Polarization tensor approach for Casimir effect

Nail Khusnutdinov

University of Tours

May 30, 2024

The Casimir effect. Very short history

Effective action

- Effective action for graphene
- The Casimir energy. Scattering approach
- Casimir-Polder force and torque for anisotropic molecules
- Stack of planes with tensorial conductivity

Moving graphene

Based on the papers

- NK, Vassilevich, arXiv:2402.06972, Sent in PRB (2024)
- Antezza, Emelianova and NK, Nanotechnology, 35, 235001, (2024)
- NK, Emelianova, Physics, 6, 148-163, (2024)
- Emelianova, NK, and Kashapov, PRB, 107, 235405, (2023)
- S NK, Emelianova, Universe, **7**, 70 (2021)
- Bordag, Fialkovsky, NK, and Vassilevich, PRB, 104, 195431, (2021)
- Antezza, Fialkovsky, and NK, PRB, 102, 195422 (2020)
- Emelianova, Fialkovsky, and NK, Mod. Phys. Lett. A35, 2040012 (2020)
- 8 Rodriguez-Lopez, Popescu, Fialkovsky, NK, and Woods, Commun. Mater., 1, 14 (2020)
- W. K. Emelianova, Int. J. Mod. Phys. A**34**, 1950008 (2019)
- Fialkovsky, NK, and Vassilevich, PRB 97, 165432 (2018)
- WK, Kashapov and Woods, 2D Mater. 5, 035032 (2018)

The Casimir and Casimir–Polder effects

Van der Waals, Casimir–Polder and Casimir forces[†]

a A fluctuating dipole p₁ induces a fluctuating electromagnetic dipole field, which in turn induces a fluctuating dipole p₂ on a nearby particle, leading to van der Waals forces between the particles
b When the particle spacing is large, retardation/wave effects modify the interaction, leading to Casimir–Polder forces. When more than two particles interact, the non-additive field interactions lead to a breakdown of the pairwise force laws

c In situations consisting of macroscopic bodies, the interaction between the many fluctuating dipoles present within the bodies leads to Casimir forces.

Rodriguez, Capasso, and Johnson, Nature Photonics, 5, 211 (2011)

The Casimir force

The force is attractive because the mode density in free space is larger than that between the plates.

The Casimir effect

Fig. 1. Two ships roll heavily on a long swell and there is no more wind to damp their rolling. In this situation a strange force, "une certaine force attractive," will pull the two ships toward each other. From P. C. Causseé: "the Mariners Album," early 19th century.

Fig. 3. (a) Two ships at close quarters roll on a long swell. (b) They re-emit the absorbed power as secondary waves.

Nowadays, realized in white noise acoustic experiments[†].

- [†]A. Larraza B. Denardo, Phys. Lett. A, 248 (1998), 151-155
- J.-C. Jaskula et al., Phys. Rev. Lett. 109 (2012) 220401

The Casimir and Casimir–Polder effects[†]

The Casimir force

Scale bars, 50 μ m (b) and 10 μ m (c-e).

[†]Zou, J., Marcet, Z., Rodriguez, A. et al. Nature Commun **4**, 1845 (2013)

Nail Khusnutdinov

The Casimir and Casimir–Polder force

The Casimir–Polder force. The Lifshitz rarefying procedure[†]

$$\varepsilon_a = 1 + 4\pi N\alpha, \ N \to 0$$
$$\mathcal{E}_{CP} = -\lim_{N \to 0} \frac{1}{N} \frac{\partial \mathcal{E}_C}{\partial a}$$

[†]E. M. Lifshitz, Sov. Phys. JETP **2**, 73 (1956)

Nail Khusnutdinov

The Casimir and Casimir–Polder force

The Casimir force. Gecko vertical walk^{\dagger}

[†]Autumn, Liang, Hsieh, et al, Nature, **405**, 681 (2000)

Nail Khusnutdinov

The Casimir and Casimir–Polder force

The Casimir force. Gecko vertical walk[†]

The foot of a Tokay gecko has about 5.000 setae/mm² and can produce 10 N of adhesive force with approximately 100 mm² of pad area. Weight of a Tokay gecko is approx. 50 to 150 grams.

Nail Khusnutdinov

Casimir force for perfectly conducting planes

$$P_{\text{Cas}} = -\frac{\hbar c \pi^2}{240 d^4} = -\frac{1.3 \times 10^{-27}}{d^4} \text{Nm}^2 = -\frac{0.013}{d^4 (\mu m)} \frac{\text{dyn}}{\text{cm}^2}$$

The Lifshitz approach

$$\begin{aligned} \mathcal{F}(a,T) &= -\frac{k_B T}{2\pi} \sum_{l=0}^{\infty} {'k_{\perp} dk_{\perp} \left\{ \ln\left[1 - r_{\mathrm{I}}^{\mathrm{tm}} r_{\mathrm{II}}^{\mathrm{tm}} e^{-2aq_l}\right] + \ln\left[1 - r_{\mathrm{I}}^{\mathrm{te}} r_{\mathrm{II}}^{\mathrm{te}} e^{-2aq_l}\right] \right\}} \\ P &= -\frac{\partial \mathcal{F}}{\partial a}, \ ([\mathcal{F}(a,T)] = \left[J/\mathrm{m}^2\right], \ [P] = \left[J/\mathrm{m}^3\right]) \end{aligned}$$

$$q_l = \sqrt{k_\perp^2 + \xi_l^2}, \xi_l = 2\pi l \frac{k_B T}{\hbar}$$
 – Matsubara frequences

Effective action expansion

 $S_{\text{eff}}[A, m] = N_{\text{f}} \ln \det \mathcal{D}_{A}$ $= N_{\text{f}} \ln \det \mathcal{D}_{0} + N_{\text{f}} \operatorname{tr} \left(\mathcal{D}_{0}^{-1} \mathcal{A} \right) + \frac{1}{2} N_{\text{f}} \operatorname{tr} \left(\mathcal{D}_{0}^{-1} \mathcal{A} \mathcal{D}_{0}^{-1} \mathcal{A} \right) + \dots$ $\mathcal{D}_{A} = \operatorname{i} \left(\nabla + \operatorname{i} e \mathcal{A} \right) + m$

 $N_{\rm f}$ is the number of two-component fermion species. For graphene $N_{\rm f} = N_A + N_B = 4$ – sum over sub-lattices A and B.

