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Many limit objects (e.g. Tracy-Widom) appear in both.

There is also discrete random matrix theory (over Z,Z/nZ, etc.):
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Today: interacting particle systems as universal
limits in discrete RMT

Aperitif: Z/pZ case

Random groups and random matrices

The reflecting Poisson sea and limit theorems

Integrability and symmetric functions



Aperitif: Z/pZ case



Let A1, A2, . . . be iid uniform in MatN (Z/pZ). What does the
distribution of rank(Aτ · · ·A2A1) look like for large N and τ?
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Fact: corank(Aτ · · ·A1) ≈ logp τ , finite limit fluctuations.

Question 1: What is the limit of

corank(Aτ · · ·A1)− logp τ

as N, τ →∞?.
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An intriguing random integer

Definition
For any χ ∈ R>0, t ∈ (0, 1), L1,t,χ is the Z-valued random variable
given by

Pr(L1,t,χ = x) =
1∏

i≥1(1− ti)
∑
j≥0

e−χt
x−j (−1)jt(

j
2)∏j

i=1(1− ti)

for any x ∈ Z.

Equivalently, X = χ−1t−L1,t,χ solves the indeterminate Stieltjes
moment problem

E[Xm] =
t−(m+1

2 )(t; t)m
m!

, m = 0, 1, 2, . . .

and is the unique solution supported on {χ−1tn : n ∈ Z}.
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Want a limit of corank(Aτ · · ·A1)− logp τ , but this is not an
integer.

Theorem (VP ‘23, special case)

For each N ≥ 1 take A(N)
1 , A

(N)
2 , . . . iid uniform in MatN (Z/pZ).

Then as N →∞,

corank(A(N)
τN
· · ·A(N)

1 )− Int(logp τN + ζ)→ L1,p−1,p−ζ/(p−1)

for any sequence τN , N ≥ 1 s.t. 1� τN � pN and the fractional
part {− logp τN} converges to some ζ ∈ [0, 1].
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Let t ∈ (0, 1) and X(τ), τ ∈ R≥0 be the Z≥0-valued process which
jumps by 1, and waits at x ∈ Z≥0 for an Exp(tx)-distributed time.
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Question 2: What are the limiting fluctuations of X(τ)?

Theorem (VP ‘23, special case)

X(τ)− (logt−1 τ + ζ)→ L1,t,tζ+1/(1−t)

in distribution as τ →∞ along the sequence τ ∈ t−N+ζ .
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Random groups and random matrices



In many contexts we want asymptotics of a (pseudo-)random finite
abelian group G,

G =
⊕
p prime

Gp

Gp =
⊕
i

Z/pλ
(p)
i Z,

such as:
Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),
Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),
(co)homology groups of random chain complexes—(Kahle,
Lutz, Meszaros, Newman, Parsons,...)



Random matrices produce random groups
The first such distribution (1983) was the Cohen-Lenstra
distribution on abelian p-groups G =

⊕
i Z/pλiZ given by

Pr(G) =

∏
i≥1(1− 1/pi)

|Aut(G)|
,

observed empirically for p-parts of class groups of fields Q(
√
−d).

A ∈ MatN (Z) is a linear map A : ZN → ZN ,

cok(A) := ZN/AZN .

For random A, cok(A) is a random abelian group.

Can probe cok(A) by reducing mod pk:

cok(A (mod pk)) ∼= cok(A)/pk cok(A).

Now A (mod pk) ∈ MatN (Z/pkZ), a finite set.
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Friedman-Washington: a random matrix
explanation?

Theorem (Friedman-Washington 1987)

Let A(N) ∈ MatN (Z/pkZ) have iid uniform entries. Then as
N →∞, cok(A(N)) limits to G/pkG, where G has Cohen-Lenstra
distribution Pr(G) =

∏
i≥1(1− p−i)/|Aut(G)|.

Fix a prime p. Zp := lim←−Z/pkZ, concretely

Zp = {a0 + a1p+ a2p
2 + . . . : ai ∈ {0, . . . , p− 1}}.

(Zp,+) has Haar probability measure µZpHaar, explicitly given by
taking ai ∈ {0, . . . , p− 1} iid uniformly random, projects to
uniform on Z/pkZ for any k.



Friedman-Washington: a random matrix
explanation?

Theorem (Friedman-Washington 1987)

Let A(N) ∈ MatN (Z/pkZ) have iid uniform entries. Then as
N →∞, cok(A(N)) limits to G/pkG, where G has Cohen-Lenstra
distribution Pr(G) =

∏
i≥1(1− p−i)/|Aut(G)|.

Fix a prime p. Zp := lim←−Z/pkZ, concretely

Zp = {a0 + a1p+ a2p
2 + . . . : ai ∈ {0, . . . , p− 1}}.

(Zp,+) has Haar probability measure µZpHaar, explicitly given by
taking ai ∈ {0, . . . , p− 1} iid uniformly random, projects to
uniform on Z/pkZ for any k.



