alice

Bob

Outline

Some non-quantum computer science

Quantum computing basics: states and transformations

Quantum computing basics: measurements

A selection of quantum algorithms
The Deutsch-Jozsa algorithm
Quantum Fourier transform and Shor’s algorithm
Grover’s algorithm
Quantum Teleportation

Optimisation of quantum computations using the ZX-calculus

Conclusions

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

Summary

▶ qubit states are vectors (α
β) = α |0⟩+ β |1⟩ in C2

▶ states of multiple qubits are vectors
∑

x∈{0,1} αx |x⟩ in (C2)⊗n ≃ C2n

▶ qubit transformations are unitary linear maps, they can be expressed as
circuits using cnot and single-qubit gates

▶ quantum measurements are probabilistic and change the state

▶ there are useful quantum algorithms and protocols

▶ optimisation of quantum computations using ZX-calculus is an area of active
research

Topics not discussed:

▶ quantum error correction

▶ quantum simulation

▶ building physical quantum computers

	Some non-quantum computer science
	Quantum computing basics: states and transformations
	Quantum computing basics: measurements
	A selection of quantum algorithms
	The Deutsch-Jozsa algorithm
	Quantum Fourier transform and Shor's algorithm
	Grover's algorithm
	Quantum Teleportation

	Optimisation of quantum computations using the ZX-calculus
	Conclusions