Effective action of the second order

The first term has to be subtracted, the second is tadpole and the third is effective action in the second order (D = 3, 4)

$$S_{\text{eff}}^{(2)}[A,m] = \frac{1}{2} \int d^D x \, d^D y A_i(x) \Pi^{ij}(x;y) A_j(y)$$

Diagrams

$$S_{\text{eff}}[A, m] = \cdots + \cdots$$

Polarization tensor

$$\Pi^{ij}(p) = ie^2 \int \frac{d^D k}{(2\pi)^D} \operatorname{tr} \left(\gamma^i \mathcal{D}_0^{-1}(k) \gamma^j \mathcal{D}_0^{-1}(k-p) \right)$$
$$\mathcal{D}_0^{-1}(k) = -\frac{(\gamma k) + m}{k^2 - m^2}$$

Total action, D = 3 + 1 (with bulk)

$$S = S_{\rm M} + S_{\rm eff}^{(2)}[A, m], \ S_{\rm M} = -\frac{1}{4} \int d^4 x F_{ij} F^{ij}$$
$$S_{\rm eff}^{(2)}[A, m] = \frac{1}{2} \int d^4 x \ d^4 y A_i(x) \Pi^{ij}(x; y) A_j(y)$$

Maxwell field in a media

$$S = \frac{1}{2} \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \left[\varepsilon \vec{E}(-p) \cdot \vec{E}(p) - \mu^{-1} \vec{E}(-p) \cdot \vec{E}(p) \right]$$

Dielectric permittivity ε and magnetic permeability μ are expressed in terms of polarization tensor – Π^{00} and tr(Π) = Π_i^i . For Dirac materials (with bulk): Bordag, Fialkovsky, NK, and Vassilevich, PRB, **104**, 195431, (2021)

Total action, D = 2 + 1. Plane $x^3 = const$

$$S_{M} = -\frac{1}{4} \int d^{4}x F_{ij} F^{ij}$$

$$S_{\text{eff}}^{(2)}[A, m] = \frac{1}{2} \int d^{3}x \, d^{3}y A_{i}(x) \Pi^{ij}(x - y) A_{j}(y)$$

$$\frac{\delta S}{\delta A} = 0 \Rightarrow \partial_{j} F^{ij} + \delta(x^{3} - a) \int d^{3}y \Pi^{ij}(x - y) A_{j}(y) = 0$$

Boundary conditions $x^3 = a$, $\vec{n} = (0, 0, 1)$

$$\begin{split} [\vec{H}] \times \vec{n} &= \vec{J}, \ [\vec{E}] \cdot \vec{n} = -\rho, \ J^a = \sigma^{ab} E_l \\ \sigma^{ab} &= \frac{\Pi^{ab}}{\mathrm{i}\omega}, \ \rho = \frac{\Pi^{0a} E_a}{\mathrm{i}\omega}. \end{split}$$

Nail Khusnutdinov

Polarization tensor approach for Casimir effect

May 30, 2024

REEEEEEEEEEEE

Dirac electron D = 2 + 1 (m < 0.1 eV)

$$\begin{split} D_A &= \mathbf{i} \left(\nabla + \mathbf{i} e A \right) + m = \mathbf{i} \tilde{\gamma}^i \left(\partial_i + \mathbf{i} e A_i \right) + m \\ \tilde{\gamma}^0 &= \gamma^0, \ \tilde{\gamma}^1 = v_F \gamma^1, \ \tilde{\gamma}^2 = v_F \gamma^2. \end{split}$$

Algebra of gamma matrices ($c \rightarrow v_F \sim c/300$)

$$\begin{split} &\widetilde{\gamma}^{i}\widetilde{\gamma}^{j} + \widetilde{\gamma}^{j}\widetilde{\gamma}^{i} = 2\widetilde{\mathbf{g}}^{ij} \\ &\operatorname{tr}(\widetilde{\gamma}^{i}\widetilde{\gamma}^{j}) = 8\widetilde{\mathbf{g}}^{ij}, \ &\operatorname{tr}(\widetilde{\gamma}^{i}\widetilde{\gamma}^{j}\widetilde{\gamma}^{l}) = 0 \\ &\widetilde{\mathbf{g}}^{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -v_{F}^{2} & 0 \\ 0 & 0 & -v_{F}^{2} \end{pmatrix} \end{split}$$

KAKKKKK

The Lorentz invariance is broken

$$\begin{aligned} \mathcal{A} &= -\frac{1}{4} \int \mathrm{d}^4 x F^2 + \int \mathrm{d}^3 x \bar{\psi} \left[\tilde{\gamma}^n (\mathrm{i}\partial_n - eA_n) - m \right] \psi|_{z=a} \\ \mathcal{A}' &= -\frac{1}{4} \int \mathrm{d}^4 x' F'^2 + \int \mathrm{d}^3 x' \bar{\psi}' \left[\tilde{\Gamma}^n (\mathrm{i}\partial_{n'} - eA'_n) - m \right] \psi'|_{z=a} \end{aligned}$$

$$\tilde{\Gamma}^{n'} &= v_F \gamma^n + u^n (1 - v_F) \psi \neq \tilde{\gamma}^n, \ [u^n] = (u^0, u^1, u^2) \end{aligned}$$