Friedman-Washington: a random matrix
explanation?

Theorem (Friedman-Washington 1987)

Let A(N) ∈ MatN (Z/pkZ) have iid uniform entries. Then as
N →∞, cok(A(N)) limits to G/pkG, where G has Cohen-Lenstra
distribution Pr(G) =

∏
i≥1(1− p−i)/|Aut(G)|.

Fix a prime p. Zp := lim←−Z/pkZ, concretely

Zp = {a0 + a1p+ a2p
2 + . . . : ai ∈ {0, . . . , p− 1}}.

(Zp,+) has Haar probability measure µZpHaar, explicitly given by
taking ai ∈ {0, . . . , p− 1} iid uniformly random, projects to
uniform on Z/pkZ for any k.



Cohen-Lenstra universality and prime decoupling
Theorem (Friedman-Washington 1987, full version)

Let A(N) ∈ MatN (Zp) have iid additive Haar entries. Then as
N →∞, cok(A(N)) limits to the Cohen-Lenstra distribution
Pr(G) =

∏
i≥1(1− p−i)/|Aut(G)|.

For integer matrices A, cokernel is sum of its p-parts:

cok(A) ∼=
⊕
p prime

cok(A)p.

Theorem (Wood 2015)

Let A(N) ∈ MatN (Z) have iid entries from any distribution which is
nonconstant modulo p. Then cok(A(N))p converges to the
Cohen-Lenstra distribution.

“Primes decouple, Zp case has complete information about Z”
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Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A ∈ MatN (Zp), there are U, V ∈ GLN (Zp) for
which

UAV = diag(pλ1 , . . . , pλN )

for singular numbers λi ∈ Z≥0 (unique).

(Like singular value decomposition, GLN (Zp) replacing
O(N), U(N)).

Write SN(A) = (SN(A)1, . . . ,SN(A)N ) := (λ1, . . . , λN ) above.
Note

cok(A) ∼=
⊕

1≤i≤N
Z/pλiZ
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At a probabilistic level things look quite different



The real/complex product process

Can study singular values of AτAτ−1 · · ·A1 for Ai N ×N random
real/complex matrices, τ = 1, 2, . . . [Bellman 1954].

For fixed N , the logarithms of singular values have Gaussian
fluctuations as τ →∞ ([Furstenberg-Kesten 1960],
[Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When N, τ →∞, N/τ → c ∈ (0,∞), the bulk (resp. soft edge)
statistics are c-parametrized deformations of sine (resp. Airy) kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

Question: How do singular numbers of matrix products behave
over Zp?
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Visualizing singular numbers



The reflecting Poisson sea and limit
theorems



Particle positions S(∞)(τ) = (S(∞)(τ)1,S(∞)(τ)2, . . .), τ ∈ R≥0.

Starts at S(∞)(0) = (0, 0, . . .).

Indep. exp. clocks at 1, 2, . . . of rates t, t2, . . . control jumps.
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0

1st row’s length is X( t
1−tτ) (jump rate tx+1 + tx+2 + . . . = t

1−t t
x).
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The reflecting Poisson sea

. . .

. . .
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44

Definition (VP 2023)

The reflecting Poisson sea µ(T ) = (. . . , µ−1(T ), µ0(T ), µ1(T ), . . .),
T ≥ 0 is the continuous-time stochastic process with each µi(T )
increasing by 1 according to rate-ti exponential clock (independent
of each other), donating move if blocked.
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Theorem (VP ‘23)

Fix d ≥ 1. For each N ≥ 1 let A(N)
i ∈ MatN (Z/pdZ), i ≥ 1 be iid

Haar and Π(N)(τ) := SN(A
(N)
τ · · ·A(N)

1 ).
Let (rN )N≥1 be such that (1) rN →∞ and (2) N−rN →∞. Then
(. . . ,Π(N)(bprNT c)rN−1,Π(N)(bprNT c)rN ,Π(N)(bprNT c)rN+1, . . .)
converges to (. . . , µ−1(T ), µ0(T ), µ1(T ), . . .) (with t = 1/p) in
finite-dimensional distribution across multiple times T .

The joint distribution of first d rows of µ(T ) at time T is an
explicit random variable Ld,t,tT/(1−t).
Universality? [VP23], [Nguyen-VP ‘24+]



Theorem (VP ‘23)

Fix d ≥ 1. For each N ≥ 1 let A(N)
i ∈ MatN (Z/pdZ), i ≥ 1 be iid

Haar and Π(N)(τ) := SN(A
(N)
τ · · ·A(N)

1 ).
Let (rN )N≥1 be such that (1) rN →∞ and (2) N−rN →∞. Then
(. . . ,Π(N)(bprNT c)rN−1,Π(N)(bprNT c)rN ,Π(N)(bprNT c)rN+1, . . .)
converges to (. . . , µ−1(T ), µ0(T ), µ1(T ), . . .) (with t = 1/p) in
finite-dimensional distribution across multiple times T .

