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Families

Definition
A family of compact complex manifolds is a holomorphic map of
connected complex spaces f : X → S which is proper, surjective, and
submersive with connected fibers.

Then the fibers Xs , s ∈ S, are (connected) compact complex manifolds.

The simplest example of a family is the projection X × S → S, where X is
a compact complex manifold. This is the trivial family with fiber X .

More generally, a family f : X → S is locally trivial if every s ∈ S has an
open neighborhood U = Us such that the restriction f −1(U) → U is the
trivial family Xs × U → U. Then all fibers Xs are biholomorphic.

Conversely, every family f : X → S with biholomorphic fibers is locally
trivial if S is reduced, by a theorem of Fischer and Grauert.



Families (continued)
By a theorem of Ehresmann, every family of compact complex manifolds
f : X → S is a locally trivial fibration of differentiable manifolds.

In particular, all the fibers Xs are diffeomorphic. But they are generally not
biholomorphic :

Example
Consider the family of all smooth curves of degree 3 in the projective plane
P2 : the space of homogeneous equations of such curves is

S = {f ∈ C[x , y , z ]3 | D(f ) ̸= 0}

where D denotes the discriminant, we have

X = {(x : y : z), f ) ∈ P2 × S | f (x , y , z) = 0},

and the map f : X → S is the projection.
The fibers of f are elliptic curves. They are all diffeomorphic to C/Z + iZ,
but not biholomorphic.



Notions of rigidity
Let X be a compact complex manifold.

Definition
A deformation of X over a connected complex space S is a family of
compact complex manifolds f : X → S, equipped with a point s0 ∈ S such
that the fiber X0 is biholomorphic to X .

We then write f : (X , X ) → (S, s0), and X0 ≃ X for simplicity.

Definition
We say that X is locally rigid if each deformation f : (X , X ) → (S, s0) is
locally trivial at s0.
If S is reduced, this is equivalent to the condition that Xs ≃ X for any s in
a neighborhood of s0.

Definition
We say that X is globally rigid if for each family f : X → ∆ such that
Xs ≃ X for all s ̸= 0, we have X0 ≃ X .



A local rigidity criterion
Theorem
Let X be a compact complex manifold with tangent bundle TX .
▶ If H1(X , TX ) = 0 then X is locally rigid.
▶ Conversely, if H1(X , TX ) ̸= 0 and H2(X , TX ) = 0 then X is not

locally rigid.

The idea of the proof is that H1(X , TX ) parameterizes the infinitesimal
deformations of X , and the obstructions to lifting such deformations to
global ones live in H2(X , TX ).

Example
Let X be a compact Riemann surface of genus g .
Then H2(X , TX ) = 0. Moreover, H1(X , TX ) = H0(

X , (Ω1
X )⊗2)∗ by Serre

duality. Thus, H1(X , TX ) ̸= 0 if g ≥ 1 and hence X is not locally rigid
under this assumption.

If g = 0 then X ≃ P1 and this identifies TX with OP1(2). So X is locally
rigid. It is also globally rigid, since the genus is constant in families.



Rigidity of rational homogeneous manifolds

▶ The projective space Pn is locally rigid.
Indeed, the exact sequence

0 −→ OPn −→ OPn(1)⊕(n+1) −→ TPn −→ 0

yields that H1(Pn, TPn) = 0.
▶ As a consequence, every product of projective spaces is locally rigid.
▶ More generally, let X be a rational homogeneous manifold, i.e., a

homogeneous space G/P where G is a complex semisimple Lie group,
and P ⊂ G a parabolic subgroup. Then H1(X , TX ) = 0 by a theorem
of Bott, so X is locally rigid as well.

▶ We will see in this talk that Pn is globally rigid, but Pn × Pn is not.
▶ The global rigidity of rational homogeneous manifolds will be

discussed in the next talk.



A general construction of deformations

Consider a compact complex manifold Y , and an exact sequence of
complex vector bundles

0 −→ E1 −→ E −→ E2 −→ 0

on Y . Let
X = P(E1 ⊕ E2)

(the projectivization of the vector bundle E1 ⊕ E2). Then there exists a
deformation

f : (X , X ) −→ (C, 0)

such that Xs ≃ P(E ) for all s ̸= 0.

Indeed, the pushout of the above exact sequence by the multiplication map
E1 → E1, v 7→ sv yields a vector bundle E → Y × C such that EY ×s ≃ E
for all s ̸= 0, and EY ×0 ≃ E1 ⊕ E2. We then take X = P(E).