Boost $K \to K'$: $x' = \Lambda x$, $\psi'(x') = S\psi(x)$, $\bar{\psi}'(x') = \bar{\psi}(x)S^{-1}$

$$\Lambda = \begin{pmatrix} \gamma & -\gamma \boldsymbol{v} \\ -\gamma \boldsymbol{v} & \mathbf{I} + (\gamma - 1) \frac{\boldsymbol{v} \otimes \boldsymbol{v}}{\boldsymbol{v}^2} \end{pmatrix}, \ S = e^{-\frac{i}{4}\sigma^{ik}\lambda_{ik}},$$
$$\sigma^{ik} = \frac{i}{2}[\gamma^i, \gamma^k], \ [\lambda_{ik}] = \begin{pmatrix} 0 & -\boldsymbol{v} \\ \boldsymbol{v} & 0 \end{pmatrix}, \ \boldsymbol{v} = (v^1, v^2).$$

$$\Pi^{mn} = \frac{\alpha}{v_F^2} \left[\psi \left(\tilde{\mathbf{g}}^{mn} - \frac{p^m p^n}{p^2} \right) + \mathrm{i} v_F^2 \phi \varepsilon^{mnl} p_l \right]$$
$$\psi = (N_A + N_B) \left[1 - \left(\frac{p}{2m} + \frac{2m}{p} \right) \operatorname{arcth} \left(\frac{p}{2m} \right) \right]$$
$$\phi = (N_A - N_B) \left[\frac{2m}{p} \operatorname{arcth} \left(\frac{p}{2m} \right) - 1 \right]$$

 ϕ is parity anomaly[‡]: $j^i = \frac{e}{8\pi} \varepsilon^{ijk} F_{jk} \operatorname{sgn}(m)$. $\phi = 0$ for graphene[#].

[†]Bordag, Fialkovsky, Gitman, and Vassilevich, PRB, **80**, 245406 (2009) [‡]Redlich, PRD, **29**, 2366 (1984) [‡]Semenoff, PRL, **53**, 2449 (1984)

Effective action, graphene CRARRAR C

Conductivity tensor

$$\sigma^{ab} = \frac{\Pi^{ab}}{i\omega} \Longrightarrow \boldsymbol{\sigma} = \begin{pmatrix} \sigma_{\rm tm} & 0\\ 0 & \sigma_{\rm te} \end{pmatrix}$$
$$\sigma_{\rm tm} = \frac{i\omega}{\boldsymbol{p}^2} \Pi_{00}, \ \sigma_{\rm te} = \frac{1}{i\omega} \left(\Pi_n^n + \frac{\omega^2 - \boldsymbol{p}^2}{\boldsymbol{p}^2} \Pi_{00} \right)$$

Reflection coefficients

We can not use standard formulas which connect reflection coefficients with dielectric properties in the Lifshitz formula. Reasons:

- Graphene is 2D material
- Reflection coefficients ⇒ reflection matrices

One way is the scattering matrix approach^{\dagger}.

[†]Reynaud, Canaguier-Durand, Messina, Lambrecht, and Maia Neto, Int. J. Mod. Phys. A **25**, 2201(2010)

Nail Khusnutdinov

19/54

Scattering matrix approach

Transmission and reflection of the EM waves.

Nail Khusnutdinov

The Casimir energy[†] ($k_E \equiv \sqrt{\xi^2 + k_{\perp}^2}, \omega = i\xi$)

In general

$$\boldsymbol{r}_{\mathrm{I}}^{\prime}\boldsymbol{r}_{\mathrm{II}}\neq\begin{pmatrix}r_{\mathrm{I}}^{\mathrm{te}}r_{\mathrm{II}}^{\mathrm{te}}&0\\0&r_{\mathrm{I}}^{\mathrm{tm}}r_{\mathrm{II}}^{\mathrm{tm}}\end{pmatrix}\Longrightarrow\mathcal{E}\neq\mathcal{E}_{\mathrm{te}}+\mathcal{E}_{\mathrm{tm}}.$$

[†]Fialkovsky, NK, and Vassilevich, PRB **97**, 165432 (2018))

Conductive plane[†] (
$$\boldsymbol{\eta} = 2\pi\boldsymbol{\sigma}, k_3 = \sqrt{\omega^2 - \boldsymbol{k}^2}$$
)

$$\mathbf{r} = \mathbf{r}' = -\frac{\omega^2 \boldsymbol{\eta} - \mathbf{k} \otimes \mathbf{k} \boldsymbol{\eta} + \mathbf{I} \omega k_3 \det \boldsymbol{\eta}}{\omega^2 \operatorname{tr} \boldsymbol{\eta} - \mathbf{k} \mathbf{k} \boldsymbol{\eta} + \omega k_3 (1 + \det \boldsymbol{\eta})}, \ \mathbf{t} = \mathbf{I} + \mathbf{r}$$

For veritable graphene with $\vec{B} = T = \mu = \Gamma = 0$

$$\boldsymbol{\sigma} = A\mathbf{I} + B\boldsymbol{k} \otimes \boldsymbol{k}, \ \sigma_{\text{te}} = A, \ \sigma_{\text{tm}} = A + \boldsymbol{k}^2 B.$$

[†]Fialkovsky, NK, and Vassilevich, PRB **97**, 165432 (2018))

The Casimir energy

$$\Pi^{ij}(p) = \mathrm{i}e^2 \int \frac{\mathrm{d}^D k}{(2\pi)^D} \operatorname{tr}\left(\gamma^i \mathcal{D}^{-1}(k)\gamma^j \mathcal{D}^{-1}(k-p)\right)$$

Extensions

• Non-zero temperature[†] *T* (Matsubara frequencies):

$$\int \mathrm{d}k_0 f(k_0) \Rightarrow 2\pi \mathrm{i}T \sum_{k=-\infty}^{\infty} f(2\pi \mathrm{i}T(k+1/2)), \ p_0 \to 2\pi \mathrm{i}nT$$

- Chemical potential[†] μ : $\partial_0 \rightarrow \partial_0 i\mu$, $k_0 \rightarrow k_0 + \mu$
- Impurities[‡] Γ : $k_0 + i\Gamma \operatorname{sgn} k_0$

[†]Fialkovsky, Marachevsky, Vassilevich, PRB **84**, 035446 (2011))

[‡]Fialkovsky, Vassilevich, EPJ **B85**, 384 (2012); NK and Vassilevich, arXiv:2402.06972, submitted in PRB

$$\Pi^{ij}(p) = \mathrm{i}e^2 \int \frac{\mathrm{d}^D k}{(2\pi)^D} \operatorname{tr}\left(\gamma^i \mathcal{D}^{-1}(k)\gamma^j \mathcal{D}^{-1}(k-p)\right)$$

