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There is also discrete random matrix theory (over Z,Z/nZ, etc.):
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Fact: corank(A---Ay) =~ log, 7, finite limit fluctuations.
Question 1: What is the limit of
corank(A; - -+ Ay) —log, 7

as N, 7 — oo?.



An intriguing random integer

Definition




An intriguing random integer

Definition

For any x € Ro,t € (0,1), L1, is the Z-valued random variable
given by

) = 1 —xt®I (_1)jt(g)
Prifaex =)= [Lis: (1= 1) j;e g:1(1 —t%)

for any x € 7.

Equivalently, X = y~1¢t~£1.x solves the indeterminate Stieltjes
moment problem
m+1
") G m

E[X"] =—— 2™ 5 =0,1,2,...
m)!

and is the unique solution supported on {x~!t" : n € Z}.



Want a limit of corank(A, --- Ay) — log,, 7, but this is not an
integer.



Want a limit of corank(A, --- Ay) — log,, 7, but this is not an
integer.

Theorem (VP ‘23, special case)

For each N > 1 take AgN), AgN), ... iid uniform in Matn (Z/pZ).
Then as N — oo,

corank(Ag]X) e AEN)) —Int(log, v + ) = Ly p-1 p¢/(p—1)

for any sequence T, N > 1 s.t. 1 < v < p'¥ and the fractional
part {—log, T} converges to some ¢ € [0, 1].




Let ¢t € (0,1) and X (7),7 € R>( be the Z>(-valued process which
jumps by 1, and waits at = € Z>( for an Exp(t*)-distributed time.

X(7)
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Let ¢t € (0,1) and X (7),7 € R>( be the Z>(-valued process which
jumps by 1, and waits at = € Z>( for an Exp(t*)-distributed time.

X(7)

= N W e Ot

12345678910
Question 2: What are the limiting fluctuations of X (7)?

Theorem (VP ‘23, special case)

X(1) = (logg—1 7+ C) = Lq 4 4¢+1/(1—4)

in distribution as T — oo along the sequence T € t~N+¢.




Random groups and random matrices



In many contexts we want asymptotics of a (pseudo-)random finite
abelian group G,

=P G
P prime

)\(P)

GPZ@Z/]) ¢ Z?

such as:

m Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),

m Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),

m (co)homology groups of random chain complexes—(Kahle,
Lutz, Meszaros, Newman, Parsons,...)



Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra
distribution on abelian p-groups G = @@, Z/piZ given by

[1i>:(1 = 1/p)

P = aw@

observed empirically for p-parts of class groups of fields Q(+/—d).
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Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra
distribution on abelian p-groups G = @@, Z/piZ given by

[1i>:(1 = 1/p)

P = aw@

observed empirically for p-parts of class groups of fields Q(+/—d).
A € Maty(Z) is a linear map A : ZN — ZV,

cok(A) := ZN JAZV.
For random A, cok(A) is a random abelian group.
Can probe cok(A) by reducing mod pF:
cok(A  (mod p")) = cok(A)/p" cok(A).

Now A (mod p*) € Maty (Z/p*Z), a finite set.



Friedman-Washington: a random matrix
explanation?

Theorem (Friedman-Washington 1987)

Let AN) € Maty(Z/p*Z) have iid uniform entries. Then as
N — oo, cok(AN)) limits to G /p*G, where G has Cohen-Lenstra
distribution Pr(G) = [];5,(1 — p~ ) /| Aut(G).
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Friedman-Washington: a random matrix
explanation?

Theorem (Friedman-Washington 1987)

Let AN) € Maty(Z/p*Z) have iid uniform entries. Then as
N — 00, cok(AN)) Jimits to G /p*G, where G has Cohen-Lenstra
distribution Pr(G) = [];5,(1 — p~ ) /| Aut(G).

Fix a prime p. Z, := I'&HZ/ka, concretely
Z,={ap+ap+ap® +...:a;, €{0,...,p—1}}.
(Zy,+) has Haar probability measure ,u%faar, explicitly given by

taking a; € {0,...,p — 1} iid uniformly random, projects to
uniform on Z/p*Z for any k.



Cohen-Lenstra universality and prime decoupling

Theorem (Friedman-Washington 1987, full version)

Let AN) € Maty(Zy) have iid additive Haar entries. Then as
N — oo, cok(AN)) limits to the Cohen-Lenstra distribution

Pr(G) = [];:(1 —p™)/| Aut(G)].
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Theorem (Wood 2015)

Let AN) € Maty(Z) have iid entries from any distribution which is
nonconstant modulo p. Then cok(AM)),, converges to the
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Cohen-Lenstra universality and prime decoupling

Theorem (Friedman-Washington 1987, full version)

Let AN) € Maty(Zy) have iid additive Haar entries. Then as
N — 00, cok(AN)) Jimits to the Cohen-Lenstra distribution

Pr(G) = [];:(1 —p™)/| Aut(G)].