Examples of deformations

1) Take Y = P1 with homogeneous coordinates x0, x1 and consider the
exact sequence of vector bundles

0 −→ OP1(−2) −→ OP1(−1) ⊕ OP1(−1) (x0,x1)−→ OP1 −→ 0.

The above construction yields a family f : X → C with general fibers (over
C \ 0)

P
(
OP1(−1) ⊕ OP1(−1)

)
≃ P1 × P1

and central fiber (over 0)

P
(
OP1 ⊕ OP1(−2)

)
≃ P

(
OP1(2) ⊕ OP1

)
.

This is the Hirzebruch surface F2, which contains a unique compact
complex curve with self-intersection −2. So F2 ̸≃ P1 × P1.

We conclude that P1 × P1 is not globally rigid.



Examples of deformations (continued)
2) More generally, for any integer n ≥ 0, we have an exact sequence of
vector bundles over P1

0 −→ OP1(−n − 2) −→ OP1(−1) ⊕ OP1(−n − 1)
(x0,xn+1

1 )
−→ OP1 −→ 0

and hence a family over C with general fiber

P
(
OP1(−1) ⊕ OP1(−n − 1)

)
≃ P

(
OP1(n) ⊕ OP1

)
= Fn

and central fiber

P
(
OP1(−n − 2) ⊕ OP1

)
≃ P

(
OP1(n + 2) ⊕ OP1

)
= Fn+2.

These two surfaces are not biholomorphic, as every Hirzebruch surface Fn
(where n ≥ 1) admits a unique birational contraction and its exceptional
divisor is a curve of self-intersection −n.

Thus, Fn is not globally rigid.



A further example

3) Take Y = Pn and consider the Euler sequence

0 −→ Ω1
Pn −→ OPn(−1)⊕(n+1) −→ OPn −→ 0.

This exact sequence of vector bundles yields a family of compact complex
manifolds over C with general fiber

P(OPn(−1)⊕(n+1)) ≃ Pn × Pn

and special fiber P(Ω1
Pn ⊕ OPn). The latter is not biholomorphic to Pn × Pn

as it admits a non-trivial birational contraction.

Indeed, there is a natural map from Ω1
Pn to Mn+1 (the space of complex

matrices of size (n + 1) × (n + 1)) which is linear on fibers and birational
to its image, the variety of nilpotent matrices of rank at most 1. Moreover,
this map can be compactified to a map P(Ω1

Pn ⊕ OPn) → P(Mn+1 ⊕ C).

As a consequence, Pn × Pn is not globally rigid.



A characterization of the projective space
The following result implies that Pn is globally rigid for deformations with
Kähler central fiber :

Theorem
Let X be a compact Kähler manifold homeomorphic to Pn. Then X ≃ Pn.

This result is due to Hirzebruch and Kodaira, under additional assumptions
which were later removed in work of Novikov and Yau. We sketch some
steps in the proof :

The cohomology ring H∗(X ,Z) is isomorphic to H∗(Pn,Z) ≃ Z[t]/(tn+1),
where t has degree 2. Using Hodge theory, it follows that Hp(X , Ωq

X ) = 0
for all p ̸= q. In particular, H1(X , OX ) = H2(X , OX ) = 0, and hence the
Chern class map Pic(X ) → H2(X ,Z) is an isomorphism.

Let g ∈ H2(X ,R) be the class of a Kähler form on X . By rescaling,
we may assume that g is a generator of H2(X ,Z) ≃ H2(Pn,Z) ≃ Z.
Thus, X is projective algebraic, and has an ample line bundle L with
first Chern class g .



Characterization of the projective space (continued)
An argument based on the Hirzebruch-Riemann-Roch theorem shows
that h0(X , L) = n + 1. This is the most technical step of the paper by
Hirzebruch and Kodaira. It works either if n is odd, or if n is even and
c1(X ) ̸= (n + 1)g .

Under these assumptions, the proof is completed by the following
result of Kobayashi and Ochiai :

Let X be a projective manifold of dimension n, and L an ample line
bundle on X . If h0(X , L) ≥ n + 1 and Ln = 1 (where Ln denotes the
self-intersection number), then (X , L) ≃ (Pn, OPn(1)).

It remains to exclude the case where n is even and c1(X ) = (n + 1)g .
But then X is of general type, and a result of Yau implies that X is
the quotient of the ball Bn by a discrete group of isometries. As X is
simply-connected and Bn is non-compact, this yields a contradiction.

The global rigidity of Pn (without assuming that the central fiber is
Kähler) is due to Siu via very different arguments.
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