Extensions

- External EMF F_{ik} : $\partial_k \rightarrow \partial_k + ieA_k$ (Faraday rotation in graphene^{\(\beta\)})
- Strained graphene[†] $v_F \rightarrow v_F^{ab} = v_F \left[\delta^{ab} \frac{\beta}{4} \left(2u^{ab} + \delta^{ab} u_c^c \right) \right]$

Casimir effect for doped graphene[‡]

[‡] Fialkovsky, and Vassilevich, EPJB, **85**, 384, (2012)

[†] Bordag, Fialkovsky and Vassilevich, PLA **381**, 2439 (2017)

[‡] Bordag, Fialkovsky and Vassilevich, PRB **93**, 075414(2016)

Casimir–Polder force for anisotropic molecules[†]

The basic idea

$$\mathcal{E}_{\rm CP} = \iint \frac{\mathrm{d}^2 k}{4\pi^2} \int_0^\infty \frac{\mathrm{d}\xi}{\sqrt{\xi^2 + \mathbf{k}^2}} e^{-2a\sqrt{\xi^2 + \mathbf{k}^2}} r^{ab} \left[\xi^2 \alpha_{ba} + \alpha_{ca} k^c k_b + \alpha_{33} k_a k_b\right]$$

 $\alpha_{ab} = \alpha_{ab}(i\xi)$ and r^{ab} is the reflection matrix of the plane.

[†]Antezza, Fialkovsky, NK, PRB **102**, 195422 (2020))

Nail Khusnutdinov

Orientation of molecule

The orientation of molecule is described by 3 angles θ , φ , γ . The vectors \vec{e}_1 , \vec{e}_2 , \vec{e}_3 are the eigenvectors of polarization tensor α_{mn} . The conductive plane is (*x*, *y*)-plane.

ē.

y

 \vec{e}_3

Casimir–Polder force for anisotropic molecules

The general form of tensor conductivity

$$\boldsymbol{\sigma} = X\mathbf{I} + Y\frac{\boldsymbol{k}\otimes\boldsymbol{k}}{\boldsymbol{k}^2} + Z\boldsymbol{\epsilon}$$
 (Z is the Hall conductivity)

Casimir–Polder energy. $\alpha_{ij}(\omega) = \alpha_{ij}(i\xi)$

$$\begin{split} \mathcal{E}_{\rm CP} &= \mathcal{E}_{\rm CP}^0 + \Delta \mathcal{E}_{\rm CP}(\theta, \varphi, \gamma) \quad \Delta \mathcal{E}_{\rm CP} = -\sin^2 \theta (\mathcal{G}_{12} \cos^2 \gamma + \mathcal{G}_{23})^\dagger \\ \mathcal{E}_{\rm CP}^0 &= \iint_0^\infty \mathrm{d}k \mathrm{d}\xi e^{-2a\sqrt{\xi^2 + k^2}} ((\alpha_{11} + \alpha_{22})A(k, \xi, \sigma) + \alpha_{33}B(k, \xi, \sigma)) \\ \mathcal{G}_{ij} &= \iint_0^\infty \mathrm{d}k \mathrm{d}\xi e^{-2a\sqrt{\xi^2 + k^2}} (\alpha_{ii} - \alpha_{jj})G(k, \xi, \sigma) \end{split}$$

The angle γ gives contribution in the case $\alpha_{11} \neq \alpha_{22}$, only. [†] sin² θ was observed in Thiyam, Parashar, et al, PRA **92**, 052704 (2015)

Nail Khusnutdinov

Casimir–Polder force for anisotropic molecules

Perfect metal: $\sigma \rightarrow \infty$

$$\begin{split} \mathcal{E}_{\rm CP}^{\rm id} &= \mathcal{E}_{\rm CP}^0 + \Delta \mathcal{E}_{\rm CP} \big|_{\boldsymbol{\sigma} \to \infty} \\ \mathcal{E}_{\rm CP}^0 &= -\frac{1}{32\pi a^4} \int_0^\infty {\rm d} z e^{-z} \left\{ \operatorname{tr} \boldsymbol{\alpha} (1+z+z^2) + \boldsymbol{\alpha}_{33} (1+z-z^2) \right\} \\ \Delta \mathcal{E}_{\rm CP} &= -\frac{\sin^2 \theta}{32\pi a^4} \int_0^\infty {\rm d} z e^{-z} (\boldsymbol{\alpha}_{22} - \boldsymbol{\alpha}_{33}) (1+z-z^2) \\ \mathcal{E}_{\rm CP}^{\rm id} \big|_{\boldsymbol{a} \to \infty} &= \mathcal{E}_{\rm CP}^\infty = -\frac{\operatorname{tr} \boldsymbol{\alpha}(0)}{8\pi a^4}, \ (\boldsymbol{\alpha}(0) \to \operatorname{tr} \boldsymbol{\alpha}(0)/3) \end{split}$$

 $\alpha_{ij}(\omega) = \alpha_{ij}(iz/2a)$

Casimir torque for anisotropic molecules

Casimir torque

$$\mathcal{E}_{CP} = \mathcal{E}_{CP}^{0} + \Delta \mathcal{E}_{CP}(\theta, \varphi, \gamma)$$

$$M_{\theta} = -\partial_{\theta} \mathcal{E}_{CP} = \sin 2\theta (\mathcal{G}_{12} \cos^{2} \gamma + \mathcal{G}_{23})$$

$$M_{\varphi} = -\partial_{\varphi} \mathcal{E}_{CP} = 0$$

$$M_{\gamma} = -\partial_{\gamma} \mathcal{E}_{CP} = \sin^{2} \theta \sin 2\gamma \mathcal{G}_{12}$$
There is the minime on

Zero torque with minima energy \mathcal{E}_{CP} describes the equilibrium states.