For integer matrices A, cokernel is sum of its p-parts:

cok(A) = @ cok(A)p.

p prime

Theorem (Wood 2015)

Let AN) € Maty(Z) have iid entries from any distribution which is
nonconstant modulo p. Then cok(AM)),, converges to the
Cohen-Lenstra distribution.

“Primes decouple, Z,, case has complete information about Z"



Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A € Maty(Zy,), there are U,V € GLy(Z,) for
which
UAV = diag(ph, .. ,pAN)

for singular numbers \; € Z>q (unique).

(Like singular value decomposition, GLy(Z,) replacing
O(N),U(N)).



Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A € Maty(Zy,), there are U,V € GLy(Z,) for
which
UAV = diag(ph, .. ,pAN)

for singular numbers \; € Z>q (unique).

(Like singular value decomposition, GLy(Z,) replacing
O(N),U(N)).

Write SN(A) = (SN(A)l, cey SN(A)N) = ()\1, R )\N) above.
Note

cok(A) = P Z/pMZ

1<i<N



At a probabilistic level things look quite different

Marchenko-Pastur law

12 Sine process b
10 e 80
L}

o ?2?7?
0s
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o 1 2 3
Bessel process Airy point process
Histogram of singular values of a single Histogram of singular numbers of a single

10° x 10! Ginibre (iid Gaussian) matrix 100 x 100 iid itive Haar matrix
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real/complex matrices, 7 = 1,2, ... [Bellman 1954].
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The real/complex product process

Can study singular values of A;A;_1---A; for A; N x N random
real/complex matrices, 7 = 1,2, ... [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian
fluctuations as 7 — oo ([Furstenberg-Kesten 1960],
[Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When N, 7 — oo, N/T — ¢ € (0,00), the bulk (resp. soft edge)
statistics are c-parametrized deformations of sine (resp. Airy) kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

Question: How do singular numbers of matrix products behave
over Zy?



Visualizing singular numbers

singulay numbers (lambda_1(tau),... lambda_10(tau)) = SN(A_tau \cdots A_1), with A_i iid 10 10 comers of uniform GL_{12}(Z/p" {40}2) matrices, p=2

lambda_i(46)

A€IPQER



The reflecting Poisson sea and limit
theorems



Particle positions S (1) = (S (7)1, 8()(7)q,...), T € Rxy.
Starts at S(>)(0) = (0,0,...).

Indep. exp. clocks at 1,2, ... of rates ¢,t2, ... control jumps.

SN (1 —€) = (4,4,3,1,1,1,0,...) S®)(r) = (4,4,3,2,1,1,0,...)
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When particle is blocked, donates jump:
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Particle positions S (1) = (S (7)1, 8()(7)q,...), T € Rxy.

Starts at S(>)(0) = (0,0,...).

Indep. exp. clocks at 1,2, ... of rates ¢,t2, ... control jumps.

—= N W

SN (1 —€) = (4,4,3,1,1,1,0,...)

-

—=N W

When particle is blocked, donates jump:

o = N W

S (1 —€) = (4,4,3,1,1,1,0,...)

15t row's length is X ({45 7) (jump rate t*t1 472 | =

-

S = N W

8)(r) = (4,4,3,2,1,1,0,...)

S (7) = (4,4,3,2,1,1,0,..)

t
=t%).



The reflecting Poisson sea
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Definition (VP 2023)

The reflecting Poisson sea p(T') = (..., u—1(T), po(T), 1 (T), .. .),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-t' exponential clock (independent
of each other), donating move if blocked.
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The reflecting Poisson sea p(T') = (..., u—1(T), po(T), 1 (T), .. .),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-t' exponential clock (independent
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Theorem (VP ‘23)

Fixd > 1. For each N > 1 let AZ(.N) € Matn(Z/pZ),i > 1 be iid
Haar and TIM) (1) := SN(ASN) S AgN)).

Let (rn)n>1 be such that (1) rny — oo and (2) N—rn — oco. Then
o, I ST, T (T ) IV, )
converges to (..., pu—1(T), puo(T), p1(T),...) (witht =1/p) in
finite-dimensional distribution across multlple times T
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Theorem (VP ‘23)

Fixd > 1. For each N > 1 let AZ(.N) € Matn(Z/pZ),i > 1 be iid
Haar and TIM) (1) := SN(ASN) S AgN)).

Let (rn)n>1 be such that (1) rny — oo and (2) N—rn — oco. Then
oo TN T )y, IO ([T ), (N T, )
converges to (..., 1 (T), po(T), 1 (T),...) (witht =1/p) in
finite-dimensional distribution across multlple times T

m The joint distribution of first d rows of p(7T') at time T is an
explicit random variable Lg; ;7/(1—y)-

m Universality? [VP23], [Nguyen-VP 24+]



Integrability and symmetric functions



A word on proofs

Convergence to u(T') at a fixed T uses symmetric function theory.