The joint distribution of first d rows of µ(T ) at time T is an
explicit random variable Ld,t,tT/(1−t).
Universality? [VP23], [Nguyen-VP ‘24+]



Theorem (VP ‘23)

Fix d ≥ 1. For each N ≥ 1 let A(N)
i ∈ MatN (Z/pdZ), i ≥ 1 be iid

Haar and Π(N)(τ) := SN(A
(N)
τ · · ·A(N)

1 ).
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Integrability and symmetric functions



A word on proofs

Convergence to µ(T ) at a fixed T uses symmetric function theory.

Given convergence of fixed-time marginals, explicit linear-algebraic
arguments show multi-time convergence to µ(T ) (robust, universal
for generic GLN (Zp)-invariant distributions).
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Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Pλ(x1, . . . , xn; q, t) indexed by integer
partitions λ = (λ1 ≥ . . . ≥ λn ≥ 0) are symmetric polynomials in
x1, . . . , xn with two parameters q, t.
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The Zp ↔ C analogy is actually extremely close

Macdonald measure

[Borodin-Corwin ’11]

Pr(λ) =
Pλ(1, . . . , t

n−1; q, t)Qλ(t
m−n+1, . . . , tD−n; q, t)

Πq,t(1, . . . , tn−1; tm−n+1, . . . , tD−n)

Heckman-Opdam measure:

singular values of n×m corners

of Haar O(D), U(D), Sp∗(D)
matrices [Forrester-Rains ’05]

Hall-Littlewood measure:

singular numbers of n×m

corners of Haar GLD(Zp) matrices

[VP ’20]

q → 0
β ∈ {1, 2, 4}
t = qβ/2

q → 1
λ rescaled

t = 1/p

Macdonald processes used for real/complex matrix products (Ahn,
Borodin, Gorin, Strahov, Sun 2015+), are also a key tool for us.
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Structural analogies
Zp ⇐⇒ R,C Probabilistic differences

The reflecting Poisson sea is the universal discrete analogue of
deformed sine/Airy kernels ([Akemann-Burda-Kieburg 2018],
[Liu-Wang-Wang 2018]), but is a (non-determinantal!) local
interacting particle system.

Thanks!
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Bonus 1: An infinite amount of ringing

. . .

. . .

µ0µ
−1 µ1 µ2 µ3 µ4µ
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0
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3
(. . . , µ

−2, µ−1, µ0, µ1, µ2, . . .)
= (. . . , 3, 1, 1, 1, 0, . . .)

44

ring!

Infinitely many clocks ring on any time interval—nontrivial even to
formally define reflecting Poisson sea! [VP 2023]

However, for ‘nice initial conditions’ µ(0) with limi→−∞ µi(0) =∞
as in above picture, projections suffice. In general one must take
limit of a version (µ−D(T ), µ−D+1(T ), . . .).
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Bonus 2: more formal statement of bulk limit

Theorem (VP 2023)

Let r ∈ (0, 1), µ a ‘nice initial condition’, and for each n ≥ 1, let

A
(n)
i , i ≥ 1 iid n× n matrices with distribution invariant under

GLn(Zp),
B(n) ∈ Matn(Zp) fixed ‘initial condition matrix’ with singular
numbers SN(B(n))brnc+i → µi for all i.
(n)(τ) = SN(A

(n)
τ · · ·A(n)

1 B(n)).

Then L(n)
i (T ) := brnc+i(bc−1n T c), i ∈ Z, T ≥ 0 converges to

reflecting Poisson sea (µi(T ))i∈Z with µ(0) = µ, for
cn = c(r, Law(SN(A

(n)
i ))) explicit, provided that

1. SN(A
(n)
i ) is not identically (0, . . . , 0), and

2. Xn := corank(A
(n)
i (mod p))� rn w.h.p. (formally,

limn→∞ Pr(Xn > rn− j|Xn > 0) = 0 for any j ∈ N).



Bonus 3: what is Lk,χ really?

Definition (VP 2023)

For (L1, . . . , Lk) ∈ Sigk,

Pr(Lk,χ = (L1, . . . , Lk)) :=
∑
d≤Lk

e−χt
d
t
∑k
i=1 (Li−d2 )

(t; t)Lk−d
∏k−1
i=1 (t; t)Li−Li+1

× 1

(t; t)∞

∑
µ∈Sigk−1

L1≥µ1≥L2≥µ2≥...

(−1)
∑k
i=1 Li−

∑k−1
i=1 µi−d

k−1∏
i=1

[
Li − Li+1

Li − µi

]
t

×Q(µ1−d,...,µk−1−d)′(γ(χ(1− t)td), α(1); 0, t)

where again t = 1/p and last term is a Hall-Littlewood polynomial
specialized with α and Plancherel parameters 1 and χ(1− t)td.
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