CO₂: Graphene

Casimir torque for CO₂

$$\begin{split} \boldsymbol{M} &= 0 \Leftrightarrow \text{extrema of energy } \mathcal{E}_{\text{CP}}^{e} = (\mathcal{E}_{\text{CP}}^{0}, \mathcal{E}_{\text{CP}}^{0} - \mathcal{G}_{23}, \mathcal{E}_{\text{CP}}^{0}) \text{ for } \boldsymbol{\theta}_{e} = \left(0, \frac{\pi}{2}, \pi\right). \\ \boldsymbol{\theta} &= 0, \pi \Leftrightarrow \text{CO}_{2} \perp \text{to plane}; \boldsymbol{\theta} = \pi/2 \Leftrightarrow \text{CO}_{2} \parallel \text{to plane}. \end{split}$$

The Casimir torque M_{θ} tends to rotate molecule to direction axis z and as the result molecules can go through the membrane.

Nail Khusnutdinov

CO₂: Plane with constant Hall conductivity: $\boldsymbol{\sigma} = Z\boldsymbol{\epsilon}$

$$\mathcal{E}_{\rm CP} = \mathcal{E}_{\rm CP}^0 - \sin^2\theta \mathcal{G}_{23} = \frac{Z^2}{1+Z^2} \mathcal{E}_{\rm CP}^{\rm id}$$

Constant Hall conductivity: $\boldsymbol{\sigma} = Z\boldsymbol{\epsilon}$

$$E_{\rm CP} = \frac{1+Z^2}{Z^2} \frac{\mathcal{E}_{\rm CP}}{|\mathcal{E}_{\rm CP}^{\infty}|}, \ G_{\rm CP} = \frac{1+Z^2}{Z^2} \frac{\mathcal{G}_{23}}{|\mathcal{E}_{\rm CP}^{\infty}|}, \\ \mathcal{E}_{\rm CP}^{\infty} = -\frac{\operatorname{tr} \alpha(0)}{8\pi a^4} \left(= \left. \mathcal{E}_{\rm CP}^{\rm id} \right|_{a \to \infty} \right)$$

Nail Khusnutdinov

Polarization tensor approach for Casimir effect

31/54

CRRRRRRRRR

Casimir torque for CO₂

The Casimir torque M_{θ} tends to rotate molecule to direction axis z and as the result molecules can go through the membrane

CO₂: Graphene

$$M_{\theta} = \sin(2\theta)\mathcal{G}_{23}, \ \boldsymbol{\sigma} = X\mathbf{I} + Y\frac{\boldsymbol{k}\otimes\boldsymbol{k}}{\boldsymbol{k}^2} + Z\boldsymbol{\epsilon}$$

Casimir torque for CO₂. The influence of the Hall conductivity

Left panel: A plane with constant dc conductivity (Y = 0). Right panel: Graphene. The torque is shown to be enhanced by enlarging the Hall conductivity contribution of the conductivity tensor of the membrane

Nail Khusnutdinov

Scattering problem

$$\begin{pmatrix} \mathbf{\bar{E}}_1 \\ \mathbf{\bar{E}}_{n+1} \end{pmatrix} = \mathcal{S}\begin{pmatrix} \mathbf{\bar{E}}_1 \\ \mathbf{\bar{E}}_{n+1} \end{pmatrix}, \\ \begin{pmatrix} \mathbf{\bar{E}}_j \\ \mathbf{\bar{E}}_{j+1} \end{pmatrix} = \mathcal{S}_j \begin{pmatrix} \mathbf{\bar{E}}_j \\ \mathbf{\bar{E}}_{j+1} \end{pmatrix}, \\ \mathcal{S} \neq \prod_j \mathcal{S}_j$$

[†]Emelianova, NK, and Kashapov, PRD, **107**, 235405, (2023)

Nail Khusnutdinov

Obtaining S-matrix

One represents the set of connected scattering equations in the form

$$\begin{bmatrix} \mathbf{A}_{1} & \mathbf{C}_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \mathbf{A}_{2} & \mathbf{C}_{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \mathbf{A}_{3} & \mathbf{C}_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \mathbf{A}_{n+1} & \mathbf{C}_{n+1} \end{bmatrix} \begin{bmatrix} \mathbf{E}_{1} \\ \mathbf{E}_{2} \\ \mathbf{E}_{3} \\ \vdots \\ \mathbf{E}_{n+1} \end{bmatrix} = \mathbf{0}$$
$$\mathbf{A}_{i} = \begin{pmatrix} \mathbf{r}_{i} & -\mathbf{I} \\ \mathbf{t}_{i} & 0 \end{pmatrix}, \mathbf{C}_{i} = \begin{pmatrix} 0 & \mathbf{t}_{i}' \\ -\mathbf{I} & \mathbf{r}_{i}' \end{pmatrix}, \mathbf{E}_{i} = \begin{pmatrix} \vec{\mathbf{E}}_{i} \\ \mathbf{E}_{i} \end{pmatrix}.$$

total stack
$$\rightarrow S = \begin{pmatrix} \mathbf{R} & \mathbf{T}' \\ \mathbf{T} & \mathbf{R}' \end{pmatrix}, \ S_j = \begin{pmatrix} \mathbf{r}_j & \mathbf{t}'_j \\ \mathbf{t}_j & \mathbf{r}'_j \end{pmatrix} \leftarrow$$
 specific plane

S-matrix for stack of *n* planes

$$\mathcal{S} = \begin{pmatrix} -\mathbf{K}_{22}^{-1}\mathbf{K}_{21} & (-1)^{n+1}\mathbf{K}_{22}^{-1} \\ (-1)^{n+1} (\mathbf{K}_{11} - \mathbf{K}_{12}\mathbf{K}_{22}^{-1}\mathbf{K}_{21}) & \mathbf{K}_{12}\mathbf{K}_{22}^{-1} \end{pmatrix}, \ \mathbf{K} = \begin{pmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{pmatrix}$$

recurrent relations $\rightarrow \mathbf{K}_{n+1} = \mathbf{B}_{n+1}\mathbf{K}_n, \ \mathbf{B}_i = \mathbf{C}_i^{-1}\mathbf{A}_i$