A word on proofs

Convergence to u(T') at a fixed T uses symmetric function theory.

Given convergence of fixed-time marginals, explicit linear-algebraic
arguments show multi-time convergence to pu(7T') (robust, universal
for generic GLx (Zy)-invariant distributions).



Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Py(x1,...,2n;q,t) indexed by integer
partitions A\ = (A1 > ... > A, > 0) are symmetric polynomials in
T1,...,T, with two parameters ¢, t.



Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Py(x1,...,2n;q,t) indexed by integer
partitions A\ = (A1 > ... > A, > 0) are symmetric polynomials in
T1,...,T, with two parameters ¢, t.

Macdonald processes q,Jc efo, 1)

Rujjsenaars -Macdonald system

Representations of Double Affine Hecke Algebras

Hall-Littlewood processes

Random matrices over finite fields

q-Whittaker processes
4-TASEP, 2d dyramics ~ £=0
q-deformed quantum Toda lattice
Representations of gly ; Uy (qhy)

1=0

Spherical functions for p-adic groups

1- Br2

General RMT t=9 =1
Random watrices over R €, H
Calogero-Sutherland, Jack polynomials

l/ Spherical functions for Riem. symm. sp. \;‘/
; . Kingman partition structures
Whittaker processes -9
P 41 Cycles of random permutations =0

Directed polymers and their hierarchies

Quantum Toda lattice, vepr. of GL(n, R ) =4

Poisson-Dirichlet distributions

Schur processes 9=t
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE
Characters of symmetric, unitary groups

(Figure credits: A. Borodin, ICM 2014 slides)



The Z, <+ C analogy is actually extremely close

Macdonald measure
[Borodin-Corwin ’11]

_ P/\(17 ) t”_l; q, t)QA(tm_nJrlr ) tD_ﬂ; q, f)

PI(/\) H,I,[(l, . Jn—l; tm—nJrl7 o thn)

8 e {1,2,4}
t = qs3/2

q—1

A rescaled

eckman-Opdam measure:

singular values of n X m corners
of Haar O(D),U(D), Sp*(D)

matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n x m
corners of Haar GLp(Z,) matrices,
[VP °20]

Macdonald processes used for real/complex matrix products (Ahn,
Borodin, Gorin, Strahov, Sun 2015+ ), are also a key tool for us.
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[Liu-Wang-Wang 2018]), but is a (non-determinantal!) local
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Conclusion

Macdonald processes g,%¢[o,1)

Schur processes 9=t

Structural analogies Bropabilistic diff
Z, <= R,C robabilistic differences

The reflecting Poisson sea is the universal discrete analogue of
deformed sine/Airy kernels ([Akemann-Burda-Kieburg 2018],
[Liu-Wang-Wang 2018]), but is a (non-determinantal!) local
interacting particle system.

Thanks!
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Infinitely many clocks ring on any time interval—nontrivial even to
formally define reflecting Poisson seal [VP 2023]



Bonus 1: An infinite amount of ringing

A
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Infinitely many clocks ring on any time interval—nontrivial even to
formally define reflecting Poisson seal [VP 2023]

However, for ‘nice initial conditions’ 1(0) with lim;_,_ o 1£;(0) = 00
as in above picture, projections suffice. In general one must take
limit of a version (u_p(T), u—p+1(T),...).



Bonus 2: more formal statement of bulk limit

Theorem (VP 2023)

Let r € (0,1), pu a ‘nice initial condition’, and for each n > 1, let

m Agn),i > 1 iid n x n matrices with distribution invariant under
GLn(Zy),
m B € Mat,,(Z,) fixed ‘initial condition matrix’ with singular
numbers SN(B(”))LMJH — u; for all i.
m ™(r) = SN ... AW pm),
Then L\"(T) := trnj4i(Lcn ' T]),i € Z,T > 0 converges to
reflecting Poisson sea (1;(T));ez with pu(0) = u, for
cn = c(r, LaW(SN(AEn)))) explicit, provided that
1. SN(Al(.n)) is not identically (0, ...,0), and

2. X, = corank(Al(-n) (mod p)) < rn w.h.p. (formally,
limy, 00 Pr(X,, > rn — j| X, > 0) =0 for any j € N).



Bonus 3: what is £}, really?

Definition (VP 2023)

For (Ly,...,Ly) € Sigy,
e—xt4 iy (i)
k—1
d<Ly (&) —a [ Iisy () ni—Lip

1 k—1 L, — L;
D DR e LZ”MdH[ H]

pESigy,
LiZpm>Lo>pg>...

X Qur—dy.. e —dy (VX1 = )21, a(1);0,2)

where again t = 1/p and last term is a Hall-Littlewood polynomial
specialized with o and Plancherel parameters 1 and x (1 — t)t?.

Pr (Ekx (L177Lk)) =

t
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