The Casimir energy

$$\mathcal{E}_n = \Re \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi \ln \det \boldsymbol{D}_n$$
$$\boldsymbol{D}_n = (-1)^n \boldsymbol{t}'_n \mathbf{K}_{22} \boldsymbol{t}'_1 \boldsymbol{t}'_2 \cdots \boldsymbol{t}'_{n-1} = \mathbf{I} + \dots, \ \boldsymbol{D}_1 = \boldsymbol{D}_0 = \mathbf{I}$$

Solving the recurrent relations

$$\mathbf{X}_{n+1} = \mathbf{B}_{n+1}\mathbf{K}_n \Rightarrow \mathbf{D}_{n+2} = \mathbf{u}\mathbf{D}_{n+1} + \mathbf{v}\mathbf{D}_n$$
$$\mathbf{u} = \mathbf{I} + e^{-2k_E d}(\mathbf{I} + 2\mathbf{r}), \mathbf{v} = -e^{-2k_E d}(\mathbf{I} + \mathbf{r})^2$$

To solve the recurrent relations one uses a generation function method extended for matrix-valued coefficients

$$\mathbf{G} = \sum_{s=0}^{\infty} \mathbf{D}_s z^s = \mathbf{D}_0 + (\mathbf{D}_1 - u\mathbf{D}_0)z + u\mathbf{G}z + v\mathbf{G}z^2$$

$$(\downarrow)$$

$$\mathbf{G} = \frac{\mathbf{D}_0 + (\mathbf{D}_1 - u\mathbf{D}_0)z}{\mathbf{I} - uz - vz^2} = (\mathbf{D}_0 + (\mathbf{D}_1 - u\mathbf{D}_0)z)\sum_{s=0}^{\infty} \mathbf{M}_s z^s = \sum_{s=0}^{\infty} z^s \mathbf{D}_s$$

Solving the recurrent relation

$$\boldsymbol{D}_{n} = \mathbf{M}_{n} - \mathbf{M}_{n-1} e^{-2k_{E}d} (\mathbf{I} + 2\boldsymbol{r})$$
$$\mathbf{M}_{s} = \sum_{l=0}^{\left[\frac{s}{2}\right]} \boldsymbol{u}^{s-2l} \boldsymbol{v}^{l} C_{l}^{s-l}.$$

The matrix \mathbf{r} maybe diagonalized with eigenvalues r_{te} and r_{tm} .

$$\boldsymbol{r} = \begin{pmatrix} r_{\text{te}} & 0\\ 0 & r_{\text{tm}} \end{pmatrix} \Rightarrow \boldsymbol{D}_n = \begin{pmatrix} D_n^{\text{te}} & 0\\ 0 & D_n^{\text{tm}} \end{pmatrix}$$
$$\bigoplus$$
$$\boldsymbol{\mathcal{E}}_n = \mathcal{E}_n^{\text{te}} + \mathcal{E}_n^{\text{tm}} = \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi \left(\ln D_n^{\text{te}} + \ln D_n^{\text{tm}} \right),$$

The energy: Solving the recurrent relation

$$D_n^{\mathsf{x}} = \frac{e^{-(n-1)(k_E d)} f_{\mathsf{x}}^{2-n}}{(1+t_{\mathsf{x}})^n} \left[\frac{1+t_{\mathsf{x}}}{f_{\mathsf{x}}} \frac{1-f_{\mathsf{x}}^{2n}}{1-f_{\mathsf{x}}^2} - e^{-z} \frac{1-f_{\mathsf{x}}^{2(n-1)}}{1-f_{\mathsf{x}}^2} \right]^{\dagger}, \ t_{\mathsf{x}} = -\frac{r_{\mathsf{x}}}{1+r_{\mathsf{x}}}$$
$$f_{\mathsf{x}} = \sqrt{(\cosh(k_E d) + t_{\mathsf{x}} \sinh(k_E d))^2 - 1} + \cosh(k_E d) + t_{\mathsf{x}} \sinh(k_E d), \mathsf{x} = \mathsf{te}, \mathsf{tm}$$

The matrix *r* maybe diagonalized with eigenvalues r_{te} and r_{tm} .

$$\boldsymbol{r} = \begin{pmatrix} r_{\text{te}} & 0\\ 0 & r_{\text{tm}} \end{pmatrix} \Rightarrow \boldsymbol{D}_n = \begin{pmatrix} D_n^{\text{te}} & 0\\ 0 & D_n^{\text{tm}} \end{pmatrix}$$
$$\bigoplus$$
$$\bigoplus$$
$$\mathcal{E}_n = \mathcal{E}_n^{\text{te}} + \mathcal{E}_n^{\text{tm}} = \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi \left(\ln D_n^{\text{te}} + \ln D_n^{\text{tm}} \right),$$

. NK, Kashapov and Woods, PRD **92**, 045002 (2015)

The force: Solving the recurrent relation

$$F_{s,n} = -\lim_{\varepsilon \to 0} \frac{E_n(\varepsilon) - E_n(0)}{\varepsilon} = -\Re \sum_{\mathsf{x} = \mathsf{te},\mathsf{tm}} \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi D_n^{\mathsf{x}-1} D_n^{\mathsf{x}'}.$$

$$D_n^{\mathsf{x}} = \frac{e^{-(n-1)(k_E d)} f_{\mathsf{x}}^{2-n}}{(1+t_{\mathsf{x}})^n} \left[\frac{1+t_{\mathsf{x}}}{f_{\mathsf{x}}} \frac{1-f_{\mathsf{x}}^{2n}}{1-f_{\mathsf{x}}^2} - e^{-z} \frac{1-f_{\mathsf{x}}^{2(n-1)}}{1-f_{\mathsf{x}}^2} \right], \, \mathsf{x} = \mathsf{te}, \mathsf{tm}$$
$$f_{\mathsf{x}} = \sqrt{(\cosh(k_E d) + t_{\mathsf{x}} \sinh(k_E d))^2 - 1} + \cosh(k_E d) + t_{\mathsf{x}} \sinh(k_E d)$$

 $\lim_{n \to \infty} \mathcal{E}_n \to \infty$. The energy for unit plane $\overline{\mathcal{E}} = \lim_{n \to \infty} \mathcal{E}_n / n$ is finite. The force acting on the plane *s* in the stack, $F_s = \lim_{n \to \infty} F_{s,n}$ is also finite.

Infinite planes in stack: $n \rightarrow \infty$

$$\overline{\mathcal{E}} = \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi \left(\ln D^{\mathrm{te}} + \ln D^{\mathrm{tm}} \right)$$
$$F_s = -\Re \sum_{\mathrm{x=te,tm}} \iint \frac{\mathrm{d}^2 k}{(2\pi)^3} \int_0^\infty \mathrm{d}\xi G_s^{\mathrm{x}}$$
$$D^{\mathrm{x}} = \lim_{n \to \infty} \sqrt[n]{D_n^{\mathrm{x}}} = \frac{e^{-z} f_{\mathrm{x}}}{1 + t_{\mathrm{x}}}$$
$$\overline{D}_s^{\mathrm{x}} = \lim_{n \to \infty} D_n^{\mathrm{x}-1} D_n^{\mathrm{x}\prime} = \frac{2z t_{\mathrm{x}}^2 f_{\mathrm{x}}^{2(1-s)}}{1 - e^z f_{\mathrm{x}}(1 + t_{\mathrm{x}})}$$

$d \rightarrow 0$ and $d \rightarrow \infty$

$$\mathcal{E}_n|_{d\to 0} \sim \frac{1}{d^3}, \ \mathcal{E}_n|_{d\to \infty} = -\frac{\pi^2 e^2 (n-1)}{450 d^3 (md)^2} \sim \frac{1}{m^2 d^5}.$$

[†]Two graphene $\mathcal{E}_{d\to\infty} \sim \frac{1}{m^2 d^5}$; graphene/perfect metal $\mathcal{E}_{d\to\infty} \sim \frac{1}{m d^4}$.

[†]Bordag, Fialkovsky, Gitman, Vassilevich, PRB, **80**, 245406 (2009)

CRARRARA

The Casimir energy per unit graphene

m = 0.1 eV, $n = 2, 4, 6, \infty$ from the bottom upwards. The insert shows the figure's neighborhood of origin

m = 0.1 eV, $d = d_c, 10d_c, 20d_c$ from the top down, where $d_c = 0.3345$ nm is interplane distance in graphite.

AAAAAAAAA

The Casimir force for plane *s*

The Casimir force $\mathcal{F}_{s,n}$ acting on the graphene *s* in the stack of 10 and 20 planes. The Casimir force $\mathcal{F}_{s,n}$ acting on the first and second graphene in the stack

AAAAAAAAA

The binding energy per unit atom

For graphite interplane separation $d_c = 0.3345$ nm, we obtain the following energy per unit plane in an infinite stack of graphene $\overline{E}_{\infty} = 59.23$ erg/cm². The binding energy $E_{ib} = \overline{E}_{\infty}/d_c\rho_c$, where $\rho_c = 2.23$ g/cm³ is the graphite mass density. For these values, we obtain $E_{ib} = 9.9$ meV/atom, which is by 10% smaller than for constant conductivity case¹. From the first principle, the cohesion energies are 24 – 26 meV/atom² and 24 meV/atom³. The experimental data gives cohesion 35 ± 10 , 15 meV/atom⁴ and 61 ± 5 meV/atom⁵. Most likely, the Casimir energy gives an essential contribution to the binding energy.

⁵Zacharia, Ulbricht, and Hertel, PRB., **69**, 155406 (2004)

¹NK, Kashapov, and Woods, PRD, **92**, 045001 (2015)

²Schabel and Martins, PRB, **46**, 7185 (1992)

³Rydberg, Dion, et al, PRL, **91**, 126402 (2003)

⁴Benedict, Chopra, et al, Chem. Phys. Lett., **286**, 490 (1998)

Lateral moving graphene[†]

The conductivity of moving graphene

The conductivity tensor in the co-moving frame K' is defined by relation $J'^i = \sigma'^{ij} E'_i$ and $\sigma'^{ij} = \Pi'^{ij} / i\omega'$. In laboratory frame K: $\sigma^{ij} - ?$

$$K: \begin{cases} [A_{\mu}(k)] &= 0, \\ [F^{z\nu}(k)] &= \Pi^{\nu\rho}(k)A_{\rho}(k), \end{cases} K': \begin{cases} [A'_{\mu}(k)] &= 0, \\ [F'^{z\nu}(k)] &= \Pi'^{\nu\rho}(k)A'_{\rho}(k), \end{cases}$$

$$\Lambda = \begin{pmatrix} u^0 & -\boldsymbol{u} \\ -\boldsymbol{u} & \mathbf{I} + \frac{\boldsymbol{u} \otimes \boldsymbol{u}}{\boldsymbol{u}^0 + 1} \end{pmatrix}$$

[†]Antezza, Emelianova and NK, Nanotechnology, **35**, 235001, (2024)

NK, Emelianova, Physics, 6, 148-163, (2024)

Nail Khusnutdinov

The conductivity of moving graphene

 $\boldsymbol{\sigma} = i_1 \mathbf{I} + i_2 \boldsymbol{k} \otimes \boldsymbol{k} + i_3 (\boldsymbol{k} \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \boldsymbol{k}), \ i_n = i_n(\omega, \boldsymbol{k}, \boldsymbol{v})$

Real frequency representation

$$\mathcal{E}_{\rm C} = -\frac{1}{2i} \iint \frac{{\rm d}^2 k}{(2\pi)^3} (I_- - I_+), \ \mathcal{P} = \iint \frac{{\rm d}^2 k}{(2\pi)^3} (J_- + J_+),$$
$$I_{\pm} = \int_0^\infty {\rm d}\omega \ln \det \left[\mathbf{I} - e^{\pm 2iak_3} \mathcal{R}(\pm k_3) \right]$$
$$J_{\pm} = \int_0^\infty {\rm d}\omega k_3 \frac{e^{\pm 2iak_3} \left(\operatorname{tr} \mathcal{R}(\pm k_3) - 2e^{\pm 2iak_3} \det \mathcal{R}(\pm k_3) \right)}{\det \left[\mathbf{I} - e^{\pm 2iak_3} \mathcal{R}(\pm k_3) \right]}.$$

Here $\mathcal{R}(\pm k_3) = \mathbf{r}'_{\mathrm{I}}(\pm k_3)\mathbf{r}_{\mathrm{II}}(\pm k_3)$, and $k_3 = \sqrt{\omega^2 - \mathbf{k}^2}$.

The conductivity of moving graphene

Lateral moving graphene[†]

For graphene $v_F \approx 1/300 \approx 10^6$ m/s and situation $v \ll v_F$ takes place in laboratory. For $m = 0, v = v_F$ one has the upper boundary $\Delta_v \mathcal{E}_{\perp}^{gg} / \mathcal{E}_{0}^{gg} = 0.33\%$.

Normal Casimir force. Graphene/graphene: $\Delta_{\nu} \mathcal{E}_{\perp}^{gg} = \mathcal{E}_{\perp}^{gg} - \mathcal{E}_{0}^{gg}$

Here $v_F = c/300$. Left panel: ma = 0.05 (m = 0.1 eV, a = 100 nm). The quadratic behavior occurs, $\Delta_v \mathcal{E}^{\text{gg}}_{\perp} \sim v^2/c^2$ for small velocities $v \ll v_F$. Right panel: ma = 0, 0.05, 0.1, 0.3, 0.9, 2 (from the bottom upwards). The maxima occurred for critical velocity $v_{\text{cr}}^{\text{gg}} = v_F + \frac{1}{2}(ma)$.

Lateral moving graphene[†]

Normal Casimir force. Perfect metal/graphene: $\Delta_{\nu} \mathcal{E}_{\perp}^{gm} = \mathcal{E}_{\perp}^{gm} - \mathcal{E}_{0}^{gm}$

Here $v_F = c/300$. Left panel: ma = 0.05 (m = 0.1 eV, a = 100 nm). The correction, $\Delta_v \mathcal{E}_{\perp}^{\text{gg}} \sim 0$ for small velocities $v \ll v_F$. Right panel: ma = 0, 0.05, 0.1, 0.3, 0.9, 2 (from the bottom upwards).

The Casimir friction

$$\mathcal{F}_{\parallel} = \iint \frac{\mathrm{d}^{2}k}{(2\pi)^{3}} \left\{ \oint_{\gamma_{-}} \mathrm{d}\omega k_{3} \left[\frac{1}{1 - e^{-2\mathrm{i}ak_{3}}r_{\mathrm{tm}}^{2}(-k_{3})} + \frac{1}{1 - e^{-2\mathrm{i}ak_{3}}r_{\mathrm{te}}^{2}(-k_{3})} \right] + \oint_{\gamma_{+}} \mathrm{d}\omega k_{3} \left[\frac{1}{1 - e^{2\mathrm{i}ak_{3}}r_{\mathrm{tm}}^{2}(k_{3})} + \frac{1}{1 - e^{2\mathrm{i}ak_{3}}r_{\mathrm{te}}^{2}(k_{3})} \right] \right\}, \ k_{3} = \sqrt{\omega^{2} - k^{2}}$$

Here, $r_{tm}^2(\pm k_3)$, $r_{te}^2(\pm k_3)$ are eigenvalues

$$\boldsymbol{r}_{\mathrm{I}}'(\pm k_3)\boldsymbol{r}_{\mathrm{II}}(\pm k_3) \Rightarrow \begin{pmatrix} r_{\mathrm{tm}}^2(\pm k_3) & 0\\ 0 & r_{\mathrm{te}}^2(\pm k_3) \end{pmatrix}.$$

The Casimir friction

The contributions to these integrals come from the complex roots ω

$$1 - e^{\pm 2iak_3} r_{\rm tm}^2(\pm k_3) = 0, \ 1 - e^{\pm 2iak_3} r_{\rm te}^2(\pm k_3) = 0.$$

The roots exist if and only if

$$|r_{\rm tm}^2(\pm k_3)| > 1, |r_{\rm te}^2(\pm k_3)| > 1.$$

For v = 0, there are no roots[†]

$$|r_{\rm tm}^2(\pm k_3)| < 1, |r_{\rm te}^2(\pm k_3)| < 1.$$

[†]E. M. Lifshitz, Sov. Phys. JETP **2**, 73 (1956)

Lateral moving graphene[†]

Mixing between positive and negative frequencies of the spectrum is the origin of the Casimir friction^{\dagger}.

The threshold for Casimir friction

$$\begin{split} \nu &= 0, \, \text{the spectrum } \tilde{k}^2 = \omega^2 - v_F^2 k^2 = 0 \Rightarrow \omega_0^{\pm} / k = \pm v_F. \\ \nu &> 0, \, \text{the spectrum } \tilde{k}'^2 = \omega'^2 - v_F^2 k'^2 = 0 \Rightarrow \omega_{\nu}^{\pm}: \end{split}$$

$$(\omega_{v}^{\pm})^{2} - v_{F}^{2}k^{2} + \frac{1 - v_{F}^{2}}{1 - v^{2}}((\omega_{v}^{\pm})^{2}v^{2} + (\boldsymbol{k}\boldsymbol{v})^{2} - 2\omega_{v}^{\pm}(\boldsymbol{k}\boldsymbol{v})) = 0$$

$$\omega_v^+ < 0 \text{ or } \omega_v^- > 0 \Leftrightarrow \cos^2 \varphi > 1 - \frac{v^2 - v_F^2}{v^2 (1 - v_F^2)} \Leftrightarrow v > v_F^{\ddagger}$$

[†]M. F. Maghrebi, R. Golestanian, and M. Kardar, PRA **88**, 042509 (2013) [‡]M. B. Farias, C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, PRD **95**, 065012 (2017)

Thank you for your attention!